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Benznidazole-Resistance in Trypanosoma cruzi
Is a Readily Acquired Trait That Can Arise
Independently in a Single Population
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Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease.
However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations
in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones
within a single population. Following selection of benznidazole-resistant parasites, all clones examined had
lost one of the chromosomes containing the TcNTR gene. Sequence analysis of the remaining TcNTR allele
revealed 3 distinct mutant genes in different resistant clones. Expression studies showed that these mutant
proteins were unable to activate benznidazole. This correlated with loss of flavin mononucleotide binding.
The drug-resistant phenotype could be reversed by transfection with wild-type TcNTR. These results identify
TcNTR as a central player in acquired resistance to benznidazole. They also demonstrate that T. cruzi has a
propensity to undergo genetic changes that can lead to drug resistance, a finding that has implications for

future therapeutic strategies.

Chagas disease is caused by Trypanosoma cruzi, a fla-
gellated protozoan parasite transmitted by blood-
sucking triatomine bugs. In Latin America, 10 million
people are infected, with >15000 deaths annually [1].
Because of migration, the disease is also undergoing
globalization. In the United States, there are an esti-
mated 300 000 infected individuals [2]. Chagas disease
has 3 phases; acute, indeterminate and chronic. The
acute stage is usually asymptomatic, although it can
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present as a febrile-like illness in children and young
adults, with a fatality rate up to 5%. Most symptoms
resolve within 4-6 weeks, and patients then enter the
indeterminate stage. In the majority of cases, active
disease does not proceed further. However, approxi-
mately 30% of individuals progress to the chronic
phase, a process that can occur many years after the
initial infection. This can result in serious cardiac and
digestive tract pathologies, where prognosis is poor.
There is no immediate prospect of a Chagas disease
vaccine, and infection is lifelong. Chemotherapy is
therefore of major importance. For many years, benzni-
dazole and nifurtimox have been the only drugs avail-
able [3]. However, their use is characterized by toxicity,
and their efficacy against chronic stage disease is unreli-
able. In addition, cases refractory to treatment are com-
monly reported [4], and drug-resistant parasites can be
selected in the laboratory [5, 6]. Benznidazole and nifur-
timox are nitroheterocyclic compounds that contain a
nitro group linked, respectively, to an imidazole and
furan ring [3]. They are prodrugs and require nitrore-
ductase (NTR)-catalyzed activation within the parasite
to have trypanocidal effects. Two classes of NTR have
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been identified in trypanosomes. Type II NTRs are O,-sensitive
flavin-containing enzymes that are capable of 1-electron reduc-
tion of nitro drugs to generate an unstable nitro radical [7]. In
the presence of O,, this can lead to the production of superox-
ide anions and regeneration of the parent nitro compound, a
process known as redox cycling [8, 9]. Although activation of
nitroheterocyclic drugs by T. cruzi has been associated with the
formation of reactive oxygen species (ROS) and candidate re-
ductases have been implicated, there is no evidence that en-
hancing the parasite oxidative defense system has a protective
affect
T. cruzi extracts does not lead to the generation of ROS [16].

[10-15]. Furthermore, addition of benznidazole to

Type I NTRs are O,-insensitive flavin mononucleotide-
dependent enzymes that can mediate the 2-electron reduction
of nitro drugs through a nitroso, to hydroxylamine derivatives.
These can react further to generate nitrenium cations and
other highly electrophilic intermediates, which may promote
damage to DNA and other macromolecules [17, 18]. Two
enzymes with type I activity have been identified in T. cruzi.
The first is prostaglandin F2a synthase [19], although this is
only capable of mediating 2-electron reduction under anaero-
bic conditions. The second, for which there is now strong
evidence of a central role in activating nitro drugs, is a nico-
tinamide adenine dinucleotide, reduced (NADH)-dependent
mitochondrial type I NTR [5]. In the case of nifurtimox, an
active unsaturated open chain nitrile metabolite contributes to
the resulting trypanocidal activity [20].

