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Abstract

Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus closely related to human herpesvirus 8 (HHV8). RRV encodes
viral FLICE inhibitory protein (vFLIP), which has death effector domains. Little is known about RRV vFLIP. This study intended
to examine its function in apoptosis. Here we found that RRV vFLIP inhibits apoptosis induced by tumor necrosis factor-
a (TNF-a) and cycloheximide. In HeLa cells with vFLIP expression, the cleavage of poly [ADP-ribose] polymerase 1 (PARP-1)
and activities of caspase 3, 7, and 9 were much lower than those in controls. Cell viability of HeLa cells with vFLIP expression
was significantly higher than control cells after apoptosis induction. However, RRV vFLIP appears unable to induce NF-kB
signaling when tested in NF-kB reporter assay. RRV vFLIP was able to enhance cell survival under starved conditions or
apoptosis induction. At early time points after apoptosis induction, autophagosome formation was enhanced and LC3-II
level was elevated in cells with vFLIP and, when autophagy was blocked with chemical inhibitors, these cells underwent
apoptosis. Moreover, RRV latent infection of BJAB B-lymphoblastoid cells protects the cells against apoptosis by enhancing
autophagy to maintain cell survival. Knockdown of vFLIP expression in the RRV-infected BJAB cells with siRNA abolished the
protection against apoptosis. These results indicate that vFLIP protects cells against apoptosis by enhancing
autophagosome formation to extend cell survival. The finding of vFLIP’s inhibition of apoptosis via the autophagy
pathway provides insights of vFLIP in RRV pathogenesis.
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Introduction

Rhesus monkey rhadinovirus (RRV) was first found in 1997 in

the New England Primate Research Center [1]. It was shown that

RRV has close sequence relatedness to Kaposi’s sarcoma-

associated herpesvirus (KSHV), a gamma herpesvirus that is

associated with Kaposi’s sarcoma, primary effusion lymphoma

(PEL) or body cavity based lymphoma (BCBL), and multicentric

Castleman’s disease [2,3,4]. Two major hindrances for KSHV

study are the lack of a permissive lytic system for high yield of

infectious virions and an appropriate animal model for the

investigation of KSHV pathogenesis [5]. Full length sequences of

two different RRV strains were subsequently obtained at the New

England Primate Research Center for strain 26–95 [6] and the

Oregon Regional Primate Research Center for strain 17577 [6,7].

The long unique region of the RRV genome is about 130 kb and

high overall sequence similarity to KSHV was found in both

strains. The RRV genomic organization is collinear with KSHV,

with the exception of a few genes encoding homologues of

cytokines and interferon regulatory factors. RRV can efficiently

replicate without any chemical induction in permissive cell lines

like rhesus macaque skin fibroblast cell line (RhF) [8].

High prevalence of antibodies to RRV was found in rhesus

monkey colonies at multiple facilities for at least ten years [1,9,10].

Experimental infection of rhesus monkeys with RRV led to

persistent antibody response and virus detection in lymph nodes,

oral mucosa, skin, and peripheral blood mononuclear cells

[11,12]. Co-inoculation of rhesus monkeys with RRV and simian

immunodeficiency virus (SIV) resulted in lymphoid hyperplasia

comparable to KSHV-associated multicentric Castleman’s disease

and has been explored as an animal model for KSHV [12,13].

Like other herpesviruses, RRV maintains two phases of

replication during infection, lytic and latent. RRV ORF71

encodes viral FLICE (FADD-like interleukin-1-converting en-

zyme)-inhibitory protein (vFLIP), which is expressed during latent

phase. The structure of this protein is homologous to cellular

FLIP, which contains two death effector domains resembling the

amino terminus of caspase 8 [6]. The interaction between death

effector domains of FLIP and adaptor protein Fas-associated

protein with death domain (FADD) can protect cells against

apoptosis. In the apoptosis pathway, members of the caspase

family of cysteine proteases are key mediators to initiate and

execute the apoptotic program [14,15]. Several caspases (caspase-

8, -9, and -10) play upstream ‘‘initiator’’ roles in the process of
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apoptosis and several others (caspase-3, -6, and -7) are ‘‘effector’’

caspases. The activation of the initiator caspases can be induced by

external stimuli from the cell surface in the extrinsic apoptosis

pathway or signals originating from inside the cell in the intrinsic

apoptosis pathway.

Inhibition of apoptosis is generally observed for vFLIPs of

several viruses, such as Herpesvirus Saimiri (HVS), Molluscum

Contagiosum virus (MCV), and Sindbis virus (SV) [16,17,18].

Besides inhibition of apoptosis, KSHV vFLIP can constitutively

activate nuclear factor-kB (NF-kB) pathway through enhancing

the degradation of IkB, which allows the RelA/p65 subunit of NF-

kB to translocate into the nucleus and promote expression of

cellular genes [19]. KSHV vFLIP has also been shown to inhibit

autophagy induced by rapamycin, an immunosuppressant and

anti-cancer drug [20]. Autophagy is a catabolic process involving

the degradation of cytosolic components through the lysosomal

machinery.

RRV vFLIP has 174 aa with an expected molecular mass of

20 kDa [6,7]. There are approximately 40% similarity between

KSHV vFLIP and RRV vFLIP at nucleotide level, and 33%

identity at amino acid level. But little is known about RRV vFLIP.

Here we found that RRV vFLIP inhibits apoptosis and enhances

cell survival via enhancing autophagosome formation. The

enhancement of cell survival was observed in BJAB B-lympho-

blastoid cells latently infected with RRV when the cells were

induced to undergo apoptosis. Suppression of vFLIP expression in

the RRV-infected BJAB cells with siRNA abolished the protective

effect against apoptosis. Our findings provide a novel aspect of

vFLIP to inhibit apoptosis by employing autophagosome forma-

tion.

