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Preventing activation of diabetogenic T cells is critical for
delaying type 1 diabetes onset. The inhibitory molecule lympho-
cyte activation gene 3 (LAG-3) and metalloprotease tumor necro-
sis factor-a converting enzyme (TACE) work together to regulate
TH1 responses. The aim of this study was to determine if regu-
lating redox using a catalytic antioxidant (CA) could modulate
TACE-mediated LAG-3 shedding to impede diabetogenic T-cell
activation and progression to disease. A combination of in vitro
experiments and in vivo analyses using NOD mouse strains was
conducted to test the effect of redox modulation on LAG-3 shed-
ding, TACE enzymatic function, and disease onset. Systemic
treatment of NOD mice significantly delayed type 1 diabetes on-
set. Disease prevention correlated with decreased activation, pro-
liferation, and effector function of diabetogenic T cells; reduced
insulin-specific T-cell frequency; and enhanced LAG-3+ cells. Re-
dox modulation also affected TACE activation, diminishing LAG-3
cleavage. Furthermore, disease progression was monitored by
measuring serum soluble LAG-3, which decreased in CA-treated
mice. Therefore, affecting redox balance by CA treatment reduces
the activation of diabetogenic T cells and impedes type 1 diabetes
onset via decreasing T-cell effector function and LAG-3 cleavage.
Moreover, soluble LAG-3 can serve as an early T-cell–specific bio-
marker for type 1 diabetes onset and immunomodulation.Diabetes
61:1760–1768, 2012

I
n addition to direct cell-mediated killing of b-cells in
type 1 diabetes, soluble inflammatory mediators, in-
cluding cytokines and reactive oxygen species (ROS),
often precede the later stages of fulminant b-cell de-

struction. Regulation of local and systemic redox state
affects activation and proliferation of a variety of immune
cells and protects tissues/cells from innate and cell-mediated
damage (1). On the basis of previous studies showing the
importance of ROS in chronic inflammation, our labora-
tory has used a catalytic antioxidant (CA) to modulate
both innate and adaptive immunity in type 1 diabetes. CA
is a manganese metalloporphyrin—Mn(III) meso tetrakis
(N-alkylpyiridinium-2-yl) porphyrin, MnTE-2-PyP5+

—that
catalyzes superoxide dismutation, mimicking superoxide
dismutase activity (2). CA also scavenges a broad range of
ROS, including superoxide, hydrogen peroxide, peroxynitrite,
and lipid peroxyl radicals (2–4). CA activity regulates

proinflammatory immune processes by decreasing tumor
necrosis factor (TNF)-a, interleukin-1b, and ROS synthesis
from activated antigen-presenting cells (APCs) (5), likely
by inhibition of nuclear factor-kB (NF-kB)–dependent gene
transcription and efficient innate immune activation (4). CA
also induces CD4+ T-cell antigen–specific hyporesponsive-
ness (5) and decreases the cytolytic activity of CD8+ T cells
(6), delaying islet allograft rejection (7). In the context of
type 1 diabetes, diabetogenic BDC-2.5 T-cell clones exhibit
impaired diabetes transfer in CA-treated NOD.scid recipient
mice (8).

Our previously published work shows that TNF-a secre-
tion is reduced in CA-treated macrophages (5). A disintegrin
and metalloproteinase-17, or TNF-a converting enzyme
(TACE), is a metalloprotease responsible for cleaving
pro–TNF-a from the cell surface. Many metalloproteases,
such as TACE, are redox-dependent enzymes, initially
formed as latent zymogens that become active upon oxi-
dation of specific Cys residues in their disintegrin/Cys-rich
region (9–12). We hypothesize that CA treatment may not
only scavenge ROS, decrease proinflammatory cytokine
production, and inhibit NF-kB activation but also inhibit
TACE, altering the cleavage kinetics of T-cell surface
proteins. Support for this hypothesis derives from studies
showing that TACE is responsible for the shedding of key
transmembrane proteins, such as Notch, epidermal growth
factor receptor ligands, CD44, CD62L, and CD223 (lym-
phocyte activation gene 3 [LAG-3]), making it an essential
enzyme in normal immune function (13–18).