TcNTR can reduce a range of nitroheterocycles, and dele-
tion of the corresponding genes from T. cruzi and Trypanoso-
ma brucei results in loss of sensitivity [5]. Consistent with this,
a genome-wide RNA interference screen of T. brucei for genes
associated with nifurtimox and benznidazole resistance by
loss-of-function mechanisms identified TONTR as the major
candidate [21]. To investigate the capacity of T. cruzi to
develop resistance against benznidazole, we generated resistant
clones following in vitro selection. Here, we show that distinct
drug-resistant clones can arise independently and that, in each
case, resistance under selective pressure is associated with loss
of TcNTR activity.

MATERIALS AND METHODS

Parasites

T. cruzi MRAT/COL/Gal61 (Table 1) [22] were cultivated in
supplemented Roswell Park Memorial Institute (RPMI) 1640
medium at 28°C [23]. Clones were derived by limiting dilu-
tion. Transformed T. cruzi were maintained at 10 pg/mL blas-
ticidin or 50 ug/mL G418. Amastigotes were grown in African
green monkey kidney (Vero) or rat skeletal myoblast L6 cells
cultured in RPMI 1640/10% fetal bovine serum at 37°C in 5%
CO,. To generate metacyclic trypomastigotes, epimastigote
cultures were grown to stationary phase, at which point they

differentiated. These were used to infect monolayers at a ratio
of 5 metacyclics per mammalian cell. Following overnight in-
cubation at 37°C, extracellular metacyclics and epimastigotes
were removed by several washes. Bloodstream-form trypomas-
tigotes emerged between day 7 and 10, and this homogenous
population was used in quantitative infection experiments.

Intact T. cruzi chromosomes were extracted using an
agarose-embedding technique [24] and were fractionated by
contour-clamped homogenous field electrophoresis (CHEFE),
using a BioRad CHEFE Mapper. For analysis of natural benz-
nidazole sensitivity, TcNTR from 28 T. cruzi strains from dif-
ferent regions of Colombia was amplified and sequenced.

To generate benznidazole resistance, epimastigotes were
seeded at the median inhibitory concentration (ICsy) and sub-
cultured for several weeks under selective pressure. The drug
concentration was then doubled and the process repeated.
This was continued until a resistant population was estab-
lished (61R) at 50 pM, the reported level of therapeutic resis-
tance [25]. ICso values were determined by an enzymatic
micromethod [26]. A total of 2 x 10° epimastigotes/mL were
cultured with different drug concentrations for 72 hours at 28°
C in 96-well microtiter plates. The plates were then incubated
with 10 mg/mL 3(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetra-
zolium bromide (MTT) for 90 minutes and MTT reduction to
formazan crystals measured at 595 nm.

Construction of Vectors

For expression of TcNTR, a 708-base pair fragment corre-
sponding to the catalytic domain of the protein was amplified
using DNA from sensitive and resistant clones [5]. Fragments
were digested with BamHI/HindIII and ligated into the vector
pTrcHis-C (Invitrogen), and the resulting constructs were used
to transform Escherichia coli BL-21. To express active protein in
benznidazole-resistant T. cruzi, the full-length TcNTR gene
(939 bp) was amplified from 61S DNA and ligated into the
BamHI/HindIIl site of the vector pTEX [27]. Parasites were
electroporated and transformants selected with G418. To gener-
ate TcNTR heterozygotes from 61S parasites, we used gene dis-
ruption with a construct containing a blasticidin-resistance
cassette [5]. All constructs were confirmed by sequencing.

Biochemical Analysis
E. coli transformed with pTrcHis-TcNTR were treated with
isopropyl-p-D-thiogalactopyranoside to induce expression of
recombinant histidine-tagged proteins, which were purified on
nickel-nitriloacetic acid columns [5, 28]. Fractions were ana-
lyzed by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis and protein concentrations determined by the BCA
assay (Pierce). TC(NTR activity was measured by following the
changes in absorbance at 340 nm due to NADH oxidation.
The TcNTR flavin cofactor was established by determining
the fluorescence spectrum in acidic and neutral buffers [29].
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Table 1.