Results

Cloning and Expression of RRV ORF71 Gene
RRV ORF71 was cloned into a VenusN1 vector for expression

of vFLIP-Venus fusion protein. HEK293 cells were transfected

with either VenusN1-vFLIP or empty vector. The vFLIP-Venus

fusion protein was detected by a mouse monoclonal antibody

against GFP and the size of the fusion protein was approximately

48 kDa, while cells transfected with the empty vector yielded

a band at 27 kDa (Fig. 1A), as expected. Western blot analysis of

the cell lysates with rabbit anti-vFLIP antibody detected the

48 kDa fusion protein, while no signal was visible in whole

proteins from cells transfected with empty vector (Fig. 1B),

demonstrating the specificity of the antibody against vFLIP. These

results confirmed the expression of vFLIP fusion protein in the

cells transiently transfected. Similarly, the vFLIP fusion protein

was detected in HeLa cells transfected with VenusN1-vFLIP

(Fig. 1C). The results indicate that vFLIP expression is not cell

type-dependent.

Inhibition of the Apoptosis Signaling Pathway
Since RRV vFLIP contains two death effector domains, we

tested its effect on the apoptosis pathway. HeLa and HeLa-vFLIP

stable cells were induced to undergo apoptosis with TNF-a and

cycloheximide, and were harvested at 0, 6, 9, and 12 h after the

treatment. Cleavage of poly(ADP-ribose) polymerase-1 (PARP-1)

was assessed. PARP-1 is a nuclear DNA-binding zinc finger

protein that is involved in DNA repair [21]. PARP-1 proteolytic

cleavage is considered a classic hallmark for apoptosis. The PARP-

1 cleavage band at 89 kDa was observed in lysate from control

HeLa cells at 6, 9 and 12 h after apoptosis induction, while

undetectable in cells expressing vFLIP (Fig. 2A). The results

indicate that vFLIP inhibits apoptosis.

Apoptosis induction also leads to cleavage of inactive procas-

pases to form active caspases. Caspase 8 and 9 represent initiation

factors in the extrinsic and intrinsic pathways, respectively, and

induce the cleavage of caspase 3 and 7, the executive factors in the

apoptosis pathway. To further confirm the effect of vFLIP on

apoptosis signaling, we conducted caspase activity assays 6 h after

apoptosis induction. Caspase activities of caspase 3/7, 8, and 9 in

vFLIP-positive cells were 55%, 13%, and 58%, respectively, lower

than those in control HeLa cells (Fig. 2B). The reduction of

caspase activities of caspase 3, 7, and 9 in HeLa-vFLIP cells may

account for the reduced cleavage of PARP-1.

Reactive oxygen intermediates play a critical role in apoptosis

induced by TNF-a and cycloheximide, and overexpression of

manganese superoxide dismutase (MnSOD) has been previously

shown to prevent apoptosis [22,23]. Superoxide dismutases (SOD)

are a class of enzymes that catalyze the dismutation of superoxide

into oxygen and hydrogen peroxide [24]. Three forms of

superoxide dismutase are present: SOD1 is located in the

cytoplasm, SOD2 in the mitochondria, and SOD3 is extracellular.

SOD2 contains manganese in its reactive centre and is also known

as MnSOD. The transcript of MnSOD in the HeLa cells was

assessed by real time RT-PCR 4 h after apoptosis induction.

MnSOD expression was significantly up-regulated to almost 90

folds in HeLa-vFLIP stable cells as compared with control

(Fig. 2C). The MnSOD elevation was consistent with the

reduction of caspase activity in vFLIP-stable cells.

The upregulation of MnSOD is not due to activation by NF-kB
signaling, as vFLIP is unable to activate NF-kB, shown by NF-kB
luciferase reporter assay (Fig. 2D). HeLa cells were transfected

with a NF-kB reporter plasmid pGL4.32[LUC2P/NF-kB-RE/
HYGRO] and VenusN1-vFLIP. VenusC1-vFLIP and an empty

vector were also included in the test. TNF-a was included as

a positive control to activate NF-kB signaling. The luciferase

reporter assay showed that luminescence signal in cells with vFLIP

expression was low and similar to cells that were transfected with

empty vector, whereas TNF-a treatment of HeLa cells induced 12-

fold increase (Fig. 2D). TNF-a treatment of HeLa cells transfected

with VenusN1-vFLIP induced 9-fold elevation, which was

significantly higher than the cells without treatment. Transfection

of HeLa cells with prokaryotic vector pGEX-3X did not affect the

NF-kB activation after TNF-a induction. This result indicates that

vFLIP is unable to activate NF-kB signaling.

To verify the finding in the NF-kB luciferase reporter assay,

subcellular fractionation of HeLa cells was conducted to determine

NF-kB subcellular location. After NF-kB is activated by TNF-a, it
translocates into the nucleus and activates expression of a myriad

of genes. HeLa and HeLa-vFLIP stable cells were either untreated

or treated with TNF-a. The addition of TNF-a and cycloheximide

Figure 1. Expression of RRV vFLIP protein is detected by
Western blotting. The cells were transfected with VenusN1-vFLIP or
empty vector (EV). Lysate of mock-transfected cells was included as
a control. A. Detection of vFLIP-Venus fusion protein in HEK293 cells by
mouse anti-GFP antibody. Molecular weight markers are indicated on
the left of the images. B. Detection of vFLIP-Venus fusion protein in
HEK293 cells by rabbit anti-vFLIP antibody. C. Detection of vFLIP-Venus
fusion protein in HeLa cells by rabbit anti-vFLIP antibody.
doi:10.1371/journal.pone.0039438.g001
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Figure 2. RRV vFLIP inhibits apoptosis in HeLa cells. A. Reduction of PARP-1 cleavage in HeLa cells detected by Western blotting. HeLa and
HeLa-vFLIP stable cells were treated with tumor necrosis factor-a (TNF-a) and cycloheximide to induce apoptosis, and harvested at 0, 6, 9, and 12 h
after the treatment. PARP-1 cleavage was detected as a marker of apoptosis. Tubulin was detected on the same membrane for loading normalization.
B. Reduction of activities of caspase 3/7, 8, and 9. HeLa-vFLIP stable cells and HeLa cells were treated with TNF-a and cycloheximide for 6 h. Relative
percentages of caspase activities in comparison with normal HeLa cells are shown. Significant differences between HeLa-vFLIP and HeLa cells are
denoted by ‘‘**’’, which indicates P,0.01. C. Up-regulation of transcript of MnSOD in HeLa-vFLIP stable cells after apoptosis induction detected by
real-time PCR. Relative fold in comparison with control HeLa cells under the same treatment is shown. D. RRV vFLIP is unable to activate the NF-kB
luciferase reporter. HeLa cells were transfected with NF-kB reporter plasmid pGL4.32[LUC2P/NF-kB-RE/HYGRO], VenusN1-vFLIP (vF1), VenusC1-vFLIP
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to one well was included as a control. The cells were harvested at

