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Abstract
The diffusion and consumption of substrate from capillaries are basic in human physiology. The
general solution for the concentration in a region containing many parallel non-homogeneous
capillaries is found. Except in very special cases, capillary supply regions cannot be approximated
by Krogh’s cylinder or Voronoi polygonal cylinders.
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1. Introduction
The tissue region serviced by a certain capillary is called the capillary supply region. Let us
consider the case when the capillaries are long and parallel, such as those in the skeletal
muscle. In the classical approach the capillary supply region is approximated by a circular
cylinder (Krogh cylinder) with a central capillary. Since the length of the cylinder is about
100 times cylinder diameter, in most cases the longitudinal diffusion of solute (such as
oxygen) may be neglected in comparison to radial diffusion. The axisymmetric steady-state
diffusion equation is thus

(1)

where D is the diffusion coefficient, C’ is the concentration (or partial pressure) of solute
and κ is the constant consumption per volume of tissue. The boundary conditions are that on
the capillary wall r’ = rc the concentration is Cc and on the tissue cylinder rt there is no flux
or the radial derivative of concentration is zero. The solution is the Krogh–Erlang equation
[1]:

(2)

Here Cc may be a slowly varying function of axial distance. More detailed solutions of the
Krogh cylinder (e.g. axial variations) may be found in Middleman [2] and Lightfoot [3] and
the reviews of Fletcher [4] and Popel [5].

© 2001 Elsevier Science Inc. All rights reserved.
* Corresponding author. cywang@mth.msu.edu. .

NIH Public Access
Author Manuscript
Math Biosci. Author manuscript; available in PMC 2012 June 20.

Published in final edited form as:
Math Biosci. 2001 October ; 173(2): 103–114.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The Krogh circular tissue cylinder was an approximation to the stacked hexagonal cylinder.
The non-circular equilateral triangular, square and hexagonal cylinders were numerically
computed by Gonzalez-Fernandez and Atta [6]. It was found that the corners of the polygons
are most susceptible to hypoxia (lethal corner). The stacking of regular polygonal cylinders
still require both (1) all capillaries are same (flow, substrate diameter) and (2) capillaries are
evenly distributed in a regular array. By symmetry, a single Krogh cylinder would represent
all. The question we ask is, what if there is unevenness, or heterogeneity in the distribution
of capillaries, and/or flow (or solute content) variations in the capillaries?

For multiple capillaries, the area (volume) allotted to each capillary is usually not the same
as the capillary supply region. The former is called the capillary domain which is a
descriptive measure of capillary spacing [7,8]. The latter is a functional measure of the
capillary diffusion region, and would change with changes in perfusion, such as partial
occlusion of some capillaries. Capillary domains, best described by Voronoi polygons,
coincide with capillary supply regions if the capillaries are of the same strength and even
distribution. Some special uneven periodic distributions are also possible (Fig. 1). However,
if some capillaries are of different strength, then Voronoi boundary could not be the
capillary supply boundary. Consider two adjacent nodes of different strength. The Voronoi
boundary is the perpendicular bisector (Fig. 2(a)). But the concentration of the solute is not
the same at the midpoint. Consequently the capillary supply boundary must shift toward the
weaker node. It may also be curved as in Fig. 2(b).

Previous work which studied uneven capillaries include Clark et al. [9] who used a method
of imaging. However, capillary supply regions were not considered. Hoofd et al. [10] and
Hoofd [11] required only the net flux on the boundary be zero. As we shall discuss later,
such a solution may be non-unique.

The present paper is a complete analytical study of the capillary supply region.