Natural Sensitivity to Benznidazole Is Not Associated With TcNTR Sequence

Haplotype, Strain GenBank Accession No. Biological Origin Geographical Origin Phylogenetic Group ICs0, UM
Haplotype 1
AC17 JN043349 Rhodnius pallescens Choco | 6.53+1.12
AMPQ7 JN043351 Panstrongylus geniculatus Antioquia | 17.6+0.3
B114 JN043353 Triatoma dimidiata Cérdoba | 187+1.4
B138 JN043352 T. dimidiata Cérdoba | 17.6+0.7
B51 JN043354 R. pallescens Cordoba | 206+ 1.1
CAS18 JN043345 Didelphis marsupialis Casanare | 3.90+0.78
CG JN043336 Homo sapiens Caqueta Il 4.61+0.35
GAL52 JN043347 D. marsupialis Sucre | 9.07 +2.06
GAL61 JN043346 Rattus rattus Sucre | 5.85+1.51
HA JN043337 H. sapiens Casanare | 4.66 +0.61
LB53 JN043358 T. dimidiata Sucre | 17.0+0.7
MG JN043339 H. sapiens Arauca | 4.90 +0.33
MG10 JN043356 T. dimidiata Magdalena | 14.9+0.89
ov1 JN043359 P. geniculatus Sucre | 17.4+£0.76
ov17 JN043355 P. geniculatus Sucre | 222+24
SN3 JN043361 Rhodnius prolixus La Guajira | 346+19
SN5 JN043360 R. prolixus La Guajira | 242 +1.3
SN6 JN043357 R. prolixus La Guajira | 16.9+0.9
SP JN043342 H. sapiens Casanare | 6.41+0.75
SPR JN043341 H. sapiens Casanare Il 5.32 +1.08
STP33 JN043350 R. prolixus Tolima | 11.3+1.0
Haplotype 2
AF1 JN043348 P. geniculatus Antioquia Il 4.69+1.87
JEM JN043340 H. sapiens Putumayo | 5.19+0.65
Distinct haplotypes
DA JN043344 H. sapiens Boyacéa | 32.8+3.3
FCH JN043334 H. sapiens N.de Santander Il 1.50+£0.51
MR JN043338 H. sapiens Cesar Il 4.71 £0.29
W3534 JN043343 H. sapiens Sucre | 14.0+£1.3
YLY JN043335 H. sapiens Putumayo /11 4.38+0.24

TcNTR genes were amplified from DNA of 28 Colombian Trypanosoma cruzi strains and sequenced.

Abbreviation: ICgo, median inhibitory concentration.

Purified protein (0.5 mg) was desalted and boiled for 5
minutes. Clarified supernatant (90 uL) was then mixed with
10 uL 50 mM NaH,PO, (pH=7.6) or 1 M HCI (final pH =
2.2), and the fluorescence profile was measured with a Gemini
Fluorescent Plate Reader (Molecular Devices). The mean fluo-
rescence values (excitation A =450 nm; emission A =535 nm)
was determined and compared to flavin mononucleotide and
flavin adenine dinucleotide (FAD) standards.

RESULTS

Benznidazole-Resistant T. cruzi Lack One of the Chromosome
Bands Containing the TcNTR Gene
To select for benznidazole resistance, T. GAL61