4 h after the induction and fractions of the nucleus and cytoplasm

were separated. Western blot analysis with antibody against the

NF-kB p65 subunit showed that p65 remained in the cytoplasm in

cells with stable vFLIP expression, while addition of TNF-a or

a combination of TNF-a and cycloheximide led to p65 nuclear

translocation (Fig. 2E). The result suggests that vFLIP is unable to

cause nuclear translocation of NF-kB. Detection of b-tubulin and

PARP-1 in only the cytoplasmic and the nuclear fractions,

respectively, demonstrated the successful separation of the two

fractions.

The data above showed that RRV vFLIP inhibited the signaling

cascade of the apoptosis pathway. To test whether the anti-

apoptotic function of vFLIP was sufficient to protect the cells from

apoptotic death, we conducted a cell viability assay of the HeLa-

vFLIP stable cells at 0 and 38 h after apoptosis induction with

TNF-a and cycloheximide. Compared with normal HeLa cells at

0 h, relative cell viability of HeLa-vFLIP stable cells at 38 h after

apoptosis induction was 0.85-fold, while that of the control cells

was 0.43-fold, similar to 0.39-fold of un-transfected HeLa cells

(Fig. 2F). This result indicated that vFLIP expression protected the

cells from apoptotic cell death.

vFLIP Enhances Cell Survival under Starved Condition
Enhanced cell survival is one of the features of tumor cells. To

determine whether RRV vFLIP can enhance cell survival under

starved condition, we replaced cell culture medium of HeLa,

HeLa-vFLIP, and HeLa-VenusN1 cells with Hank’s balanced salt

solution (HBSS). These cells were observed at 0, 24, and 48 h after

HBSS addition and images were taken under bright field

microscopy. HeLa-vFLIP stable cells survived longer than the

other cells under starved condition (Fig. 3A). Cell viability of

vFLIP-stable cells was 1.24- and 1.58-fold higher than control

HeLa cells at 24 and 48 h, respectively, after HBSS addition

(Fig. 3B). The cells with empty vector had slightly lower viability

levels than control HeLa cells. The result indicated that RRV

vFLIP might be involved in autophagy to extend cell survival,

since autophagy is a cell survival mechanism to turn over damaged

organelles and long-lived proteins in the cytoplasm during

starvation.

vFLIP Enhances Autophagosome Formation in Cells
Undergoing Apoptosis Induction
Autophagy is a dynamic and multi-step process and LC3-II has

been widely used as a marker [25,26]. Microtubule-associated

protein 1A/1B-light chain 3 (LC3) is a soluble protein with

a ubiquitous distribution in mammalian cells. During autophagy,

the cytosolic form of LC3 (LC3-I) is cleaved at its C-terminus and

conjugated to phosphatidylethanolamine to form LC3-phosphati-

dylethanolamine conjugate (LC3-II), which is incorporated into

autophagosomal membranes. Thus detecting changes in LC3

lipidation and localization has become a reliable method for

monitoring autophagy [27]. HeLa cells were co-transfected with

VenusN1-vFLIP plasmid and mCherry-LC3 and, the next day,

were induced to undergo apoptosis with TNF-a and cyclohexi-

mide. The mCherry-LC3 was used because mCherry is stable in

lower pH than CFP and is easier to observe even when

autophagosomes are fused with lysosomes [28]. The cells were

observed for autophagosome formation 3 h after apoptosis

induction. The HeLa cells with vFLIP expression had more

punctated autophagosomes after apoptosis induction than cells

with empty vector (Fig. 4A). The HeLa cells with vFLIP expression

also had visible punctated autophagosomes before apoptosis

induction. For Western blot detection of LC3-II in the cells,

HeLa-vFLIP stable and HeLa-empty vector cells were transfected

with CFP-LC3 plasmid and, the next day, were induced to

undergo apoptosis. The cells were harvested for western blotting at

0, 4, and 6 h after apoptosis induction. Densitometry analysis

showed that LC3-II in HeLa-vFLIP stable cells at 0, 4, and 6 h

after apoptosis induction were 1.6-, 1.7- and 1.5-fold higher than

that in HeLa-empty vector cells at 0 h (Fig. 4B). At 4 and 6 h after

apoptosis induction, the LC3-II in HeLa-empty vector cells

increased to 1.2-fold higher than 0 h.

To determine whether autophagy plays a role in vFLIP’s

inhibition of apoptosis, two experiments were performed to inhibit

autophagy pathway at two critical steps; autophagosome forma-

tion and degradation of autophagosomes in lysosomes. HeLa-

vFLIP stable cells were treated with 3-MA for one hour before

apoptotic induction to inhibit autophagosome formation. The cells

were harvested at 10 h after apoptotic induction for Western

blotting. The band of cleaved PARP-1 at 89 kDa was observed in

the cells treated with 3-MA, but could not be seen in the mock-

treated control (Fig. 4C). The result indicated that after 3-MA

treatment of the cells, vFLIP could no longer protect the cells from

apoptosis induction. This suggested that autophagosome forma-

tion was needed for the anti-apoptotic function of RRV vFLIP,

which was consistent with the observation of a significant increase

of punctated autophagosomes after apoptosis induction.