2. Superposition of many capillaries
Consider a large circular region of radius R, containing N capillaries of uneven locations and
diffusion strength (Fig. 3(a)). We assume no place in the region is anoxic, i.e., everywhere
the consumption is κ per volume. Let q’j be the rate of amount of solute (per length of
capillary) out of the jth capillary, with radius ρc centered at r’ = aj, θ = αj. The balance of
mass flux gives a condition on q’j:

(3)

In polar coordinates the governing equation in two dimensions is

(4)

The boundary conditions are, on each capillary

(5)

where  are local cylindrical coordinates centered at each capillary. On the boundary
of the region we require no flux
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(6)

Let all capillaries have the same size. Normalize all lengths by R, the concentration by κR2/
D and the flux by πκR2 and drop primes. In terms of normalized parameters the equations
are

(7)

(8)

(9)

where  is the identical radii of the capillaries. The general solution to Eqs. (7)
and (8) is

(10)

The first term on the right-hand side of Eq. (10) is the particular solution due to uniform
consumption. The second term is a combination of sources from each capillary. The last sum
is the homogeneous solution which was treated differently by previous authors. These terms
are important since the particular solution r2/4 is coordinate specific, thus by itself not
general enough.

The relation between , φj and r, θ is (Fig. 3(b))

(11)

.

Since ε is small, the concentration on the capillary wall depends on capillary radius ε. From
Eq. (10) . The coefficients An, Bn, are to be determined by the boundary
condition at r = 1. The radial derivative of Eq. (10) is

(12)

Eq. (9) becomes
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(13)

Multiply Eq. (13) by cos(mθ) and integrate from 0 to 2π gives

(14)

(15)

where

(16)

Here ψ = θ - αj and we have used integration formulas from Gradshteyn and Ryzhik [12].
Thus from Eq. (14)

(17)

Eq. (15) checks the second part of Eq. (8). Similarly multiply Eq. (13) by sin (mθ) and
integrate,

(18)

where

(19)

Thus

(20)

The solution C(r, θ) is thus determined, except for an additive constant A0 which is due to
our Neumann type boundary conditions. We set A0 such that C ≥ 0 always.
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3. Singularities of C(r, θ)
The singularities in the region are where the slope of C = constant curves have multiple
values. The condition is

(21)

Then

(22)

(23)

It is, however, very difficult to solve for v(r, θ) = 0, u(r, θ) = 0. A numerical method is as
follows.

For an array of grid points in the region, i.e., given the location (xi, yi) one can find the
corresponding polar coordinate (rj, θi). Then at that point write

(24)

The confluence of all four types 1,2,3,4 is a singularity where both u and v are zero. The
location can be refined by decreasing the spacing of the grid points.

For C(r, θ) we expect two kinds of singularities: the center and the saddle point (Fig. 4(a)).

The study of singularities of C(r, θ) is important because they are related to the singularities
of the flux lines (paths of solute flux). Since flux is parallel to the concentration gradient, it
is normal to C = const. lines. Thus for flux, a nodal point occurs at the center point of C, and
a saddle point occurs at a saddle of C, i.e., the flux singularities are the same location as the
concentration singularities, but may be different type (Fig. 4(b)).

4. The flux lines
There is no easy way to draw the flux lines, which span the capillary supply regions. All we
know is that the flux lines are perpendicular to the constant C lines. Since Fourier diffusion
theorem gives

(25)

The flux direction is parallel to ▽C. Thus at each grid location one can draw the direction of
q = (v, u) to show the flux direction. This is equivalent to the ‘method of isoclines’.

The flux arrows are helpful in showing the approximate capillary domains. In order to
determine exactly the domain boundaries one must use numerical integration. (The function
C is not potential, thus in general has no conformal representation.)
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The method is as follows. Starting from any point (x0, y0), one evaluates the local direction
from velocities {v(r, θ), u(r, θ)} = q and the new point (x1, y1) is computed from

(26)

Here ds is a given step size. The process continues for M steps. Starting from any point close
to the saddle point the algorithm computes a curve very close to the domain boundary.

In what follows we shall give some examples.