(Table 1) were submitted to continuously increasing drug

cruzi

pressure until we had established a population (61R) that grew
at a comparable rate in the presence or absence of 50 uM
benznidazole (Materials and Methods). This population dis-
played approximately 10-fold resistance. Six clonal lines
derived from this population exhibited 3-7-fold resistance,
when examined independently (Figure 1A). In the absence of
drug, the clones grew slightly slower in culture than the paren-
tal cells (doubling times from 28-42 hours, compared with 26
hours) but otherwise displayed no obvious morphological
changes. Previously, when we generated nifurtimox-resistant
T. cruzi, we found that they were also resistant to other nitro-
heterocyclic drugs, including benznidazole [5]. A similar
cross-resistance phenomenon was observed here, with 2-fold
greater resistance to nifurtimox and 4-fold greater resistance
to nitrofurazone (Figure 1B).
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resistant parasites (61R noncloned population and clones 1-6) and parental (61S) cells (Materials and Methods). B, The 61R cells are cross-resistant to
the other nitroheterocycles nifurtimox and nitrofurazone. C, T. cruzi chromosomal DNA separated by contour-clamped homogenous field electrophoresis
and hybridized with a TcNTR gene probe. Left panel, ethidium bromide—stained gel; right panel, autoradiograph of gel after Southern blotting. Lane 1,
parental 61S; lane 2, 61R clone 3; lane 3, 61R (noncloned population). 0, Reintroduction of an active copy of T¢NTR into benznidazole-resistant parasites
(61R clone 2), using the pTEX vector reverses the drug-resistance phenotype. Growth inhibition data are the mean (+SD) of 3 experiments. An autoradio-
graph (right) shows BamHI-digested DNA from parental 61R clone 2 (lanes 1 and 2) and pTEX-TcNTR—transformed cells (lanes 3 and 4) hybridized with

a TcNTR gene probe.

Nifurtimox resistance in both T. cruzi and T. brucei has
been associated with downregulation or loss of a type I NTR
gene [5,21]. We therefore examined the benznidazole-sensitive
and -resistant cells for changes in copy number at this locus.
In the sensitive parental cells (61S), TcNTR is a single copy
gene located on chromosome homologues of 1.1-Mb and
0.85-Mb. With the resistant parasites, however, the 0.85-Mb
band was missing in clonal and polyclonal populations
(Figure 1C, lanes 2 and 3). There were no other apparent
changes to the chromosome profile. To determine whether
drug resistance was associated with loss of TcNTR rather than
another gene located elsewhere on the missing chromosome,
we reintroduced an active copy of TcNTR into 61R clone 2
[27] (Figure 1D). When the transformed cells were assessed,
we found that benznidazole sensitivity had been restored.

The Remaining TcNTR Allele in Each Benznidazole-Resistant
Clone Encodes an Inactive Protein

We next investigated whether the remaining chromosomal
copy of TcNTR in the benznidazole-resistant 61R parasites had
altered. Genes from the 6 resistant clones were amplified and
sequenced. Missense mutation(s) were identified in each case.

In clones 1, 2, 4, and 5, there was C/T transition at position
374, compared with the TcNTR gene amplified from sensitive
clones. In the protein, this would result in replacement of the
evolutionarily conserved Pro-125 with leucine (Figure 2). With
clone 6, in addition to the mutation at position 374, we also
identified a missense mutation at nucleotide 460 (C/G), giving
rise to the conversion of Pro-154 to alanine. For clone 3, there
was a single missense mutation resulting in C/G transversion
at nucleotide 477, leading to the replacement of Phe-159 with
leucine. No other mutations were observed in the TcNTR
genes isolated from the resistant clones. In the O,-insensitive
E. coli nitroreductase nfsB, most mutations associated with ni-
trofuran resistance are located in the corresponding region to
those in TcNTR (Figure 2) [30, 31].