Further testing was conducted to determine whether final

degradation of autophagic cargo inside autophagolysosomes had

any effect on vFLIP’s inhibition of apoptosis. HeLa-vFLIP stable

cells were treated with ammonium chloride at 4, 6, and 8 h after

apoptosis induction to prevent acidification in lysosomes and

harvested for Western blot analysis. In HeLa-vFLIP stable cells,

the band of cleaved PARP-1 at 89 kDa was observed at 4 and 6 h,

and became weaker at 8 h, while in HeLa cells with empty vector,

a strong band of PARP-1 at 89 kDa was observed at all three time

points (Fig. 4D). This result indicated that inhibition of

autophagolysosomes at 4 and 6 h after apoptosis induction had

an inhibitory effect on vFLIP’s anti-apoptotic function.

Latent RRV Infection of BJAB Cells Protects the Cells
Against Apoptosis via Autophagy, and Suppression of
vFLIP Expression Abolishes the Protection
Although several cell lines can be infected with RRV, the

main target cells of RRV latent infection in vivo are B cells [9].

(vF2), empty vector VenusN1 (EV1), or VenusC1 (EV2). TNF-a was used to activate NF-kB as a positive control. Prokaryotic expression vector pGEX-3X
was included as a control. Luciferase signals were measured 4 h after TNF-a addition. Relative folds in comparison with EV1 control are shown.
Significant differences between cells with vF1 in the presence or absence of TNF-a induction are denoted by ‘‘**’’. E. RRV vFLIP is unable to induce
nuclear translocation of NF-kB subunit p65. HeLa cells (top panel image) and HeLa-vFLIP stable cells (lower panel image) were treated with TNF-a or
combination of TNF-a and cycloheximide for 4 h and harvested for fractionation of cytoplasmic and nuclear portions, followed by Western blotting
with p65 antibody. Tubulin and PARP-1 were detected on the same membrane to confirm the separation of cytoplasmic and nuclear fractions. F.
Extension of cell viability after apoptosis induction. HeLa, HeLa-empty vector (EV) and HeLa-vFLIP cells were tested by CellTiter-Glo Cell Viability Assay
at 0 and 38 h after apoptosis induction. Relative folds in comparison with normal HeLa cells at 0 h are shown. Significant differences between HeLa-
vFLIP and HeLa-EV cells are denoted by ‘‘**’’.
doi:10.1371/journal.pone.0039438.g002
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BJAB cells were used to examine vFLIP’s role in RRV-infected

cells since vFLIP is a latent protein that could play a role during

the latent phase of RRV infection. BJAB cells were infected with

RRV at a multiplicity of infection (MOI) of 2 TCID50 per cell

and were maintained for two weeks in culture. BJAB cells latently

infected with RRV (BJAB-RRV) and normal BJAB cells were

induced to undergo apoptosis and were harvested for Western

blot analysis at 2 h after the treatment. The cleaved band of

PARP-1 at 89 kDa was strong in BJAB, but much weaker in

BJAB-RRV cells (lane 2 in both images of Fig. 5A). The ratio of

top band to low band of PARP-1 for BJAB-RRV cells was 4,

while 1.1 for BJAB cells. To test whether autophagy was needed

for the inhibition of apoptosis in BJAB-RRV, cells were treated

with 3-MA for 3 hours prior to apoptosis induction, or

ammonium chloride at the same time as apoptosis induction.

PARP-1 cleavage was highly increased in BJAB-RRV when

Figure 3. RRV vFLIP enhances survival of HeLa cells under starved condition. A. Bright-field micrographs showing the cells under starvation
at 0, 24 and 48 h. Normal HeLa, HeLa-vFLIP stable cells and HeLa-empty vector (EV) cells were starved after culture medium was replaced with Hank’s
balanced salt solution (HBSS). B. Cell viability assay of HeLa cells after starvation. The cells were assayed 24 and 48 h after starvation by CellTiter-Glo
Cell Viability Assay. Relative folds are shown in comparison with normal HeLa cells at 24, and 48 h, respectively, after normalization of cells at 0 h.
Significant differences between HeLa-vFLIP and HeLa-EV cells are denoted by ‘‘*’’ and ‘‘**’’, which indicate P,0.05 and P,0.01, respectively.
doi:10.1371/journal.pone.0039438.g003
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treated with either 3-MA or ammonium chloride (lane 3 and 4 in

the second image of Fig. 5A). The ratio of top band to low band

of PARP-1 in BJAB-RRV when treated with ammonium

chloride or 3-MA was reduced to 0.75 and 0.44, respectively.

These treatments also increased PARP-1 cleavage in normal

BJAB cells (lane 3 and 4 in the first image of Fig. 5A), as

expected. This result indicated that the anti-apoptotic function

coupled with autophagosome formation in RRV-infected BJAB

cells corroborated with the data from HeLa cells stably

expressing vFLIP. The vFLIP protein was detected in RRV-

infected BJAB cells (Fig. 5B). The cell viability assay showed that

viability of BJAB-RRV cells at 3 h after apoptosis induction was

0.79-fold of the cells at 0 h, while viability of BJAB cells 3 h after

apoptosis induction was 0.29-fold of the cells at 0 h (Fig. 5C).

The result indicated that RRV infection significantly extended

the survival of BJAB cells after apoptosis induction, which was

consistent with the results of PARP-1 cleavage.

To further confirm that the inhibition of apoptosis via the

autophagy pathway in RRV-infected BJAB cells was due to vFLIP

expression, BJAB-RRV cells were treated with a siRNA against

vFLIP to knockdown vFLIP expression in the cells. An irrelevant

siRNA was included as a control. To test if the siRNA against

vFLIP could knockdown vFLIP expression in BJAB-RRV cells,

real-time RT-PCR was conducted. The results showed that the

treatment of BJAB-RRV cells with siRNA against vFLIP reduced

vFLIP mRNA to 10% in comparison with mock-treated control,

while vFLIP mRNA level in cells with control siRNA had no

significant difference from mock-treated control (Fig. 5D). The

result indicated that the siRNA to vFLIP effectively suppressed the

vFLIP expression in BJAB cells latently infected by RRV.