LAG-3 is a negative regulator of immune cell activa-
tion expressed on activated CD4+ and CD8+ T cells and
plasmacytoid dendritic cells (19,20). Upon T-cell receptor
(TCR) binding with major histocompatibility complex class
II, LAG-3 levels increase on the surface of T cells, resulting
in attenuated TCR-dependent T-cell activation and even-
tual clonal exhaustion (21), possibly by physical competi-
tion for major histocompatibility complex interaction (22).
LAG-3(2/2) mice have increased T-cell proliferation and
interferon (IFN)-g cytokine production (21), and antibody-
mediated LAG-3 blockade results in enhanced CD69 ex-
pression and T-cell differentiation (23). Recent studies
(24,25) report that LAG-3(2/2) NOD mice demonstrate
accelerated spontaneous diabetes, further indicating a po-
tential immunoregulatory function of LAG-3. Soluble LAG-3
(sLAG-3) is a surrogate measure of TACE activity (9,16)
and an additional marker of T-cell activation (26,27). In-
deed, serum levels of sLAG-3 are considered biomarkers
of T-cell activation in breast cancer (26). Therefore, in the
context of type 1 diabetes, sLAG-3 could serve as a surro-
gate marker of autoreactive T-cell activation as well as a
predictive biomarker of diabetes progression from pre-
clinical to clinical disease.

In this study, we demonstrate the effects of CA treatment
on the TACE redox state, coupled with LAG-3 expression
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and T-cell activation, to promote autoreactive T-cell hypo-
responsiveness and reduce type 1 diabetes onset.

RESEARCH DESIGN AND METHODS

Materials. NOD.BDC-2.5.TCR.Tg, NOD, and NOD.scid mice were bred and
housed under specific pathogen-free conditions in the Animal Facility of
Rangos Research Center at Children’s Hospital of Pittsburgh of University of
Pittsburgh School of Medicine (UPMC). Female mice aged 4–10 weeks were
used in all experiments. All animal experiments were approved by the in-
stitutional animal care and use committee of the Children’s Hospital of
Pittsburgh and were in compliance with the laws of the U.S. LAG-3-PE (C9B7 W)
(eBioscience, San Diego, CA), goat anti-mLAG-3 (R&D Systems, Minneapolis,
MN), anti-mTbet (4B10) (Santa Cruz Biotechnology, Santa Cruz, CA), and rabbit
anti-mTACE (Abcam, Cambridge, MA) were used for flow cytometry and
Western blots. Antibody pairs for IFN-g enzyme–linked immunosorbent assays
(ELISAs) and CD4-APC were purchased from BD Biosciences (San Diego, CA).
MnTE-2 CA was a gift from James Crapo, MD, at National Jewish Health. CA
was prepared as previously described (5) and used at 68 mmol/L in all in vitro
experiments.
CA pellet implantation and spontaneous type 1 diabetes assessment.