To determine whether the TcNTR mutations had perturbed
activity, we amplified a fragment encoding the catalytic region of
the enzyme, using DNA from 61S and 61R clones 3, 4, and
6. TcNTR is mitochondrial, and previous attempts to express
active full-length enzyme had been unsuccessful [5]. Activity was
only detectable when the amino terminal domain was excluded
from the recombinant protein (Figure 2). After sequence confir-
mation, the expressed histidine-tagged proteins were purified on
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Figure 2. Mutations in TcNTR from benznidazole-resistant Trypanosoma cruzi. The TcNTR schematic identifies the amino terminal extension (excluded
from recombinant proteins) and the location of putative flavin mononucleotide (FMN)-binding regions inferred by analogy with Escherichia coli nfsB
[30]. Full-length copies of TeNTR from 61R resistant clones were amplified and sequenced. Differences in the amino acid sequence as compared to the
parental TcNTR (61S) were restricted to a single region and are highlighted in red. Several 61S clones were sequenced, but no differences were
identified. The sequence in this region of 61S TcNTR (residues 112—162) is identical to that in the genome strain CL Brener (GenBank accession no.
XP_810645). The corresponding CL Brener TcNTR residues are numbered 110-160 because of an insertion or deletion in the amino terminal domain.
Mutations in the corresponding region of E. coli nfsB that confer nitrofurantoin resistance are indicated by asterisks [31].

nickel columns (Materials and Methods; Figure 3A). Fractions
containing recombinant protein derived from the 61S TcNTR
gene were yellow, as expected of a flavoprotein. Those containing
enzyme derived from the resistant clones were colorless.

The capacity of the recombinant enzymes to reduce benzni-
dazole and nifurtimox was established from double reciprocal
plots of 1/TcNTR activity against 1/drug concentration, at a
fixed NADH concentration (100 uM) (Materials and Methods;
Figure 3B and 3C). For the enzyme derived from the sensitive
clone, we established apparent K, values (+SD) of 28.0 +
2.7 uM for benznidazole and 15.5+3.5uM for nifurtimox.
Further analysis gave apparent V,,,, values (+SD) of 1824 +
154 nmol NADH oxidized per minute per milligram for
benznidazole and 399 + 14 nmol NADH oxidized per minute
per milligram for nifurtimox. When each of the mutant
TcNTRs were analyzed, no activity could be detected, even
when 10 times as much recombinant protein was used. We
then investigated the mutant proteins for flavin binding
(Figure 3D), using fluorescent detection under neutral and
acidic conditions (Materials and Methods). At neutral pH and
with an excitation wavelength of 450 nm, the flavin mononu-
cleotide standard and 61S TcNTR-derived cofactor both gave a
fluorescence profile that peaked at 535 nm, a signal that was
quenched under acidic conditions. By contrast with FAD, the
535 nm peak occurs at pH2 and is quenched at pH7. No flavin
fluorescence was detected with mutant TcNTR protein
(Figure 3D).

Infectivity of Benznidazole-Resistant Parasites

To investigate the scope for drug resistance in the field to
result from loss/inactivation of TcNTR genes, we examined the
effects of these events on infectivity. First, we generated het-
erozygous parasites to test for haploid insufficiency. One
TcNTR allele in the 61S genome was disrupted by targeted in-
tegration (Supplementary Figure 1). The 61S TcNTR+/— epi-
mastigotes grew at the same rate in culture as homozygotes,
and to the same density. When these heterozygotes were ex-
amined for benznidazole resistance, there had been a 4-fold
increase (Figure 4A). These parasites were used to infect rat
myoblast L6 cells. No differences were observed in the ability
of the heterozygotes to develop into infective metacyclic trypo-
mastigotes, to invade cells (Figure 4B), to grow as intracellular
amastigotes (Figure 4C), and subsequently to differentiate into
bloodstream trypomastigotes. Therefore, drug resistance that
arises through loss of 1 copy of TcNTR is not associated with
a reduction in infectivity in vitro.