5. Two capillaries of uneven strength
Consider two capillaries of uneven strength in a circular region. Let q1 = 2/3, a1 = 0.5, α1 =
0, q2 = 1/3, a2 = 0.5, α2 = π. Using Eq. (10) we find the minimum on the boundary is at (1,
2.08) and we can set A0 such that C(1, 2.08) = 0. The concentration lines are shown in Fig.
5. Then use Eqs. (22)–(24) to for singularities. Aside from the source points at (0.5, 0) and
(0.5, π), and the singularity due to polar coordinates at the origin, we find the singularities
are at (1, 0), (1, π), (0.16, π), (1, −2.08), (1, 2.08). Using the flux directions, it is concluded
the (0, 1), (1, π), and (0.16, π) are saddles and (1, −2.08), (1, 2.08) are nodes. Guided by
Fig. 5, the capillary domains must be separated by a curve connecting (0.16, π) to (1,
±2.08). Starting from a point close to (0.16 π) one can use Eq. (26) to plot the capillary
domain boundary, shown as dashed a line in Fig. 5. Note that this boundary is neither
straight or equidistance from the source points, thus could not be a Voronoi partition.

6. Seven capillaries at random locations
First consider the capillaries are of equal strength. We set qk = 1/7 for k = 1 to 7. The
locations are random (generated by a random number generator).

We adjusted A0 (= 0.0054) such the C(1, θ) ≥ 0. This also implies C(r, θ) ≥ 0 since qi are
positive.

Fig. 6 shows the constant concentration lines. The capillary supply regions are more difficult
to obtain. The method is as follows. First we seek the singular points. Those inside the
circular region are centers (the capillary locations) and saddles, including a saddle due to
polar coordinates at origin. From an interior saddle, trace the flux curve using Eq. (26).
These curves separate capillary supply regions. Fig. 7 shows the capillary supply regions
found. Each capillary serves an area of same size (π/7) due to equal source strength. These
regions are very different from Krogh circles of Voronoi polygons.

Next consider the case where the capillary strengths are also random. Generate seven

random numbers and use their fractional proportion of the total such that . A result
for qk is (0.1757, 0.1767, 0.0222, 0.0267, 0.0652, 0.2955, 0.2379). The locations are the
same as before. The concentration lines are shown in Fig. 8 and the corresponding capillary
supply regions are shown in Fig. 9. Due to constant consumption, the area of each region is
proportional to the source strength.

7. Discussions
Except in special cases (e.g., those in Fig. 1) the areas enclosed by each Voronoi polygon
are of varied sizes. If Voronoi polygons also represent capillary supply areas, the capillary
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strengths, which are proportional to each area, would not be the same. From our arguments
(see Fig. 2) the capillary supply boundary cannot be a Voronoi bisector as assumed. Hoofd
et al. [10] found the capillary supply areas are similar to Voronoi polygons. This is probably
because in their simulation somewhat even strength and somewhat even distribution of
capillaries are used, unlike the cases illustrated in this paper.

Clark et al. [9] used an image method to compute the concentration inside a circular region.
Their results, when computed, are identical to our Eq. (10). Hoofd [11] used a different
boundary condition which is not unreasonable and effectively replaced the last term of Eq.
(10) by a constant. However, Hoofd’s specific solution, the r2/4 term, is coordinate sensitive.
One can artificially shift the origin of the polar coordinates and thus obtain a different
solution without changing the geometrical problem. Also, any homogeneous solution can be
included into the specific solution. Thus Hoofd’s formulation may be non-unique.

Singularities of a field are essentially centers, saddles, and nodes. Let us consider the family
of flux lines which cannot have centers. It is evident the only nodes in the interior of the
region are the capillaries sources where the flux lines originate. The boundary of the region
is a flux line and thus can only accommodate saddles where the flux lines turn around and
nodes (sinks) where the flux lines terminates. The interior can also have saddles which are
on the capillary supply boundaries. Since the concentration lines are orthogonal to the flux
lines, we find concentration centers at the capillaries and on the boundary of the region, no
concentration nodes, and saddless can occur anywhere. Our numerical method also finds the
origin is a singularity. This is from the inherent singular nature of the origin of polar
coordinates (Jacobian is zero) and should not be considered as a true singularity of the
concentration.

8. Conclusions
We have devised a method to compute capillary supply regions due to uneven capillary
distribution and diffusional strength. Our analytic solution satisfies all boundary conditions,
including the zero flux condition on the organ boundary, at present a circle.

