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1. Introduction
Cancer is a rare disease. As a result, analysis of cancer data often suffers from the small
population (numbers) problem, which can lead to unreliable rate estimates, sensitivity to
missing data and other data errors, and data suppression in sparsely populated areas. Figure
1, generated from the State Cancer Profiles web site (statecancerprofiles.cancer.gov), shows
age-adjusted death rates for female breast cancer in Illinois counties for 2003–2007. Rates
for 37 out of 102 counties (i.e., 36.3%, mostly rural counties) are suppressed to “ensure
confidentiality and stability of rate estimates” because counts were fewer than 16 cases.
Cancer incidence in these counties cannot be analyzed, leaving large gaps in our
understanding of geographic variation in cancer and its social and environmental
determinants. For rare cancers or cancers of particular population groups, the problems of
data suppression and unreliable estimates are conceivably much worse. On the other hand,
using data at the county scale obscures rate variations that might exist within large urban
counties such as Cook, DuPage and Kane in Illinois. Because of these problems, analyzing
data by county has limited value both for the public and for researchers who are interested in
cancer patterns at finer geographic scales.

The small population problem is not limited to cancer data analysis, and is present in all
studies of rare events. Several strategies are commonly used to address the problem. For
example, in the analysis of homicide data, criminologists have used strategies such as
suppressing data for small populations, aggregating data over a longer period of time, or
aggregating data to larger geographic units (Wang and O’Brien, 2005). Some analytical
geographic methods have been developed to mitigate this problem. Conceptually similar to
moving averages that smooth observations over a longer time interval, spatial smoothing
computes the averages using a spatial window (Talbot et al., 2000). Spatial smoothing
methods include the floating catchment area method, kernel density estimation (Wang,
2006: 36–38), empirical Bayes estimation (Clayton and Kaldor, 1987), and more recently
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locally-weighted average (Shi, 2007) and adaptive spatial filtering (Tiwari and Rushton,
2004; Beyer and Rushton, 2009), among others. While spatial smoothing assists in revealing
the overall trend of spatial patterns, the methods are ad hoc in the sense that the size of the
smoothing window does not necessarily reflect knowledge of the disease characteristics or
process. Another method, hierarchical Bayesian modeling (HBM), commonly used in spatial
epidemiology, uses a nonparametric Bayesian approach to detect clusters of high risk and
low risk with the prior model assuming constant risk within a cluster (Knorr-Held, 2000;
Knorr-Held and Rasser, 2000). However, a minimum threshold population (or disease
incidents count) is not incorporated in the HBM.

Another viable approach is to construct larger areas from small ones so that the base
population is sufficiently large and comparable across areas. Geography has a long tradition
of building regions for various purposes under the term “regionalization” (Cliff et al., 1975).
Regionalization is to group a large number of small units into a relatively small number of
regions while optimizing a given objective function and satisfying certain constraints.
Traditional regionalization methods place the first priority on attribute similarity within
areas, and most are implemented manually or semi-automatically. An example is the work
by Haining et al. (1994) that used attribute information to first form initial regions and then
applied several subjective rules and local knowledge to further adjust the regions.
Advancements in Geographic Information Systems (GIS) technology have enabled
researchers to develop innovative, computing-intensive methods. Among others, two earlier
methods emphasize spatial proximity: Lam and Liu (1996) used space-filling curves to
measure the nearness or spatial order of areal units, and grouped areas consecutively to
reach a capacity constraint; and Black et al. (1996) constructed regions of approximately
equal population size by beginning with an area and adding the nearest areas to form each
region with the desired threshold population. Neither of these methods, however, considers
within-area homogeneity of attribute. The requirement for merging only regions of similar
attributes is to minimize the loss of information from aggregation. In other words, if very
different regions were grouped together, much of the geographic variation, which is of
primary interest to spatial analysis, would be smoothed out in the regionalization process.