NOD female mice were implanted with a 14-day sustain-release CA pellet (2.1
mg/kg/day) subcutaneously at the nape of the neck. Control animals were left
untreated. Animals were reimplanted with CA pellets every 2 weeks until age
29 weeks. Spontaneous type 1 diabetes incidence was monitored by blood
glucose starting at 12 weeks of age. Overt diabetes was defined as two con-
secutive readings .300 mg/dL.
In vitro T-cell assay. BDC-2.5.TCR.Tg splenocytes from mice aged 6–8 weeks
were seeded in 96-well round-bottom plates or 12-well plates with 0.5–1 mmol/L
BDC-2.5 mimotope (M) (EKAHRPIWARMDAKK) (28) in supplemented
Dulbecco’s modified Eagle’s medium (5) (Invitrogen Life Technologies). TAPI-1
(Calbiochem, Darmstadt, Germany) was supplemented daily at 4 mmol/L as
indicated. At 24–96 h poststimulation, cells were collected for flow cytometry or
for preparation of whole-cell lysates. Supernatants were harvested for ELISA.
Surface staining and flow cytometric analysis. Cells were stained as pre-
viously described (6). Fluorescence was measured on a FACSAria (BD Bio-
sciences). Flow cytometric analysis was done using FlowJo Software version
6.4 (Tree Star, Ashland, OR). All samples were gated on CD4+ cells. Fold change
was calculated as (Control/No antigen)/(CA/No antigen).
Cytokine measurements by ELISA. sLAG-3 ELISAs were performed as
described (16). IFN-g ELISAs were performed according to manufacturer’s
instructions (BD Bioscience). IFN-g and sLAG-3 ELISAs were read on a Spec-
traMax M2 microplate reader (Molecular Devices, Sunnyvale, CA), and data
were analyzed using SoftMax Pro version 5.4.2 (Molecular Devices).
Insulin immunization for LAG-3 detection. One day prior to immunization,
28 NOD mice were treated with CA (10 mg/kg i.p.) or Hanks’ balanced salt
solution (HBSS). Mice were injected with 50 mg insulin emulsified in complete
Freund’s adjuvant (CFA) subcutaneously at the base of the tail and treated
intraperitoneally for 7 days. On days 0.5, 1, 2, 3, 4, 6, and 8, inguinal lymph
nodes (LNs) from two mice per group were harvested for flow cytometry of
LAG-3. Nonimmunized mice served as negative controls.
Intracellular cytokine staining and ELISPOT assay. NOD insulin immu-
nization plus or minus CA was conducted as above. Primary intracellular IFN-g
was detected in inguinal LN cells isolated 6 days after insulin immunization.
After surface staining for CD4, LN cells were prepared as described (6),
stained with APC-labeled mouse anti–IFN-g (BD Biosciences) or isotype
controls, and analyzed by flow cytometry. Antigen recall enzyme-linked im-
munosorbent spot (ELISPOT) assays were also conducted 6 days after im-
munization using LN cells (2.5 3 105 in triplicate) seeded in IFN-g–precoated
strips from Mabtech (Cincinnati, OH) with 25 mg insulin. After 2 days of in-
cubation at 37°C in a 5% CO2 humid air chamber, plates were developed fol-
lowing the manufacturer’s instructions. Frequency = 2.5 3 105/average number
of spots per treatment.
Preparation of cell lysates and Western blotting. Whole-cell lysates from
BDC-2.5.TCR.Tg splenocytes were prepared as described (29). Membrane
lysates were obtained by lysis in 50 mmol/L Tris, pH 7.4, 150 mmol/L NaCl
buffer supplemented with inhibitor cocktails, centrifugation at 72,000g for 30’,
removal of supernatants, and sonication with Tris buffer plus 1% NP-40. Pro-
tein concentration of all lysates was determined by bicinchoninic acid protein
assay (Thermo Fisher Scientific, Rockford, IL). Protein lysates were separated
on 8% or 4–20% (TACE) SDS–PAGE gels. Western blots were performed as
described (4) with antibodies to LAG-3 (1:1,300), Tbet (1:1,000), TACE (1:2,000),
and b-actin (1:10,000) in 5% BSA in Tris-buffered saline with Tween. Secondary
antibodies were from Jackson ImmunoResearch (West Grove, PA). Chemi-
luminescence was detected using ECL Plus reagent (Amersham Pharmacia
Biotech, Buckinghamshire, U.K.). Blots were analyzed using Fujifilm LAS-4000
imager and Multi Gauge software (Fujifilm Life Science, Tokyo, Japan).

sLAG-3 immunoprecipitation. Supernatants from BDC-2.5.TCR.Tg spleno-
cyte stimulations were concentrated in 30 K Amicon Ultra-15 centrifugal filter
units (Millipore). Samples .30 K were immunoprecipitated using 1 mg LAG-3
antibody as described (29). Western blot was performed as above.
In vitro TACE fluorogenic assay. BDC-2.5.TCR.Tg splenocytes were stim-
ulated for 24 h plus or minus M in the presence of CA or 200 mmol/L TAPI
in 96-well black fluorescence plates. TACE-specific fluorogenic substrate
(Mca-P-L-A-Q-A-V-Dpa-R-S-S-S-R-NH2, Fluorogenic Peptide Substrate III; R&D
Systems) diluted to 10 mmol/L in 50 mmol/L Tris buffer, pH 9.0, was added for
6 h at 37°C. Fluorescence was read at an excitation of 320 nmol/L and emission
of 405 nmol/L. The average fold change in activity = stimulated/unstimulated
vs. stimulated + CA/unstimulated vs. stimulated + TAPI/unstimulated cells.
Adoptive transfer of diabetes.One day prior to adoptive transfer, six NOD.scid
mice were treated with CA (10 mg/kg i.p.) or left untreated. BDC-2.5.TCR.Tg
splenocytes were adoptively transferred (107/mouse) intravenously into NOD.scid
recipients on day 0. Mice were treated daily with CA. Serum was collected
every 4 days posttransfer for sLAG-3 ELISA. Mice positive for glucosuria after
daily urinalysis were monitored by blood glucose levels, and overt diabetes was
determined as above. Mice were monitored for disease onset up to 28 days
posttransfer, when splenocytes were isolated for in vitro analysis.
Statistical analysis. The difference between mean values was assessed by
Student t test, with P , 0.05 considered significant. All experiments were
performed at least three times with data obtained in triplicate in each ex-
periment. For LAG-3 flow cytometry analysis, data are representative of at
least three independent experiments, and fold change of expression is cal-
culated as indicated. Data are mean 6 SEM. Survival analysis was done using
the product-limit (Kaplan-Meier) method with the end point defined as disease.
Data on animals that did not develop type 1 diabetes were censored. The
P values were determined by log-rank test.