Except for highly homogeneous cases, the capillary supply region shapes differ substantially
from the Krogh circle, or Voronoi polygons. Regions are simply connected, but may have
complex shape. These shapes are sensitive not only to the location but also the relative
diffusion strength of the capillaries. For example, a partial blockage of a certain capillary
may not cause local anoxia, the other (all) capillaries compensate by shifting capillary
supply regions.

Acknowledgments
This work is partially supported by NIH Grant RR-01243.

References
[1]. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen

pressure head necessary for supplying the tissue. J. Physiol. 1919; 52:409. [PubMed: 16993405]

[2]. Middleman, S. Transport Phenomena in the Cardiovascular System. Wiley; New York: 1972.

[3]. Lightfoot, EN. Transport Phenomena and Living Systems. Wiley; New York: 1974.

[4]. Fletcher JE. Mathematical modelling of the microcirculation. Math. Biosci. 1978; 38:159.

[5]. Popel AS. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 1989; 17:257. [PubMed:
2673661]

Wang and Bassingthwaighte Page 7

Math Biosci. Author manuscript; available in PMC 2012 June 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[6]. Gonzalez-Fernandez JM, Atta SE. Concentration of oxygen around capillaries in polygonal
regions of supply. Math. Biosci. 1972; 13:55.

[7]. Hoofd, L.; Turek, Z.; Kubat, K.; Ringnalda, BEM.; Kazda, S. Kreuzer, F., et al., editors.
Variability of intercapillary distance estimated on histological sections of rat heart; Oxygen
Transport to Tissue VII. Adv. Exp. Med. Biol. 1985. p. 239

[8]. Egginton, S. Morphometric analysis of tissue capillary supply. In: Boulilier, RG., editor. Adv.
Comp. Environ. Physiol. Vol. vol. 6. Springer; Berlin: 1990.

[9]. Clark, PA.; Kennedy, SP.; Clark, A, Jr.. Rakusan, K., et al., editors. Buffering of muscle tissue in
PO2 levels by the oxygen field from many capillaries; Oxygen Transport to Tissue XI. Adv. Exp.
Med. Biol. 1989. p. 165

[10]. Hoofd L, Turek Z, Olders J. Calculation of oxygen pressures and fluxes in a flat plane
perpendicular to any capillary distribution. Oxygen Transport to Tissue XI. Adv. Exp. Med. Biol.
1989; 248:187.

[11]. Hoofd L. Calculation of oxygen pressures in tissue with anisotropic capillary orientation I. Two-
dimensional analytical solution for arbitrary capillary characteristics. Math. Biosci. 1995; 129:1.
[PubMed: 7670223]

[12]. Gradshteyn, IS.; Ryzhik, IM. Tables of Integrals Series and Products. 5th ed. Academic Press;
San Diego, CA: 1994.

Wang and Bassingthwaighte Page 8

Math Biosci. Author manuscript; available in PMC 2012 June 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Some special cases of capillary supply boundaries which are also Voronoi boundaries.
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Fig. 2.
(a) Voronoi boundary, (b) capillary supply boundary. (Size of dot represents source
strength.)

Wang and Bassingthwaighte Page 10

Math Biosci. Author manuscript; available in PMC 2012 June 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
(a) A general distribution of capillaries in a circular region, (b) The coordinate system. O
represents the origin of the polar coordinates.
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Fig. 4.
(a) Singularities of the concentration C, (b) corresponding singularities of the flux f.
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Fig. 5.
Concentration curves of two capillaries of unequal strength. Dashed line shows capillary
supply boundary.
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Fig. 6.
Concentration curves of seven capillaries of equal strength, but unevenly distributed (ΔC =
0.05, C = 0 at a point on upper right boundary).
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Fig. 7.
The capillary supply regions corresponding to Fig. 6.
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Fig. 8.
Concentration curves of seven capillaries of unequal strength. (ΔC = 0.05, C = 0 at a point
on upper right boundary.)
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Fig. 9.
The capillary supply regions corresponding to Fig. 8.
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k ak α k

1 0.9185 3.934

2 0.1476 3.863

3 0.2280 0.586

4 0.6534 3.545

5 0.8351 4.232

6 0.6394 1.695

7 0.8834 5.461
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