The BJAB-RRV cells were induced to undergo apoptosis the

next day after siRNA transfection. Western blot analysis showed

that PARP-1 cleavage was increased in BJAB-RRV cells after

treatment with vFLIP siRNA in comparison with the control

Figure 4. RRV vFLIP enhances autophagosome formation after apoptosis induction. A. RRV vFLIP expression leads to more punctated
autophagosomes in HeLa cells after apoptosis induction. HeLa cells were co-transfected with mCherry-LC3 and VenusN1-vFLIP or empty vector (EV),
and induced with TNF-a and cycloheximide for 3 h the next day. The cells were observed under confocal fluorescence microscopy. Nuclear DNA was
counterstained with DAPI. Mock: no apoptosis induction. TNF: 3 h after addition of TNF-a and cycloheximide. B. Elevation of LC3-II level in cells with
vFLIP expression after apoptosis induction. HeLa-vFLIP stable and HeLa cells with EV were transfected with CFP-LC3, and induced with TNF-a and
cycloheximide to undergo apoptosis the next day. The cells were harvested 0, 4, and 6 h after the induction for Western blotting of LC3. Tubulin was
blotted for normalization. The relative ratios of LC3-II (the lower band of LC3 image) in comparison with HeLa-EV cells 0 h after apoptosis induction
are shown below the image. C. RRV vFLIP is unable to inhibit apoptosis when cells are treated with 3-MA. Addition of 3-MA to HeLa-vFLIP stable cells
was done 1 h before addition of TNF-a and cycloheximide. The cells were harvested 10 h after TNF-a addition for Western blotting of PARP-1
cleavage. D. Treatment with NH4Cl reduces vFLIP’s capability to inhibit apoptosis. NH4Cl was added to HeLa-vFLIP or HeLa-EV cells at 4, 6, and 8 h
after apoptosis induction. The cells without apoptosis induction were included as control.
doi:10.1371/journal.pone.0039438.g004
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Figure 5. RRV latent infection of BJAB cells protects the cells from apoptosis. A. RRV latent infection of BJAB cells protects the cells against
apoptosis and inhibition of autophagy abolishes the protective effect. BJAB cells latently infected with RRV (BJAB-RRV) were either untreated, treated
with 3-MA for 3 h prior apoptosis induction by TNF-a and cycloheximide, or treated with ammonium chloride at the same time of the apoptosis
induction. The cells were harvested 2 h post-apoptosis induction for Western blotting of PARP-1 cleavage. Similar treatment of uninfected BJAB cells
was included as a control. The ratio of top PARP-1 band to low band is shown under the image. B. Detection of vFLIP in RRV-infected BJAB cells by
Western blotting with rabbit anti-vFLIP antibody. C. Cell viability assay of BJAB and BJAB-RRV cells 3 h after apoptosis induction. Relative folds in
comparison with uninfected BJAB cells at 0 h are shown. Significant differences between BJAB and BJAB-RRV cells after apoptosis induction are
denoted by ‘‘**’’, which indicates P,0.01. D. Suppression vFLIP expression in RRV-infected BJAB cells by siRNA. BJAB cells latently infected with RRV
were transfected with a siRNA against vFLIP. An irrelevant siRNA was included as a control. Real-time RT-PCR was conducted to assess vFLIP transcript
level. Relative percentages in comparison with mock-treated control are shown. Significant differences between siRNA-treated and mock-treated
BJAB-RRV cells are denoted by ‘‘**’’. E. Suppression of RRV vFLIP gene expression in BJAB-RRV cells leads to loss of the capability against apoptosis.
BJAB cells latently infected with RRV were transfected with siRNA against vFLIP 15 h before apoptosis induction. Treatment of uninfected BJAB cells
was included as a control. The cells were harvested 2 h after treatment with TNF-a and cycloheximide for Western blotting of PARP-1 cleavage. The
ratios of top PARP-1 band to low band are shown under the image.
doi:10.1371/journal.pone.0039438.g005
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siRNA (lane 6 of both images in Fig. 5E). The ratio of top to low

band of PARP-1 in BJAB-RRV cells when treated with vFLIP

siRNA was reduced to 0.54, while 2.53 for the cells with control

siRNA. The result indicated that vFLIP was needed for apoptosis

inhibition. Treatment of normal BJAB cells with both siRNAs led

to a slight increase in PARP-1 cleavage after apoptosis induction.

The siRNA treatment of the BJAB cells without apoptosis

induction had no effect on PARP-1 level. This result suggested

that vFLIP could inhibit apoptosis via the autophagy pathway in

RRV-infected cells.

Discussion

Several c-herpesviruses contain vFLIP genes. However, not all

of the vFLIPs have similar functions. In this study, we found RRV

vFLIP is able to inhibit apoptosis via enhancing autophagosome

formation. Unlike KSHV vFLIP, RRV vFLIP cannot activate NF-

kB. A unique motif, PYQLT, was found in the second death

effector domain of KSHV vFLIP, and has the function of NF-kB

activation by directly binding to TNF receptor associated factor 2

(TRAF2) [29]. But the TRAF-interacting motif is not available in

RRV vFLIP, which may be the reason for failing to activate NF-

kB pathway.

A combination of TNF-a and cycloheximide was used to induce

apoptosis as either one of them was unable to induce apoptosis at

the concentrations used in this work. The cycloheximide sensitizes

the cells to undergo apoptosis induced by TNF-a [30,31]. The

activation of caspase 9 indicates that the intrinsic pathway was

activated by the apoptosis induction. We speculate that the

activation of the intrinsic pathway might be due to the

combination of the two compounds in inducing cross talk from

extrinsic pathway or the detection time after the induction. The

second point is less likely as we tested caspase activity in several

time points after the induction and a similar trend was observed.

Our finding of up-regulation of MnSOD in HeLa-vFLIP stable

cells is consistent with the activation of the intrinsic pathway.

MnSOD contributes to suppression of apoptosis through reducing

accumulation of intracellular superoxide to enhance cell survival

[32].