RESULTS

CA treatment delays spontaneous diabetes. CA treat-
ment disrupts innate immune-mediated proinflammatory
signals (5) and delays islet allograft rejection (7), prompting
us to determine the effects of its long-term administration
on type 1 diabetes onset. NOD females (aged 4 weeks)
implanted with CA pellets demonstrated delayed diabetes
onset compared with control mice (P , 0.0001). Further-
more, stopping CA pellet implantation at 29 weeks afforded
protection against diabetes until 40 weeks of age (Fig. 1),
suggesting that redox modulation imparts inhibition of
autoreactive processes and delays end-organ autoimmunity.
Redox modulation decreases TH1 effector function.
TH1-like T cells play a key role in mediating type 1 di-
abetes (30,31). To mechanistically determine how modu-
lation of the redox state affects diabetogenic CD4+ TH1
adaptive immune effector responses, BDC-2.5.TCR.Tg
splenocytes were stimulated plus or minus M with or
without CA in vitro. CA treatment diminished T-cell acti-
vation, shown by decreased frequency of CD4+CD69+

cells (P, 0.05 at 72 and 96 h) (Fig. 2A) and reduced CD4+

FIG. 1. Spontaneous diabetes is reduced upon systemic CA treatment.
NOD females (n = 7) were implanted with a 14-day sustain-release CA
pellet (2.1 mg/kg/day) biweekly, and control NOD mice (n = 14) were
left untreated. Pellet implantation was stopped at 29 weeks of age.
Diabetes was monitored by blood glucose, with two consecutive read-
ings of >300 mg/dL indicating overt disease.
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T-cell proliferation (P , 0.05 at 96 h) (Fig. 2B). In
conjunction with previous results (5), redox modulation
significantly lowered IFN-g production (P, 0.05) as well as
reduced Tbet protein expression (Fig. 2C and D). These
data indicate that CA diminishes T-cell activation and TH1
effector function, likely contributing to the diabetes pro-
tection observed above (Fig. 1).
CA treatment limits antigen-specific T-cell frequency.
To determine if CA treatment affected the frequency of
antigen-specific TH1 cells in vivo, we immunized NOD
mice (aged 6–8 weeks) with a known autoantigen, insulin,
and used inguinal LN cells on day 6 for primary intra-
cellular IFN-g detection and recall ELISPOT assay (Fig. 3).
IFN-g–expressing CD4+ T cells were reduced after CA
treatment compared with control animals (P, 0.005) (Fig.
3A). Furthermore, LN cells from CA-treated animals dis-
played decreased IFN-g–secreting cells compared with
control animals (P , 0.05), with a significant reduction in
insulin-specific effector function after recall stimulation
(Fig. 3B). The frequency of antigen-specific cells in control
animals was ;1 in 19,000, whereas in CA-treated animals,
the frequency diminished to 1 in 46,000. These results suggest
that redox modulation disrupts insulin-specific T cells,

which may lead to delays in autoimmune-mediated b-cell
destruction and type 1 diabetes onset.
CD4

+
LAG-3

+
T-cell frequency is enhanced after CA

treatment. LAG-3 is important in negatively regulating
T-cell responses and, thus, may play a role in mediating de-
creased T-cell activation after CA administration (21,32,33).
We first measured LAG-3+ T-cell frequency after M plus or
minus CA stimulation of BDC-2.5.TCR.Tg splenocytes in
vitro. M plus CA treatment resulted in a higher frequency of
LAG-3+ T cells compared with samples stimulated with M
alone (Fig. 4A). The mean fluorescence intensity of LAG-3
did not differ between groups (data not shown). Because
LAG-3 is not constitutively expressed (34,35), unstimulated
cells plus or minus CA treatment expectedly demonstrated
low LAG-3+ T-cell frequencies. Upon quantification of the
in vitro results, the fold change in LAG-3+ T-cell frequency
reached significance at 24 and 48 h (P , 0.05) post-
stimulation (Fig. 4B), indicating kinetically delayed T cells
and decreased TH1 activation.