There are a number of automated regionalization methods reported in the literature that
account for spatial contiguity and attribute homogeneity within the derived areas: the AZP
(Openshaw 1977; Openshaw and Rao 1995; Cockings and Martin 2005; Grady and Enander
2009), MaxP (Duque et al., 2007), MSSC (Mu and Wang, 2008) and REDCAP (Guo 2008;
Guo and Wang 2011). For example, the AZP method starts with an initial random
regionalization and then iteratively refines the solution by reassigning objects to neighboring
regions to improve the objective function value, and therefore the regionalization result
varies dependent upon the initial randomization state. The MSSC merges or melts adjacent
and similar areas to form larger areas by following a process guided by an objective of
minimizing loss of information in aggregation, but it does not guarantee that newly formed
areas have population above a threshold. See Guo and Wang (2011) for more detailed
reviews and comparison of existing regionalization methods.

Despite these recent advancements, our literature review indicates that no automated
regionalization methods have been adapted or applied to cancer studies as a way to address
the small population problem. Analysis of cancer data requires special attention to issues
such as data confidentiality and privacy concerns, which require additional constraints such
as a minimum threshold for region population or case numbers. This research adopted the
REDCAP model and modified by incorporating a minimum base population (e.g., 20,000)
and/or a threshold for cancer cases (e.g., 15), especially adaptable to cancer data analysis.
Therefore, the model is termed “REDCAPc”. The method enhances the presentation and
visualization of cancer surveillance data by producing geographic areas of comparable size,
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and generates reliable cancer rates in those areas. As similar areas are merged, it mitigates
the spatial autocorrelation problem commonly observed in data of geographic areas and
simplifies subsequent regression analysis (Mu and Wang, 2008). Spatial autocorrelation
occurs when attributes of nearby areas tend to be similar (positively autocorrelated) or
dissimilar (negatively autocorrelated), and thus violates the assumption of independent
samples in regular regression. It is an important step towards developing frame-independent
and scale-invariant methods (Kwan and Weber, 2003).

REDCAPc was developed under the support of National Cancer Institute (NCI) SEER-
RRSS program, and successfully implemented in the Louisiana Tumor Registry and the
Cancer Prevention Institute of California. This paper reports a case study on analyzing the
late-stage breast cancer risks in Illinois to illustrate its usage and potential for cancer studies.

2. REDCAP and its modification for cancer data analysis (REDCAPc)
REDCAP refers to a family of methods, termed “regionalization with dynamically
constrained agglomerative clustering and partitioning”. REDCAP extends the single-linkage
(SLK), average-linkage (ALK), complete-linkage (CLK), and the Ward hierarchical
clustering methods to enforce the spatial contiguity of clusters and obtain a set of regions
while explicitly optimizing an overall homogeneity measure (Guo 2008). In this paper, we
use the contiguity-constrained complete-linkage clustering (CLK), where the distance
between two clusters is defined as the furthest pair (most dissimilar) of data points.

In essence, the goal of REDCAP is to construct a set of homogeneous regions by
aggregating contiguous small areas of similar attribute values (e.g., socioeconomic
structure). To achieve this goal, REDCAP constructs a cluster hierarchy based on attribute
similarities among small areas and then partitions the spatially contiguous cluster tree to
explicitly optimize a homogeneity measure. The homogeneity measure is the total sum of
squared deviations (SSD) (Everitt 2002), as defined in Equation (1), where k is the number
of regions, nr is the number of small areas in region r, d is the number of variables
considered, xij is a variable value and x̅j is the regional mean for variable j. Each input data
variable should be normalized and a weight can be assigned for each variable.