MnSOD gene expression in HeLa cells with RRV vFLIP

expression was elevated in the absence of NF-kB activation. This

finding suggests that the NF-kB pathway may not be the only

factor to control MnSOD expression, but other transcription

factors could also be involved in the regulation of this gene as well.

It was reported that p53 responds to physiological stress by

stimulating redox-controlling genes to reduce the ROS level [33].

The increase of the MnSOD transcript in HeLa cells with vFLIP

expression suggests that RRV vFLIP might employ other

transcription factors.

Expression of vFLIP in HeLa cells enhanced cell survival under

starved condition. Since nutrient deprivation induces autophagy

[34], extension of cell survival of HeLa-vFLIP cells indicates that

vFLIP suppresses autophagy. Autophagy is a multiple-step process

that begins with the formation of autophagosome-cytoplasmic

vesicles that have a double membrane and contain cytoplasmic

cargo, proceeds with fusion of autophagosomes with lysosomes to

become autophagolysosomes, and ends with degradation of the

contents in the autophagolysosomes. Enhancement of cell survival

under starved condition in HeLa-vFLIP stable cells prompted us to

determine autophagy before and after apoptosis induction.

Interestingly, we found that autophagosome formation was

increased in HeLa-vFLIP stable cells at early time points after

apoptosis induction. When autophagy was inhibited at either early

autophagosome formation by 3-MA or late autophagosome

degradation by ammonium chloride, vFLIP could no longer

protect the cells against apoptosis. The addition of ammonium

chloride at 8 h after apoptosis induction to inhibit autophagosome

degradation had less effect on the function of RRV vFLIP in

inhibition of apoptosis than earlier time points. The apoptosis

induction in HeLa cells is much more efficient in the presence of

ammonium chloride. Our result suggests that autophagy at early

time points after apoptosis induction is essential for RRV vFLIP to

protect the cells from apoptosis. Our data is consistent with

previous publications that explored both apoptosis and autophagy

pathways. For example, two colon-cancer-derived cell lines, colon

26 and HT29, significantly underwent apoptosis after the

combination treatment of 3-MA to inhibit autophagy and 5-FU

to induce apoptosis [35]. Likewise, MCF-7, a breast cancer cell

line, delayed apoptotic death following autophagy induction by

nutrient starvation [34]. Inhibition of the expression of Beclin 1

and Atg7 stimulates apoptosis in DNA-damaged MCF-7 cells.

LC3-II was present at a relatively higher level in cells with RRV

vFLIP expression than control cells even before apoptosis in-

duction (Fig. 4A&B). We speculate that RRV vFLIP induces

a basal level of autophagy to promptly respond to stress signals in

order to promote cell survival. The greater accumulation of

autophagosomes in HeLa-vFLIP stable cells is possibly due to

increased formation or slower turnover rate. The data in Fig. 4

indicates that greater autophagosome formation might account for

the increased level. Our data is consistent with previous

observations that autophagy delays apoptosis of cancer cells. It

has been reported that autophagy in MCF-7 cells due to nutrient

starvation delays apoptotic death induced by camptothecin,

a DNA-damaging compound [34]. Treatment with autopahgy

inhibitors increased mitochondrial depolarization and caspase-9

activity, resulting in apoptosis. RRV vFLIP promotes autophago-

some formation during early time points after apoptosis induction

to prevent apoptotic cell death.

Although autophagy is considered a mechanism to enhance cell

survival in adverse conditions, it is also classified as type II

programmed cell death due to accumulation of autophagosomes in

the cytoplasm under pathological conditions. It was reported that

FLIP inhibits autophagic cell death induced by rapamycin by

preventing Atg3 from binding and processing LC3 [20]. We found

that RRV vFLIP is also able to inhibit rapamycin-induced

autophagic cell death (unpublished observation), which is consis-

tent with other vFLIPs described in the previous report. However,

the enhancement of autophagosomes in HeLa-vFLIP stable cells

after apoptosis induction indicates that a different mechanism is

activated because vFLIP binding Atg3 inhibits autophagy. How

the RRV vFLIP activates other mechanisms while avoiding the

effect of interaction with Atg3 is not known. We speculate that

RRV vFLIP activates autophagy through interaction with

a cellular factor activated by apoptosis induction. The upregula-

tion of MnSOD in HeLa-vFLIP stable cells is consistent with this

speculation.

Since B lymphocytes are target cells in hosts in natural infection

of RRV, BJAB cells were latently infected with RRV to verify the

observation in HeLa cells with vFLIP expression. It has been

reported that RRV latently and persistently infected immortalized

B-cell lines [36]. The expression of the RRV vFLIP during latent

phase was verified by real-time RT-PCR and Western blotting.

Interestingly, BJAB cells with RRV latent infection resisted

apoptosis induction. Moreover, when autophagy was inhibited

with 3-MA or ammonium chloride, the BJAB cells with RRV

infection lose the ability to escape from apoptosis. Suppression of

vFLIP expression with siRNA leads to loss of the anti-apoptosis

effect in BJAB-RRV, which indicates that vFLIP is possibly the
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viral gene responsible for the anti-apoptosis function. The data in

BJAB cells is consistent with the observation in HeLa cells. There

are other genes in RRV, such as vBcl-2, that inhibit autophagy

and apoptosis. Our data indicates that these other genes may not

be involved in the protection of cells from apoptosis induction via

the autophagy pathway.

The exact mechanism for RRV vFLIP to enhance autophago-

some formation during early apoptosis remains unclear. The

autophagy pathway is implied to contribute in cell survival by cross

talking with the apoptosis pathway. Mitochondria membrane

permeabilization and cytochrome C release are a critical step

during apoptotic cell death. However, when the damage in

mitochondria is below the threshold required for apoptosis, the

damaged mitochondria will be sequestered in autophagosomes.

The autophagic process provides a source of metabolic energy in

the form of ATP from damaged organelles and long-lived proteins.

The effects of RRV vFLIP to enhance autophagy in apoptosis

induction and inhibit rapamycin-induced autophagic cell death

provide a great benefit to promote cell survival and prevent cell

death. Further study on the interaction of RRV vFLIP with

cellular factors is warranted and may yield informative data that

can be extrapolated to assist the management of KSHV-associated

malignancies.