We next looked in vivo for LAG-3 kinetics after insulin
immunization and CA administration of NOD mice (aged
6–8 weeks). As shown by others (16,36–39) and similar to
our in vitro results (Fig. 4A and B), control-treated animals

FIG. 2. Redox modulation promotes a reduction in T-cell activation and effector function. A: BDC-2.5.TCR.Tg splenocytes were left untreated or
stimulated with M 6 CA. At 24–96 h, cells were stained for and gated on CD4

+
cells, and CD69 was analyzed by flow cytometry (n = 3 independent

experiments). B: Carboxyfluorescein succinimidyl ester (CFSE)-labeled splenocytes were treated with M 6 CA. At 48–96 h, cells were stained and
gated on CD4

+
CFSE

+
cells. Gray lines, M; black lines, M 1 CA; filled histograms, CFSE

+
cells at time point 0; % proliferating cells, average of

three independent experiments. C: Supernatants from 96-h cultures were used in an IFN-g ELISA (n = 3 independent experiments performed in
triplicate). D: Whole-cell lysates from 96-h cultures were probed for Tbet by Western blot. Actin was probed as a loading control. Data are rep-
resentative of three independent experiments. *P < 0.05.
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exhibited a lower peak of LAG-3+ cells by day 3 post-
immunization in comparison with CA-treated mice; how-
ever, redox modulation demonstrated an enhanced trend
toward LAG-3+ cells at day 3 postimmunization (P = 0.07)
(Fig. 4C). No difference in LAG-3 mean fluorescence inten-
sity was seen between the groups (data not shown). These
data demonstrate CA treatment can affect LAG-3+CD4+ T-cell
frequency in vivo, albeit not to significance, suggesting slight
obstruction of T-cell activation after autoantigen immuniza-
tion in the presence of redox modulation.
LAG-3 shedding is reduced upon CA treatment. In
addition to surface levels, sLAG-3 was also analyzed after
M stimulation of BDC-2.5.TCR.Tg splenocytes. LAG-3 con-
tains four extracellular domains (D1–D4), a C-peptide region,
a transmembrane domain (16), and a cytoplasmic tail (27).
Within the immunological synapse, an antigen-mediated
respiratory burst activates TACE by oxidizing Cys522 and
Cys600 to release the TACE prodomain (10,12). Active
TACE then cleaves the 70-kDa full-length LAG-3 within
the C-peptide, shedding D1 through D4 domains, a 54 kDa
fragment (16). sLAG-3 shed into the serum can be mea-
sured as a marker of T-cell activation (26). Immunoprecip-
itation of BDC-2.5.TCR.Tg splenocyte culture supernatants
demonstrated reduced sLAG-3 after CA treatment compared
with control samples (Fig. 5A), illustrating decreased LAG-3
cleavage upon redox modulation. It is notable that sLAG-3
was undetectable in the no antigen sample, which did not
undergo antigenic stimulation. From these results, we pos-
tulate that CA can reduce LAG-3 shedding by modulating
TACE enzymatic function.
CA exposure reduces TACE levels and enzymatic
activity. We next wanted to test the dependence, as a re-
sult of T-cell activation, of redox-mediated TACE modifi-
cations on LAG-3 cleavage. M plus CA decreased sLAG-3
levels in comparison with M alone (P , 0.05) as detected
by ELISA (Fig. 5B) and consistent with Fig. 5A. To attri-
bute the reduction of LAG-3 shedding to CA-regulated
TACE, we compared M versus M plus CA versus M plus TAPI,
a known TACE inhibitor. Both CA and TAPI reduced the
amount of detectable sLAG-3 to a similar extent (P , 0.05)
in comparison with M alone. Furthermore, a comparison
between M plus TAPI and M plus CA and TAPI demonstrated
no significant difference in reducing sLAG-3 levels. These

data suggest that CA treatment is likely inhibiting TACE-
dependent LAG-3 cleavage.