The infective phenotype of the 61R resistant clones, which
contain a single inactive copy of TcNTR, was also examined. In
culture, epimastigotes differentiated into metacyclic trypomas-
tigotes at a level similar to sensitive clones. When culture-
derived trypomastigotes were used to initiate infections, all the
resistant clones tested (clones 3, 4, and 6) were able to develop
through the intracellular cycle as amastigotes and differentiate
into bloodstream trypomastigotes, which were released follow-
ing host cell lysis. At 2 levels, however, we observed a reduction
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activity was monitored (on the basis of absorbance [Abs] at a wavelength of 340 nm) by following oxidation of nicotinamide adenine dinucleotide,
reduced (NADH; 100 uM), in the presence of WT or mutant (P125L, clone 4) enzyme (0.2 ug) and BNZ (100 uM). C, Activity (v) of the WT enzyme (nmol
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and flavin adenine dinucleotide (FAD) controls (in arbitrary units) under acidic and neutral conditions (Materials and Methods). £, Activity of WT and

mutant TcNTRs.

in virulence. When Vero cells were used (Figure 4D), the
number infected by resistant clones was significantly less than
the level observed with the parental sensitive parasites
(Figure 4E), and the average number of amastigotes per infect-
ed cell was reduced (Figure 4F). When L6 cells were infected
with drug-resistant metacyclics, although released trypomasti-
gotes could be observed, their numbers were too few for a
quantifiable infection assay to be performed. This compares to
an infection rate of approximately 25% in the case of the 61S
TcNTR heterozygotes and homozygotes (Figure 4B). These ex-
periments therefore suggest that functional loss of both TcNTR
genes, by the mechanisms identified here, is associated with a
reduction in virulence that would reduce the capacity of highly
drug-resistant parasites to spread within the population.

TcNTR Diversity and Benznidazole Sensitivity in the Field

To explore possible relationships between natural susceptibility
to benznidazole and TcNTR, we sequenced the gene from 28
Colombian strains of different biological and geographical
origins and with a range of benznidazole sensitivities (ICs,
1.5-35 uM) (Table 1). TcNTR length varied between 939 and
951 nucleotides in these strains, mainly because of changes in
the copy number of a trinucleotide (ATC)s_o located between

residues 210 and 238. This region of the protein is not required
for enzyme activity [5]. Excluding this repeat, we identified 42
polymorphisms, 25 of which were nonsynonymous. These
amino acid differences were restricted to 7 strains, all but one
of human origin. None of the polymorphisms were located in
the region of T(NTR where we had identified mutations asso-
ciated with benznidazole resistance. Most were located in the
amino terminal extension (Supplementary Figure 2). The
major amino acid haplotype group encompassed 21 strains of
various biological and geographical origins. Importantly, these
had a wide range of benznidazole sensitivities (ICsg, 4-35 uM)
(Table 1). This extensive natural variation is therefore indepen-
dent of TcNTR sequence and must be due to other factors.
This suggests that resistance arising from changes to TcNTR is
an acquired trait that requires selective pressure.

DISCUSSION

Despite being the frontline drug against T. cruzi infections
for >40 years, benznidazole has drawbacks [4, 32]. It can
have serious side effects, it requires long-term administration
(30-60 days), and its efficacy against chronic stage disease is
inconsistent. Treatment failures are widely reported, although
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Benznidazole-resistant clones are less able to replicate in Vero cells. Values shown are from 5 experiments (P<.05).

the extent to which this is an acquired trait or reflects diversity
in the level of susceptibility within natural parasite populations
is unknown [33]. As shown here and elsewhere [5, 34, 35], lab-
oratory selection of drug-resistant T. cruzi is readily achievable,
but in the case of benznidazole and nifurtimox, it is only re-
cently that a mechanism has been identified [5]. Activation of
these prodrugs by the trypanosome type I NTR, an enzyme
absent from mammals, is central to their mode of action and
explains why they are more toxic to the parasite than to the
host. The 61R benznidazole-resistant T. cruzi clones that we
investigated were characterized by loss of a 0.85-Mb chromo-
some band containing TcNTR. Genome plasticity is a common
phenomenon in trypanosomes [24]. Confirmation that reduced
TcNTR expression caused this resistance was provided by re-
version of the phenotype following reintroduction of the gene.
Unexpectedly, we also found that in each of the 61R clones ex-
amined, the TcNTR gene on the 1.1-Mb chromosome homo-
logue had acquired missense mutation(s) that rendered the
expressed product enzymatically inactive (Figures 2 and 3).
The most parsimonious explanation for our data is that
drug pressure led initially to selection of benznidazole resis-
tance because of loss of the TcNTR-containing 0.85-Mb chro-
mosome. Continued treatment then resulted in selection, from

