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High-throughput sequencing of 16S rRNA gene
amplicons is a valuable tool for comparing microbial
community structure among hundreds of samples
for which researchers have primarily used the 454
Pyrosequencing platform. The Illumina platform
produces far more reads than 454 (up to 1.5 billion
reads per run, compared with 1 million reads per
run on a 454 plate of comparable cost), but produces
fewer base pairs (bp) per read (75–150 bp per read
compared with 250–400 bp per read on 454). The
shorter Illumina reads may reduce phylogenetic
resolution, both in terms of picking operational
taxonomic units (OTUs) and determining evolution-
ary distances between OTUs. The paired-end (PE)
approach where each molecule is sequenced from
both the 50 and 30 ends can double the number of bp
per read for the Illumina platform. Some researchers
have obtained overlapping PE Illumina reads cover-
ing the V3 (Bartram et al., 2011) or V6 (Zhou et al.,
2011) regions of 16S rRNA genes, but many other
useful primer regions (for example, V1–V2 or V4) are
4200 bp in length in which case PE reads do not
overlap. However, it is possible, as we present here,
to use non-overlapping PE reads to pick OTUs and
build a phylogenetic tree. We assessed the utility of
using PE Illumina sequencing, compared with
results from single-direction (SD) sequencing from
the 50 position of the V4 region of 16S rRNA genes.
We compared alpha- and beta-diversity analyses
(species richness and between-sample comparisons,
respectively), using previously published non-over-
lapping PE Illumina sequence data from 16S rRNA
gene surveys of 28 human microbiome and environ-
mental samples (Caporaso et al., 2011).

Illumina sequences were quality filtered using the
default pipeline in QIIME 1.2.1 (Caporaso et al.,
2010b), including the default quality thresholds and
a minimum read length of 75 bp. To avoid potential
biases from quality filtering, only sequences passing
the quality threshold in both 50 and 30 reads were
kept for downstream processing (43% of the total
reads were removed because one of the two direc-
tions did not pass the quality threshold). All reads

were trimmed to 75 bp length (total of 150 bp per seq
for PE). The PE and 50 SD data were analyzed
separately, using the default settings in QIIME, with
the following additional steps for PE data: before
OTU-picking with uclust (97% ID) (Edgar, 2010), we
joined PE reads ‘inside-out’ such that the 30 end of
the 30 read was to the left of the 50 end of the 50 read,
required for uclust to perform accurate pairwise
alignments. Based on a simulation using Greengenes
sequences trimmed to the V4 region, we found that
uclust assigned similar pairwise alignment dis-
tances to inside-out reads compared with the normal
configuration (Supplementary Figure S1). OTU
representative sequences (separate 30 and 50 reads
for PE) were aligned with PyNAST (Caporaso et al.,
2010a) against separate regions of the August 2007
Greengenes core (DeSantis et al., 2006), trimmed to
positions 2250–2423 for 50 reads and 3805–4069 for
30 reads. Trimming reference sequences had advan-
tages of rapid computation, more stringent discard-
ing of non-16S reads, and has previously been
shown to improve taxonomic classification (Werner
et al., 2011b). We built a phylogenetic tree (FastTree)
(Price et al., 2010) from aligned, filtered sequences
(for PE, the separate 50 and 30 alignments were joined
end-to-end to use all 150 bp for phylogeny). Sepa-
rately for each method, we discarded OTUs with
fewer than 10 total reads (2.6% of the 16.6 million
high-quality reads). This was done to discard false
diversity because of sequencing errors, by setting a
10� threshold of evidence needed to support a true
sequence. OTUs that failed to align 472 bp (0.007%
of remaining reads) were also removed.

We obtained slightly higher alpha-diversity
(Chao1) using PE data compared with 50 SD data,
but the results were still comparable (Supplemen-
tary Figure S2). Between-sample comparisons of
alpha-diversity were consistent, except for the fecal
samples, which had greater disagreement. We also
observed that the pairing of sequences into the same
OTU was least consistent for fecal and soil samples,
comparing PE and 50 SD data (Supplementary Figure
S3). We additionally used three beta-diversity
metrics to calculate distances between samples in
both the PE data and the 50 SD read data: Bray–
Curtis (based on relative abundances of OTUs),
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unweighted UniFrac (based on phylogenetic struc-
ture), and weighted UniFrac (based on phylogenetic
structure, weighted by OTU abundances). All three
metrics have a scale from 0 to 1.

Bray–Curtis distances for OTUs picked based on
PE reads vs 50 SD reads were closely correlated
(Supplementary Figure S4A; R2¼ 0.993). Disagree-
ment between absolute distances was below 0.1
(Supplementary Figure S4D), and the UPGMA
clustering of samples was comparable between
methods (Supplementary Figure S5). Thus, the two
OTU-picking strategies resulted in the same beta-
diversity results when measured using a distance
metric based solely on OTU picking.

We used the UniFrac distance metric (Lozupone
and Knight, 2005) to compare sample clustering based
on phylogenetic structure. Unweighted UniFrac has
provided useful results in a number of microbiome
studies (Ley et al., 2008; Costello et al., 2009; Werner
et al., 2011a). There were no practical differences
between unweighted UniFrac clustering results from
PE data (Figure 1a) and 50 SD data (Figure 1b).

Distances were closely correlated between methods
(Supplementary Figure S4B; R2¼ 0.982) and absolute
differences were below 0.1 (Supplementary Figure S4E).
However, abundance-weighted UniFrac produced
different results between the two methods (Supple-
mentary Figure S4C and F; R2¼ 0.811; absolute
differences up to 0.3), which resulted in more
consistent sample clustering from the PE data
compared with 50 SD data (Figure 2). These patterns
were verified using ordination and Procrustes
analysis (Supplementary Figure S6).

On the basis of these results, we expect that
future 16S rRNA gene surveys using SD reads
in the V4 region will yield similar OTU profiles
and unweighted UniFrac results, compared with
the significantly more expensive PE approach.
However, some research questions may require the
weighted UniFrac metric, and the non-overlapping
PE approach presented here yielded moderate
improvements in sample-weighted UniFrac cluster-
ing. Also important to note, and not considered
here, are the advantages of overlapping PE reads,

Figure 1 Choice of PE or SD reads made no practical difference in phylogenetic clustering of samples: UPGMA tree of unweighted
UniFrac distances between samples determined using the PE sequence data (a) as well as SD reads (b). Bootstrap values represent 100
rarefactions of 50 000 sequences per sample.
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including error correction, though this is currently
not possible in the V4 region.
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