We also wanted to determine whether CA treatment
specifically decreased TACE enzymatic activity. Using
BDC-2.5.TCR.Tg splenocytes in an in vitro TACE-specific
fluorogenic assay, enzymatic activity in CA-treated cells
was significantly decreased compared with M-stimulated
cells (P , 0.005) (Fig. 6A). As a positive control, TAPI-
treated cells also demonstrated a significant reduction in
TACE activity (P , 0.0005). To delineate whether the dif-
ference in enzymatic activity corresponded with decreased
protein levels of TACE, we performed Western blots for
the TACE prodomain and active isoforms. TACE is formed
as a latent/inactive enzyme containing a disulfide linkage,
whereby oxidation of the bond promotes autocatalytic
cleavage of the prodomain (20 kDa) from the active subunit
(80 kDa) (10,12). Under CA exposure, TACE prodomain
was reduced compared with control samples (Fig. 6B), in-
dicating less oxidation of the critical Cys switch and likely
resulting in decreased enzymatic activity. Membrane lysates
also exhibited diminished levels of active TACE after CA
treatment (Fig. 6C). It is interesting that immature TACE
was also reduced upon redox modulation, suggesting less
overall activation-induced expression of TACE (10,40).
CA treatment prevents diabetes transfer in correlation
with reduced sLAG-3 serum levels. Lastly, we monitored
LAG-3 in conjunction with diabetes progression upon adop-
tive transfer of disease. Measurement of sLAG-3 has been
used as an index of breast cancer prognosis, with greater
levels corresponding to better antitumor cytotoxic T-cell
responses and patient survival (26). Underlying these obser-
vations is an increase in T-cell activation and, therefore, we
propose that diabetogenic T-cell activation can be indirectly
ascertained by serum sLAG-3. To assess this possibility,
NOD.scidmice (aged 10 weeks) were adoptively transferred
with BDC-2.5.TCR.Tg splenocytes and treated daily with CA.
Control animals all developed diabetes by day 15 post-
transfer, whereas CA-treated mice remained disease free
until the end of the study at day 28 (P , 0.0001) (Fig. 7A).
Furthermore, serum levels of sLAG-3 steadily increased in
control animals over time, yet sLAG-3 from CA-treated mice
was significantly lower at days 12 and 16 posttransfer
(P , 0.05) (Fig. 7B). Splenocytes were isolated either at

FIG. 3. CA treatment reduces insulin-specific T-cell effector function and frequency. NOD mice were treated with CA or HBSS daily. Mice were
immunized with insulin in CFA. A: Inguinal LNs were removed at day 6 postimmunization and surface stained for CD4 as well as intracellularly
stained for IFN-g for flow cytometric analysis. Cells were gated on CD4

+
cells (n = 3 independent experiments with two mice per group). **P <

0.005. B: Inguinal LNs were isolated on day 6 and stimulated with insulin in a recall IFN-g ELISPOT. Two days after stimulation, ELISPOT plates
were developed, and spots were counted using the Zeiss KS Elispot Imaging system. Frequency = 2.53 10

5
/average number of spots per treatment.

Graph shows the average of three independent experiments performed in triplicate. *P < 0.05. MFI, mean fluorescence intensity.
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diabetes onset (day 16) or at the end of the experiment (day
28) and stained for LAG-3. CA-treated animals had a higher
frequency of LAG-3+CD4+ T cells versus control animals
(P , 0.05) (Fig. 7C). In addition, in vivo CA treatment de-
creased active TACE protein levels compared with control
animals (Fig. 7D). sLAG-3, therefore, serves as a biomarker
of type 1 diabetes progression and correlates with enhanced
LAG-3+ T cells, decreased active TACE levels, and inhibition
of disease after CA treatment.

DISCUSSION

Because CA treatment directly affects innate immune cells
and proinflammatory third signal synthesis (5) as well as
NF-kB and NF-kB–dependent gene transcription (4), we
sought to understand how modulating redox balance could
influence activation and function of diabetogenic TH1
cells. In particular, we hypothesized that CA administra-
tion would decrease TACE-dependent LAG-3 shedding,
leading to autoreactive T-cell hyporesponsiveness and re-
duced type 1 diabetes.

In this study, long-term modulation of the redox state
resulted in significantly delayed type 1 diabetes onset, il-
lustrating the importance of ROS in promoting autoreactive
immune responses. However, stopping the CA treatment at
29 weeks does not seem to afford absolute enduring pro-
tection against disease onset. This may be due to blood
clearance of the modulator as a result of troughing of
the CA level below the effective concentration and, con-
sequently, loss of therapeutic efficacy. Under this cir-
cumstance, CA treatment alone may require chronic
administration to inhibit diabetes onset; however, CA
administration in combination with an antigen-specific
therapeutic approach targeting self-reactive T cells might
afford long-lasting protection by inducing T-cell–specific
ignorance. Nonetheless, CA treatment has marked effects
on early T-cell responses, resulting in a delay in diabetes
onset.