within this population, of distinct lineages in which mutation(s)
had inactivated the remaining TcNTR gene. The acquisition of
2 distinct missense mutations in TcNTR of clone 6 (nucleo-
tides 374 and 460) implies consecutive events. This 2-step
process is reminiscent of what happens in E. coli, where in-
creased nitrofuran resistance resulted from consecutive muta-
tions in the type I NTR genes nfsA and nfsB [31]. The mutant
TcNTR proteins were found to be deficient in flavin mononu-
cleotide binding. In the NTR group of enzymes, the location
of flavin binding is highly conserved within the overall struc-
ture [30]. All of the mutations in TcNTR were restricted to a
region (residues 125-159; Figure 2) that, in the E. coli enzyme,
contains residues that interact with the isoalloxazine O2,
N3, 04 face of flavin mononucleotide [30]. The mutation of
residue 125 resulted in conversion of an evolutionarily con-
served proline to a leucine (clones 1, 2, 4, 5, and 6). At position
154 in clone 6, proline was converted to alanine. Both changes
would be expected to perturb structure. In clone 3, the muta-
tion associated with disruption of flavin mononucleotide
binding involved conversion of phenylalanine 159 to leucine.
Phenylalanine is present at the corresponding position in
E. coli and T. cruzi NTRs (Figure 2), suggesting a functionally
conserved role.
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The ability of distinct TcNTR-deficient T. cruzi clones to
arise independently in a single population is strong evidence
that the drug-activating properties of this enzyme are central
to the trypanocidal mechanism. The TcNTR single knockouts
were 4-fold less susceptible to benznidazole (Figure 4), a level
of resistance that is significant in the context of this drug, for
which the therapeutic window is limited [3]. The virulence
properties in vitro were also indistinguishable from Tc¢cNTR
homozygotes. This potential for benznidazole resistance by a
straightforward mechanism, coupled with the absence of
haploid insufficiency, may explain some of the observed treat-
ment failures. The inability of the 61S strain to produce a
patent infection in mice has restricted us from investigating
this further. Complete loss of TcNTR activity in the 61R
resistant clones did however have a detrimental effect on in-
fectivity in vitro (Figure 4). This implies that in vivo there will
be a limit to the extent of benznidazole resistance achievable
by mechanisms involving TcNTR (approximately 4-fold),
since parasites need to retain a residual level of enzyme activi-
ty. When we investigated possible relationships between sus-
ceptibility to benznidazole and TcNTR sequence in a diverse
group of parasites (Table 1), we found no correlation. These
data suggest that natural variation in sensitivity does not
involve mutations in TcNTR and that resistance by this
mechanism may be a trait that arises only after selective
pressure. Currently, there is no information on the extent
to which treatment failures reflect natural or acquired
resistance.

An observation, which has wider implications for treatment
of Chagas disease, is the ease with which drug resistance can
arise. In a single experiment, we identified 2 distinct mecha-
nisms, chromosome loss and point mutation, which acted to
reduce TcNTR activity. In the latter case, 3 distinct, indepen-
dently acquired mutations were identified. T. cruzi is extremely
diverse, with a genome characterized by extensive and highly
variable surface antigen gene families [36]. This antigenic di-
versity may have arisen in response to selective immune pres-
sure during evolution, which acted to limit the proofreading
ability of DNA polymerase and/or DNA repair mechanisms.
As a consequence, the parasite may have acquired an ability to
readily develop drug resistance by mutational mechanisms
such as those described here. This is an important consider-
ation that should inform drug development strategies for
Chagas disease.
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