(1)

As shown in Figure 2, REDCAP is composed of two steps: (1) contiguity-constrained
hierarchical clustering and (2) top-down tree partitioning. The color shade of each polygon
represents its attribute value and similar colors represent similar values. Two polygons are
considered contiguous in space if they share a segment of boundary. In the first step, as
shown in Figure 2(A), REDCAP constructs a hierarchy of spatially contiguous clusters
based on the attribute similarity under contiguity constraint. Two adjacent and most similar
areas are grouped to form the first cluster; two adjacent and most similar clusters (based on
the CLK in this study) are grouped together to form a higher-level cluster; and so on until
the whole study area is one cluster. A spatially contiguous tree is generated to fully represent
the cluster hierarchy (i.e., each cluster at any level is a sub-tree in the map). In the second
step, as shown in Figure 2(B), REDCAP partitions the tree to generate two regions by
removing the best edge (i.e., 11–15 in Figure 2(B)) that optimizes the homogeneity measure
(i.e., SSD) as defined in Equation 1. In other words, the two regions are created in a way that
the total within-region homogeneity is maximized. The partitioning continues until the
desired number of regions is reached.
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We want to emphasize that the first step (i.e., contiguity-constrained clustering) is a bottom-
up process, which builds a hierarchy of spatially contiguous clusters but does not directly
optimize the objective function. The second step (i.e., tree partitioning) is a top-down
approach that directly optimizes the objective function. The final regions mostly likely are
not the same as the top clusters suggested in the cluster hierarchy. This is why the second
step is necessary, which makes the REDCAP methods different from traditional contiguity
constrained hierarchical clustering. REDCAP is similar to the SKATER method (Assunç ă o
et al. 2006) in terms of the two-step framework but significantly outperforms the latter in
our evaluations according to criteria such as total heterogeneity, region size balance, internal
variation and preservation of data distribution (Guo 2008).

For cancer data analysis, in particular for the purpose of mitigating the small population
problem, REDCAP is modified, termed REDCAPc to accommodate additional constraints to
be enforced such as a minimum size threshold in terms of region population and/or the
number of cancer cases. Such constraints are enforced in the second step, i.e., tree
partitioning. For each potential cut, if it cannot produce two regions that both satisfy the
constraints, the cut will not be considered as a candidate cut. Then the best of all candidate
cuts is chosen to partition a tree into two regions. If there is no candidate cut (i.e., no cut can
produce regions that satisfy the constraints), then the region will not be partitioned further. If
none of the current regions can be cut, the regionalization process stops. The method is
deterministic. In other words, given the same criteria (definitions of attribute similarity and
spatial contiguity, minimum region population and/or number of cancer cases), the method
yields the same regions. The resulting regions are all large enough and have the highest
homogeneity within each region.

3. Case Study on Late-Stage Breast Cancer Risks in Illinois
The variations of breast cancer mortality rates from place to place reflect both underlying
differences in breast cancer prevalence and differences in diagnosis and treatment that affect
the risk of death. Patients whose cancer is diagnosed early have fewer complications and
substantially higher rates of survival than those whose cancer is diagnosed late. For breast
cancer, access to primary care and mammography screening is critically important for early
detection (Wang et al., 2008). Access is strongly influenced by financial, socio-cultural and
geographic barriers (or risk factors) (Wang, 2012). In the analysis of late-stage breast cancer
risks, at least three areas can benefit from the aforementioned REDCAPc of constructing
suitable geographic areas:

1. reliable mapping of late-stage rates in newly-constructed areas and related
exploratory spatial analysis to identify high-risk areas;

2. regression analysis of late-stage risk factors across newly-defined areas; and

3. multi-level modeling of risk factors in various configurations of “neighborhoods”.

3.1 Data preparation and variable definitions
This case study uses cancer incidence data in Illinois from the Illinois State Cancer Registry
(ISCR), Illinois Department of Public Health (IDPH) in 2000. Each cancer case is geocoded
to the county and zip code of residence, and includes variables such as cancer type, age
group, sex, race, diagnosis stage and year. In the study period, there are 31,914 incidences of
breast cancer in Illinois. The ISCR uses a classification scheme consistent with SEER
summary stage to measure stage at diagnosis (Young et al., 2001). Consistent with other
studies, we defined late-stage as diagnosis in stages 2 through 7 (Bradley et al., 2002). The
late-stage group consists of cancers that have spread beyond the site of origin to nearby or
distant tissues, organs or lymph nodes. Excluding cases with no stage information, there are
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10,206 female breast cancer cases, among which 2,906 (28.5 percent) are classified as late-
stage.