In summary, our data show that RRV vFLIP inhibits apoptosis

via the enhancement of the autophagy pathway to promote cell

survival, while autophagic cell death is avoided. BJAB cells with

RRV latent infection resists apoptosis induction and, when

autophagy is inhibited, the apoptosis resistance disappears.

Suppression of vFLIP expression in RRV-infected BJAB cells

with siRNA also leads to loss of the apoptosis resistance, indicating

that vFLIP-mediated activation of autophagy signaling protects

the cells from apoptosis.

Materials and Methods

Cells and Viruses
Cell lines HeLa and HEK293 were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS). Transfection of the cells was accomplished

with GeneExpresso 8000 (Lab Supply Mall, Gaithersburg, MD) as

per the manufacturer’s instructions. Cell line RhF was a gift from

B. Damania [8] and maintained in DMEM supplemented with

10% FBS. RRV26-95 was a gift from R.C. Desrosiers [36] and

was propagated in RhF cells. BJAB cells were maintained in

RPMI1640 medium supplemented with 10% FBS. Stable HeLa

cells expressing CFP-LC3 have been described previously [28] and

were maintained in DMEM supplemented with 10% FBS and

G418 (Invitrogen, Carlsbad, CA) at 400 mg/ml.

Plasmids
RRV ORF71 gene was amplified by PCR from RRV DNA

isolated from culture supernatant of RRV-infected RhF cells. PCR

was conducted with primers R71F2 and R71R3 (Table 1) that

contain restriction sites for EcoRI and BamHI, respectively, for

directional cloning into a VenusN1 vector, as described previously

[37]. PCR product with primers R71F2 and R71R2 was cloned

into a VenusC1 vector. In VenusN1, ORF71 was cloned upstream

of Venus; whereas in VenusC1, it was cloned downstream of

Venus to confirm the vFLIP expression pattern. This resulted in

two recombinant plasmids that expressed the vFLIP-Venus fusion

protein after transfection.

The ORF71 gene was also amplified with primers R71F1 and

R71R1 (Table 1) that contain restriction sites for BamHI and

EcoRI, respectively, and was cloned into pGEX-3X vector for

prokaryotic protein expression and purification of vFLIP.

Construction of a CFP-LC3 plasmid has been previously

described [25,26]. Construction of mCherry-LC3 plasmid has

been recently described [28].

Protein Purification and Antibody Production
RRV vFLIP was expressed in BL21 E. Coli cells as a fusion

protein of vFLIP-GST from a pGEX-3X-vFLIP plasmid with the

induction of 1 mM IPTG (Promega, Madison, WI). The vFLIP-

GST fusion protein was purified by B-PER GST Fusion Protein

Purification Kits (Fisher Scientific, Pittsburgh, PA) according to

the manufacturer’s instructions. Purified vFLIP-GST fusion pro-

tein was used to immunize rabbits for vFLIP antibody preparation

(GenScript Corporation, Piscataway, NJ). Rabbit anti-vFLIP

antibody was purified from the antiserum by affinity-purification

with a CarboxyLinkTM Kit (Fischer Scientific), which was used to

covalently link purified vFLIP-GST fusion protein to agarose

beads. The vFLIP antibody was verified by detection of vFLIP

expressed in HeLa cells in Western blot analysis.

Confocal Fluorescence Microscopy
Cells were seeded directly onto cell culture plates containing

coverglass, incubated overnight, and transfected the next day. At

24 h post transfection, the coverglass was observed directly under

confocal fluorescence microscopy or fixed with 1% paraformal-

dehyde and mounted onto a slide with anti-fade mounting solution

containing 4969-diamidino-2-phenylindole (DAPI) (Invitrogen)

before observation.

Western Blot Analysis
Cells were transfected with either vFLIP expression plasmid or

empty vector. At 24 h post-transfection, the cells were harvested

with Laemmli sample buffer. Western blot analysis was conducted

as previously described [38]. Briefly, the whole proteins in cell

lysates were resolved in 12% polyacrylamide gel. The separated

proteins were transferred to nitrocellulose membrane and probed

with rabbit anti-vFLIP antibody. Any specific reaction was

Table 1. Primers used for ORF71 cloning and qPCR.

Primera Sequence (59 to 39)b Plasmid or qPCR

R71F1 GCGGATCCTGTTCCC
GCATAAGCGGTT

pGEX-3X

R71R1 GAGAATTCTTAACCGG
GTGCGTTGGCG

R71F2 GCGAATTCCATGTTCC
CGCATAAGCGGTT

VenusC1-R71

R71R2 GAGGATCCTTAACCGG
GTGCGTTGGCGG

R71F2 GCGAATTCCATGTTCCC
GCATAAGCGGTT

VenusN1-R71

R71R3 GAGGATCCGAACCGGG
TGCGTTGGCGGC

MnSOD-F1 GGAGAAGTACCAGGAGGCGT qPCR

MnSOD-R1 TAGGGCTGAGGTTTGTCCAG

Actin-F1 ATCGTGCGTGACATTAAG qPCR

Actin-R1 ATTGCCAATGGTGATGAC

aF, forward; R, reverse.
bRestriction sites of BamHI, XhoI and EcoRI included in the primers are italicized.
doi:10.1371/journal.pone.0039438.t001
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detected with goat anti-rabbit IgG conjugated with horseradish

peroxidase (Sigma, St. Louis, MO) and revealed by the addition of

chemiluminescence substrate. Chemiluminescence signal was

collected by a ChemiDoc XRS imaging system (Bio-Rad

Laboratories, Hercules, CA). Beta-tubulin was detected on the

same blot membrane to normalize protein loading. Digital image

acquisition and densitometry analyses were conducted by using

Quantity One program (Version 4.6) (Bio-Rad). Similarly,

expression of other proteins was detected with corresponding

antibodies: GST (Rockland Immunochemicals Inc., Gilbertsville,

PA), GFP, b-tubulin (Sigma), LC3 (Cell Signaling Technology,

Danvers, MA), NF-kB p65, and PARP-1 (Santa Cruz Bio-

technology, Santa Cruz, CA).