BDC-2.5.TCR.Tg T cells demonstrated decreased activa-
tion, proliferation, and effector function upon CA treatment,
which correlated with enhanced LAG-3+CD4+ T cells in
vitro and a trend toward significant increases in vivo.

FIG. 4. LAG-3
+
T-cell frequency is enhanced upon stimulation plus CA. BDC-2.5.TCR.Tg splenocytes were left untreated or stimulated with M 6 CA

in vitro. A: At 24–96 h, cells were stained and gated on CD4
+
, and LAG-3 expression was analyzed by flow cytometry. Graph is representative of four

independent experiments. Dot blots are representative of 72-h stimulation. B: Fold change in percent CD4
+
LAG-3

+
was calculated as Ag/No Ag vs.

Ag+CA/No Ag and averaged from the four in vitro independent experiments represented in A. *P < 0.05. C: NOD mice were split into two groups
(n = 14/group) and treated daily with CA or HBSS as a control. On day 0, mice were immunized with insulin in CFA. Inguinal LNs were removed and
pooled at the indicated days postimmunization (days 0.5, 1, 2, 3, 4, 6, and 8) from two mice per group and stained for and gated on CD4

+
cells, and

LAG-3 was analyzed by flow cytometry. Graph shows the average of three independent experiments. Ag, antigen. (A high-quality color repre-
sentation of this figure is available in the online issue.)
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Absence of T-cell activation coupled with greater LAG-
3+CD4+ T-cell frequency indicates two possible conse-
quences of redox modulation: 1) less activation/progression
to effector function of antigen-specific autoreactive T cells
and/or 2) obstruction of LAG-3 shedding. It is notable
that T cells from insulin-immunized mice exhibited re-
duced TH1 effector responses (decreased IFN-g synthesis
and a lower frequency of antigen-specific T cells), sug-
gesting that regulation of LAG-3 may be responsible for

this phenomenon. With recent reports showing accel-
erated diabetes in LAG-3(2/2) NOD mice (24,25), our
redox modulation results may be reflective of T-cell igno-
rance (41,42). Diabetogenic T cells in NODmice already have
an advantage of efficiently expanding from a greatly reduced
precursor pool (43). If CA delays or prevents the autoantigen-
specific T-cell pool necessary for reaching the threshold at
which a break in tolerance to self-antigen occurs, disease
onset should be reduced.

FIG. 5. sLAG-3 protein is decreased after CA treatment. A: Supernatants from BDC-2.5.TCR.Tg splenocytes left untreated or stimulated with M6 CA
for 48 h were concentrated using Amicon Ultra Centrifugal Filters at a 30-kDa (K) cutoff. The>30-kDa portion was then immunoprecipitated with
anti–LAG-3 antibody, separated on an SDS-PAGE gel, and probed for LAG-3 by Western blot. Data representative of three independent
experiments. B: BDC-2.5.TCR.Tg splenocytes were left untreated or stimulated with M 6 CA or TAPI-1 for 72 h. Supernatants were collected and
used in sLAG-3 ELISAs. Graph shows the average of four independent experiments performed in triplicate. *P < 0.05. Ag, antigen; N.D., none
detected.

FIG. 6. Redox modulation diminishes active TACE levels and enzymatic function. A: BDC-2.5.TCR.Tg splenocytes were stimulated with M 6 CA 6
TAPI for 24 h and supplemented with TACE-specific fluorogenic substrate. Fluorescence was measured at 6 h post substrate addition. The fold
change in activity was calculated by stimulated/unstimulated vs. stimulated + CA/unstimulated vs. stimulated + TAPI/unstimulated cells. Graph
shows the average of three independent experiments performed in triplicate. **P < 0.005, ***P < 0.0005. B and C: BDC-2.5.TCR.Tg splenocytes
were stimulated with M 6 CA for 72 h and probed for TACE by Western blot. Whole-cell lysates were used in B. Actin was probed as a loading
control. Membrane lysates were used in C. Data are representative of three independent experiments.

M.M. DELMASTRO AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 61, JULY 2012 1765



LAG-3 abates T-cell responses and is regulated through
cleavage via redox-dependent TACE (16,21–23,32,38). CA
was able to affect TACE activation and enzymatic activity,
thereby leading to decreased sLAG-3. Immature TACE
levels were also reduced after treatment. Because oxidants
activate signaling kinases and GTPases to drive the ex-
pression of metalloproteases (10,40), scavenging of oxi-
dants by CA (2–4) may inhibit proper signal transduction
and cause decreased expression of immature TACE. An-
other metalloprotease, a disintegrin and metalloproteinase-10,
unlike TACE, is responsible for constitutive LAG-3 shedding
(16) and may also be partially inhibited by CA treatment
(9–11,15). However, our experiments using TAPI blocked
LAG-3 shedding by both metalloproteases, ruling out enzyme-
specific differences (44). Both TAPI and CA demonstrated
similar reductions in sLAG-3 versus M alone, supporting
the notion that CA can directly modify TACE-dependent
cleavage.