Given the focus of this paper on constructing geographic areas, the selection and definitions
of risk factors of late-stage breast cancer is not discussed in depth. Only the most relevant
literature is cited in the following discussion. This research considers the following four
types of factors:

1. demographic and other attributes of individual cancer patients,

2. non-spatial factors (socio-demographic variables) of neighborhood level,

3. urban-rural classification assigned to each zip code area, and

4. spatial access measures to primary care physicians and to cancer screening (i.e.,
mammography) facilities.

Attributes of individual cancer cases from the ISCR are limited, and only age and race were
available and used for this study (e.g., McLafferty and Wang, 2009). Three age groups (<40,
40–69 and ≥70 years) (Elkin et al., 2010) are coded by two dummy variables, and race
(black, non-black) by one dummy variable. This set of variables is at the individual level,
and the following three sets are at the level of zip code area.

Area-based nonspatial factors such as demographic and socioeconomic characteristics were
extracted at the census tract level and then interpolated to the zip code level by spatial
interpolation (Wang et al., 2008). Among a wide range of socio-demographic variables
available from the census, 10 were selected: socioeconomic status (e.g., population in
poverty, female-headed households, home ownership, and median income), environment
(e.g., households with an average of more than 1 person per room, and housing units lack of
basic amenities), linguistic barriers and education (e.g., non-white population, population
without a high-school diploma, and households linguistically isolated), and transportation
mobility (e.g., households without vehicles). Due to concerns of multicollinearity among
these variables, factor analysis was used to consolidate the variables into two factors that
accounted for over 70% total variance. Table 1 shows the factor loadings of the 10 variables
on the two factors. The factors are labeled “socioeconomic disadvantages” and
“sociocultural barriers” respectively.

A rural-urban classification code provided in the ISCR (1–9) was used to examine possible
discrepancies between rural and urban areas (though not a focus of this study). Prior studies
(Wang et al., 2008; McLafferty and Wang, 2009) used more categories for rural-urban
continuum and highlighted the uniqueness of Chicago region. Here we adopted a binary
division: (1) Chicago metro area, i.e., zip code areas coded “1” in the ISCR (in metro area
with ≥ 1 million population) but excluding areas around East St. Louis, and (2) others. This
simple strategy was adopted since a more detailed rural-urban breakdown would lead to
many fragmented sub-areas and create a challenge to preserve these sub-areas in the process
of regionalization. By doing so, the study area is basically composed of two sub-areas:
“Chicago metro area” and “non-Chicago area”. A dummy variable is used to code the
division. We also experimented with a 3-category scenario (areas in City of Chicago,
suburban Chicago, and the rest), and the results remained largely the same and thus not
reported.

Spatial access to primary care was estimated using the two-step floating catchment area
method (2SFCA) (Wang, 2006: 80–82). In essence, the 2SFCA computes a numerical value
that represents the ratio of the local supply of primary care physicians to the local demand
(population) for primary care. Supply and demand interact within a fixed range (i.e., 30
minutes) of travel time. A high value for this spatial access measure represents better access.
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Spatial access to cancer screening facility was measured as the travel time from a cancer
patient (approximately by the zip code area population-weighted centroid) to the nearest
mammography facility based on real-world road networks accounting for lower speeds in
high-density urban areas (Wang et al., 2008).

3.2 Constructing geographic areas by REDCAPc
As discussed earlier, a major challenge for regionalization is to account for both spatial
contiguity (only merging adjacent areas) and attribute homogeneity (only grouping similar
areas). For this study, spatial contiguity is defined as rook contiguity. In other words, only
zip code areas that share boundary line(s) (not just points) are considered contiguous. The
spatial contiguity matrix is saved as a text file for subsequent clustering. The two factors,
socioeconomic disadvantages and socio-cultural barriers, defined earlier by the factor
analysis were used as attributes for the regionalization process. Thus, the regions are defined
on the basis of both spatial contiguity and socioeconomic and sociocultural characteristics.
Zip codes that have socially similar and spatially contiguous are grouped together to form
regions.