Stable Expression of vFLIP in HeLa Cells
HeLa cells were transfected with VenusN1-vFLIP and the cells

containing the plasmid were selected in medium supplemented

with G418 (Invitrogen) at 400 mg/ml. Fluorescence-activated cell

sorting was conducted to enrich cells with GFP expression. Sorted

cells were plated and cultured to expand the cell population.

Sorting and expansion were repeated three times to enrich and

stabilize the cells with GFP expression. The expression of vFLIP

was confirmed with Western blot analysis using rabbit anti-vFLIP

antibody. The stable HeLa cells were stored in a liquid nitrogen

container and used in this study.

Apoptosis Induction
Tumor necrosis factor-a (TNF-a) (R&D Systems, Minneapolis,

MN) and cycloheximide (Sigma) were added to cells at final

concentrations of 50 ng/ml and 2.5 mg/ml, respectively, to induce

apoptosis. The cells were harvested at different time points after

apoptosis induction for RNA isolation or Western blot analysis, as

indicated. Either TNF-a or cycloheximide alone at their respective

concentrations used in this study cannot induce apoptosis. To

inhibit the autophagosome formation step in autophagy, cells were

treated with 3-methyladenine (3-MA) (Fisher) at a final concen-

tration of 10 mM for one hour before apoptosis induction. To

interrupt fusion and degradation of autophagosomes in lysosomes,

cells were treated with ammonium chloride (NH4Cl) (Fisher) at

a final concentration of 20 mM at 4, 6, and 8 h after apoptosis

induction. At 10 h after apoptosis induction, the cells were

harvested for Western blot analysis.

Cell Viability Assay and Caspase Activity Detection
Cell viability was determined with CellTiter-Glo Luminescent

Cell Viability Assay (Promega). Briefly, cells were cultured in a 96-

well plate and CellTiter-Glo reagent was added and incubated for

10 minutes at room temperature. The luminescence signal was

measured with a VICTOR3 Multilabel Counter (Perkin-Elmer,

Waltham, MA). Relative percentages of luminescence intensity

were calculated by comparison to mock-treated controls.

Activities of caspase-3, -7, -8, and -9 were detected with

Caspase-Glo 3/7, Caspase-Glo 8, and Caspase-Glo 9 Assay kits

(Promega). Caspase-Glo reagent was added to the cells and

incubated for 30 minutes at room temperature. The luminescence

signal was measured and relative percentages of luminescence

intensity were calculated in comparison to controls.

For nutrient deprivation, the cells were seeded into 12-well

culture plate and incubated overnight at 37uC. On the next day,

the culture medium was replaced with Hank’s balanced salt

solution (HBSS). The cells were either observed under a micro-

scope or harvested for cell viability assay at 0, 24, and 48 h after

the HBSS addition.

Real-time PCR
Total RNA was isolated from cells lyzed in TRIzol reagent

(Invitrogen). For real-time PCR analysis, RNA was first treated

with RNase-free DNase (Promega) to remove carryover DNA

from the RNA isolation procedure. Reverse transcription was

carried out using AMV (avian myeloblastosis virus) reverse

transcriptase and random hexamers (Promega). Real-time PCR

primers that were used in this study were listed in Table 1. Real-

time PCR with SYBR Green detection (Bio-Rad) was performed

as previously described [39]. The actin transcript was also

amplified from the same samples as an internal control for

normalization. The gene expression levels in vFLIP-expressing

cells were quantified via the 22DDCT method in comparison with

a vFLIP-negative control [40].

NF-kB Reporter Assay
HeLa cells were co-transfected with a pGL4.32[luc2P/NF-kB-

RE/Hygro] Vector (Promega) containing a NF-kB response

element and either VenusN1-vFLIP or VenusN1 empty vector.

VenusC1-vFLIP and empty VenusC1 vector were also used in this

assay. Plasmid pRL-TK (Promega) was included as an internal

control vector for all transfections. A prokaryotic vector pGEX-3X

was used as a negative control. TNF-a was added to a few wells at

a final concentration of 50 ng/ml at 24 h after transfection as

a positive control for NF-kB activation. Dual-Glo Luciferase Assay

System (Promega) was used to detect luciferase yield in the cells at

4 h after TNF-a addition following the manufacturer’s instruc-

tions. Relative folds of luciferase yields in the samples were

calculated in comparison to a negative control.

Subcellular Fractionation
Nuclear fraction was extracted from normal HeLa and HeLa-

vFLIP stable cells using the CelLytic NuCLEAR Extraction Kit

(Sigma). Cell collection, lysis, and subcellular fractionation were

performed following the manufacturer’s instructions. The nuclear

and cytoplasmic fractions were subjected to Western blot analysis.

Antibodies against b-tubulin and PARP-1 were used to assess the

fractionation efficiency.

Preparation of siRNA and Transfection of BJAB Cells
The siRNA used in this study was designed with siRNA Target

Designer (Version 1.6, Promega) and synthesized with the T7

RiboMAExpress RNAi System (Promega). The sequence of siRNA

against RRV ORF71 is 59 GCTGGAGGCCGTGTTTCTC 39.

The efficiency of the siRNA against RRV ORF71 was tested in

HEK293 cells transfected with VenusN1-vFLIP plasmid. Trans-

fection of HEK293 cells with siRNA was accomplished with

CodeBreaker siRNA Transfection Reagent (Promega) as instructed

by the manufacturer. An irrelevant siRNA (59 GAAATTACTG-

CACCTCGCC 39) was used as a negative control. The BJAB cells

were transfected with siRNA by using CodeBreaker siRNA

Transfection Reagent. At 24 h post-transfection, the cells were

harvested or treated for further analysis, as indicated in text.

Statistical Analysis
A single factor pair-wise ANOVA statistical analysis was used to

evaluate the significance in differences between levels of test

parameters in the presence or absence of vFLIP. A two tailed P-

value of less than 0.05 was considered significant.
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