In addition to LAG-3, TACE, and IFN-g, we have pre-
viously identified NF-kB as another target of redox mod-
ulation (4). Of note, redox-dependent NF-kB is a predicted
transcription factor responsible for LAG-3 expression
(SABiosciences’ Text Mining Application). Therefore, it is
tempting to speculate that new LAG-3 protein synthesis is
retarded as a result of CA-mediated NF-kB inhibition and,
hence, contributes to the reduction in sLAG-3 observed.
Furthermore, it may be possible that redox-modulated cells
are functioning as suppressive T cells that retain their

surface expression of LAG-3 (39,45,46). Collectively, our
results also propose that an overall delay in T-cell activation
kinetics may be the main cause of these anomalies. Im-
paired TACE activity, via LAG-3, offers new insights into
a novel mechanism of autoreactive T-cell activation thus far
unknown, and redox-dependent modifications together can
contribute and feed forward to prevent diabetogenic im-
mune responses.

sLAG-3 shedding coincides with in vivo staphylococcal
enterotoxin B–mediated T-cell activation (27) as well as
T-cell activation in breast cancer screens (26). At present,
there is a paucity of serum biomarkers that measure T-cell
activation before overt diabetes (47), and little is known
about the endogenous role of LAG-3 in autoimmune set-
tings. Therefore, we wanted to determine whether we
could monitor diabetes progression via serum sLAG-3.
Redox modulation prevented type 1 diabetes onset in the
rapid adoptive transfer model, similar to previous reports
(8), but more importantly, sLAG-3 directly correlated with
T-cell activation and autoimmunity. Serum sLAG-3 was
enhanced in control animals before and upon disease on-
set, suggesting greater activation of diabetogenic T cells.
sLAG-3, therefore, may serve as a T-cell–specific diagnostic
marker for initiation of b-cell destruction, and along with
surface LAG-3 expression, may additionally function as sur-
rogates of immunomodulation. Therapies that use prophy-
lactic drugs as well as attempts at reversal of autoimmunity
may result in the modification of adaptive immune responses,

FIG. 7. Redox modulation delays diabetes onset, which correlates with decreased sLAG-3 and enhanced LAG-3
+
cells. NOD.scid mice (n = 3/group)

were treated on day 21 through day 28 intraperitoneally with or without CA. BDC-2.5.TCR.Tg splenocytes were transferred intravenously on day 0.
A: Mice were monitored by glucosuria for the onset of type 1 diabetes, with two consecutive blood glucose readings of >300 mg/dL indicating
diabetes. AT, adoptive transfer. B: Blood was collected retro-orbitally every 4 days to day 16, and serum was isolated for sLAG-3 ELISA. *P< 0.05.
C: On days 16 and 28 posttransfer, splenocytes were stained for and gated on CD4

+
cells. LAG-3 was detected by flow cytometry. Graph shows the

average of three mice per group. *P < 0.05. D: Lysates were made from splenocytes and ran on an SDS-PAGE gel. Western blots were performed to
measure TACE expression.
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and measurement of sLAG-3 would allow for determination
of treatment efficacy on autoreactive T cells in a noninva-
sive manner.

Taken together, our data suggest that redox modulation
arrests LAG-3 shedding by impeding expression kinetics
and decreasing TACE activity. Through redox manipula-
tion, LAG-3 surface expression is maintained at levels ad-
equate to attenuate TCR-mediated TH1 cell activation and
effector function. This would be beneficial for maintaining
diabetogenic effector cells in a quiescent state or in pre-
venting their activation entirely. In concert with the re-
cently reported mechanisms of direct and indirect actions
of CA on immune cells and diabetes progression (1,4–8),
the identification of LAG-3–mediated immunoregulation adds
another layer to the control of autoimmunity. Our discovery
also supports the use of sLAG-3 as a novel surrogate marker
of type 1 diabetes progression in preclinical situations and
possibly as a means to monitor the effectiveness of T-cell–
directed immunotherapy.
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