A threshold number of cancer cases for the newly-defined regions is another input parameter
that needs to be defined. Similar to the criterion adopted by the State Cancer Profiles, this
study uses a minimum number of 15 breast cancer incidences. In other words, zip code areas
with fewer than 15 cases are grouped to form a larger area that has a sufficient number of
cases. In order to preserve the distinction between Chicago metro vs. non-Chicago areas in
the spatial clustering process, the study area was first split to two sub-areas, and each was
processed separately to construct new areas in REDCAPc. Finally the results from the two
were merged together to cover the study area.

Among the 1,364 zip code areas in Illinois, 1,122 zip code areas had fewer than 15 breast
cancer cases in 2000. That is to say, breast cancer rates in 82.3% zip code areas would need
to be suppressed if the threshold of 15 cases is used as the criterion to ensure confidentiality
and reliable rate estimates. The percentage is higher outside Chicago (984 out of 1047 or
94.0% zip code areas) than in the Chicago metro area (138 out of 317 or 43.5% zip code
areas) because zip codes in the Chicago metro area tend to have larger populations. After the
regionalization, a total of 341 new areas were generated with 198 new areas in the Chicago
metro region and 143 outside Chicago. So there is more grouping or aggregation outside of
the Chicago metro area.

Table 2 outlines the statistical distributions of total cases and late-stage cases of breast
cancer, and the late-stage rates in zip code areas and newly-defined areas. Here, late-stage
cancer rate is the ratio of number of late-stage cancer cases to the total cancer cases. Note
that late-stage rates cannot be computed for the 421 zip code areas with zero cancer cases.
Even among the remaining 943 zip code areas, the late-stage rates are clearly less stable
(standard deviation = 0.2755) than in the areas generated by REDCAPc (standard deviation
= 0.0951). Figures 3(a)–(b) show the strong contrasts in the frequency distributions of rates
between the two types of areas. The distribution for zip code areas is heavily skewed to the
left (with a rate of 0 for 285 out of 943 zip code areas), whereas the distribution for the new
areas tends to be normal and peaks around the mean. This is an important property as many
commonly used statistical test assume that variables are normally distributed.

3.3 Mapping and exploratory spatial data analysis in newly-defined areas
For the reasons discussed above, direct mapping of late-stage breast cancer rates in zip code
areas displays a highly-fragmented geographic pattern with many 0 values including areas
with either 0 cancer case (missing late-stage rates) or 0 late-stage cancer case (true 0 late-

Wang et al. Page 6

Appl Geogr. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stage rates), as shown in Figure 4. Figure 5 shows the variation of late-stage breast cancer
rates across newly-defined areas. The elevated late-stage rates are scattered across the state
with no apparent geographic patterns.

Some exploratory spatial data analysis is infeasible for zip code area data due to its
fragmented pattern of late-stage breast cancer rates (zip code areas with valid rates are
isolated/separated by many with missing values), but possible for the new areas. Here we
use spatial autocorrelation or hot spot analysis, commonly available in commercial GIS
software such as ArcGIS (http://www.esri.com/software/arcgis/index.html) or free spatial
analysis packages such as GeoDa (http://geodacenter.asu.edu/software/downloads) and
CrimeStat (http://www.nedlevine.com/nedlevine17.htm), for illustration. With the spatial
weights defined by the polygon rook contiguity, the global Moran I for late-stage breast
cancer rates in the new areas is calibrated as 0.0924, which is statistically significant at 0.01.
In other words, high late-stage rates tend to cluster together; and so do low late-stage rates.
In order to reveal localized cluster patterns, hot-spot analysis is conducted to obtain local
Gi* indices (Getis and Ord, 1992) in the new areas. The result is shown in Figure 6. Local
pockets of high late-stage rate concentrations are observed in central city of Chicago and its
western and southern suburbs, as well as in several rural areas in the northern part of the
state. Additional spatial exploratory analysis such as cluster analysis can also be conducted
by SaTScan (http://www.satscan.org/) and other programs (Wang, 2006). The next section
examines the association with various risk factors.

3.4. Regression models on risks of late-stage breast cancer
Section 3.1 discussed four types of risk factors commonly considered in analysis of late-
stage breast cancer diagnosis. Various regression models can be used to examine the
association of late-stage cancer with these risk factors. As explained previously, OLS
regression is only applicable to the analysis of new areas where cancer rates are fairly stable
and reliable. The OLS model is suitable when data of individual cancer cases are not
available, and the analysis is limited to the area (neighborhood) level. In an OLS model, the
dependent variable is late-stage cancer rate and independent variables are the
aforementioned risk factors. Poisson regression is often used to partially account for the
skewed distribution of late-stage cancer rates (Wang et al., 2008), caused by the small
population problems discussed previously. In a Poisson regression model, the dependent
variable is the number of late-stage cancer cases (the total number of cancer cases serves as
an offset variable), and the independent variables are also limited to the area level. A
multilevel logistic model examines the risk of individual cancer cases being late-stage,
where the dependent variable is binary (0, 1), and independent variables include both
individual- and neighborhood-level risk factors (e.g., McLafferty and Wang, 2009). Table 3
outlines three models, and the dependent and independent variables used in each. Note that
all independent variables (two factor scores and two spatial accessibility measures) at the zip
code level are aggregated to the new areas by the population weighted average method.

Table 4 presents the regression results: the OLS on the new areas, and the Poisson and
multilevel models on both the zip code area and the new areas. The results are summarized
below.

1. The three individual-level variables are all significant in the multilevel models
regardless whether zip code areas or new areas are used as the neighborhood (area)
level. Consistent with findings from many studies, the risk of late-stage breast
cancer is higher among younger patients and lower among older patients, likely
resulting from differences in frequency of primary care visits and age-related
cancer screening protocols (McLafferty and Wang, 2009). The risk is higher among
black cancer patients, controlling for age and area-level socioeconomic
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characteristics, is consistent with finding reported in Martin and Newman (2007)
among others. Some reported inconsistencies across geographic scales in racial
disparities in breast cancer survival (Meliker et al., 2009).

2. The two area-level socioeconomic factors are significant with expected signs in the
OLS and Poisson models. In the multilevel models, the socioeconomic
disadvantages factor is no longer significant, but the sociocultural barriers factor
remains significant (and the results are consistent in two neighborhood definitions).
The disappearance of the socioeconomic disadvantages factor can be explained by
its high correlation with the individual-level variable “black” (correlation
coefficient = 0.59). In other words, the disproportionally higher presence of black
patients in neighborhoods with concentrated socioeconomic disadvantages
dominates the contextual effect. In contrast, sociocultural barriers remain
statistically significant in the multilevel models suggesting that they may influence
use of screening services and the quality and effectiveness of those services (Chu et
al., 2003).

3. The urban-rural disparities do not appear to be very significant in this study (the
statistical significance is 0.10 in the OLS and the two Poisson models, but not at all
in both multilevel models).

4. In all models, the coefficient for travel time to the nearest mammography facility is
not statistically significant, but that for spatial access to primary care is very
significant. Insignificance of proximity to mammography facilities is also reported
in other studies (e.g., Henry et al. 2011), but the finding here should be taken with
caution since zip code centroids instead of street addresses (not available to this
study) were used to approximate cancer patient locations. Most prior studies in
examining the role of primary care access in cancer diagnosis stage simply used
distance or travel time to physicians (e.g., Parsons and Askland, 2007; Jones et al.,
2008) to measure accessibility, and did not capture the complex patients-doctors
interactions as we did (also in Wang et al., 2008; McLafferty and Wang, 2009).
This study indicates that living in areas with poor spatial access to primary care
increases the risk of late-stage breast cancer.

4. Concluding comments
Analysis of cancer data often suffers from the small population problem, which leads to less
reliable rate estimates and data suppression in sparsely populated areas. This research
develops a GIS-based automated regionalization method, namely REDCAPc, that constructs
larger areas that are more coherent than geopolitical areas or spatial smoothing windows in
terms of socioeconomic characteristics and spatial proximity. By doing so, the study
demonstrates that the cancer rates become more stable and reliable and conform to a normal
distribution. This permits direct mapping, exploratory spatial data analysis, and even simple
OLS regression.
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Highlights

• The small numbers (population) problem occurs in analysis of rare disease
(including cancer) data with unstable rate estimates and data suppression in
sparsely populated areas.

• This research adopts a GIS-based automated method, termed “regionalization
with dynamically constrained agglomerative clustering and partitioning” for
cancer analysis (REDCAPc), to construct larger areas with population or case
numbers above a threshold.

• Cancer rates in these newly constructed areas have sufficiently large base
population, and are thus more reliable and also conform to a normal distribution.

• This permits direct mapping, exploratory spatial data analysis, and even simple
OLS regression.

• The method can be used to effectively mitigate the small numbers problem
commonly encountered in analysis of public health data.
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Figure 1.
Female breast cancer death rates in Illinois 2003–2007
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Figure 2.
An example data set illustrating REDCAP: (A) a spatially-contiguous tree is built with a
contiguity constrained hierarchal clustering method; (B) partitioning the tree by removing
the edge that optimizes the SSD measure.

Wang et al. Page 13

Appl Geogr. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Distribution of late-stage breast cancer rates in Illinois 2000: (a) 943 zip code areas and (b)
341 new areas
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Figure 4.
Late-stage breast cancer rates in zip code areas in Illinois 2000
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Figure 5.
Late-stage breast cancer rates in newly-defined areas in Illinois 2000
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Figure 6.
Hot and cold spots of late-stage breast cancer rates in newly-defined areas in Illinois 2000
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Table 1

Factor Structure of Nonspatial Factors

Socioeconomic
disadvantages factor

Sociocultural
barriers factor

Non-white population (%) 0.1762 −0.0156

Female-headed households (%) 0.2477 −0.1626

Median income ($) −0.1692 0.0515

Population in poverty (%) 0.2247 −0.0866

Homeownership (%) −0.1503 −0.0311

Households w/o vehicles (%) 0.2077 −0.0621

Households with linguistic isolation (%) −0.2141 0.5546

Population w/o high-school diploma (%) 0.0353 0.2476

Households with >1 person per room (%) −0.0578 0.3889

Housing units lack of basic amenities (%) 0.0488 0.0933

Variance explained by each factor 4.6576      2.3679      

Note: Values underlined indicate the highest loading of a variable on a factor among all factors.
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Table 2

Descriptive statistics for female breast cancer by zip code and by REDCAP-defined areas, Illinois 2000

Total
cases

Late-stage
cases

Late-stage rate

Zip code areas (n=1,364)

   Minimum 0 0 0*

   Maximum 78 22 1*

   Mean 7.4824 2.1305 0.2843*

   Standard deviation 12.4887 3.7085 0.2755*

New areas (n=341)

   Minimum 15 0 0

   Maximum 78 25 0.5517

   Mean 29.9296 8.5220 0.2871

   Standard deviation 13.3601 4.4705 0.0951

*
Only applies to 943 zip code areas with >0 total cases (excluding 421 zip code areas with 0 total cases in 2000).
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Table 3

Regression models for analyzing late-stage breast cancer risks

Variables OLS Poisson Multilevel
Logit

Late-stage breast cancer rate Y

Number of late-stage breast cancer cases Y

Number of all breast cancer cases Offset

Individual breast cancer cases (=1 for late-stage, =0 otherwise) Y

Individual breast cancer patient socio-demographic attributes X

Neighborhood demographic & socioeconomic factors X X X

Neighborhood urban-rural classification X X X

Spatial access to primary care X X X

Spatial access to mammography facility X X X

Note: Y indicates the dependent variable, and X indicates an independent variable in a model
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