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ABSTRACT A method is given for determining the time
course and spatial extent of consistently and transiently task-
related activations from other physiological and artifactual
components that contribute to functional MRI (fMRI) record-
ings. Independent component analysis (ICA) was used to analyze
two fMRI data sets from a subject performing 6-min trials
composed of alternating 40-sec Stroop color-naming and control
task blocks. Each component consisted of a fixed three-
dimensional spatial distribution of brain voxel values (a ‘‘map’’)
and an associated time course of activation. For each trial, the
algorithm detected, without a priori knowledge of their spatial or
temporal structure, one consistently task-related component
activated during each Stroop task block, plus several transiently
task-related components activated at the onset of one or two of
the Stroop task blocks only. Activation patterns occurring dur-
ing only part of the fMRI trial are not observed with other
techniques, because their time courses cannot easily be known in
advance. Other ICA components were related to physiological
pulsations, head movements, or machine noise. By using higher-
order statistics to specify stricter criteria for spatial indepen-
dence between component maps, ICA produced improved esti-
mates of the temporal and spatial extent of task-related activa-
tion in our data compared with principal component analysis
(PCA). ICA appears to be a promising tool for exploratory
analysis of fMRI data, particularly when the time courses of
activation are not known in advance.

Univariate methods for the analysis of functional MRI (fMRI)
data typically examine each brain volume element or voxel
individually, to determine whether the activity level at that
voxel reaches a prespecified criterion for task-related activity.
A common criterion is a predetermined level of significance
for a statistic, such as the Student t (1) or Kolmogorov–
Smirnov (2) statistic, under the null hypothesis that the dis-
tribution of a voxel’s values during the behavioral control task
is identical to that during performance of the experimental
task(s). Correlational analysis (3) determines whether the
similarity between a voxel’s time course and a prediction of the
task-related modulation, the reference function, exceeds a
specified threshold. These methods then assemble individually
selected (or ‘‘active’’) voxels, ignoring statistical relationships
between voxels, to create a spatially distributed map demon-
strating areas of significant activation.

To enhance the statistical power of standard analysis tech-
niques based on correlation or univariate statistical tests,
fMRI experimenters often use alternating task-block designs
in which the subject performs two or more tasks successively

in alternating 20- to 40-sec blocks. By averaging over a number
of task-block cycles, small consistently task-related (CTR)
differences in hemodynamic activation can be detected. Iso-
lated stimulus paradigms, such as that employed by Buckner et
al. (4), avoid overlapping hemodynamic responses produced by
more rapid stimulus presentation rates, but interpretation of
the responses still involves averaging responses over many
different stimulus presentations.

Averaging over task blocks or individual stimuli assumes
stationarity of brain responses and reduces the sensitivity of fMRI
analyses to changes in brain activation occurring during only one
or more portions of a trial (5). Such transiently task-related
(TTR) activations potentially may arise from shifts in subject
performance strategy, from variations in subject arousal, atten-
tion, or effort, or from changes in brain activation produced by
learning or habituation. It is desirable, therefore, to find tech-
niques for analyzing fMRI data that do not involve averaging over
trials or blocks and that are capable of detecting TTR activations.

Determining the spatiotemporal extent of transiently or
consistently task-related activations by invariate techniques is
also problematic because treating each voxel independently
ignores relationships between voxels and, hence, between
brain regions. Even when activities of voxels in a spatially
distributed group individually meet a certain criterion, it
cannot necessarily be inferred that the group forms a single
processing area. For example, it is possible that the time
courses from two voxels each may be both correlated with the
reference function for a task above a given threshold, yet be
uncorrelated with each other. Complementary multivariate
techniques attempt to circumvent this problem by extracting
the spatial and temporal structure of distributed brain systems
that sum to the measured fMRI signals.

One such technique, principal component analysis (PCA), is
commonly used for data decomposition and dimension reduction
(6). PCA measures the covariance between all pairs of voxels and
then finds the orthogonal spatial maps, or eigenimages, that
capture the greatest variance in the data. The first eigenimage
represents the combination of voxels explaining the largest source
of variance between pairs of voxels, the second eigenimage
represents the largest source of residual variance orthogonal to
the first eigenimage, and so on. The measured fMRI signals thus
can be parsimoniously summarized by projecting them onto a
reduced set of the eigenimages, usually those capturing a prede-
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termined amount (e.g., .95%) of the variance in the data.
However, because performance-related fMRI changes are only a
small part of total signal variance, projecting the data onto
orthogonal eigenimages capturing the greatest variance in the
data may prove ill-suited for detecting task-related activations. In
addition, if these involve activations of numerous voxels simul-
taneously, analysis methods based solely on voxel-pair relation-
ships may not accurately detect the full spatiotemporal extent of
the activations.

A decomposition method suitable for detecting task-related
activations should be consistent with fundamental neurophys-
iological principles regarding the spatial extent of neural
activity during the performance of psychomotor tasks. The
principle of localization (7) implies that each psychomotor
function is performed in a small set of brain areas, different for
each function. This is based on a large body of empirical
knowledge correlating psychomotor deficits with regions of
cerebral damage, for example, the characteristic language
deficits seen after damage to Wernicke’s and Broca’s areas.

We assume that an appropriate goal for the decomposition
of fMRI data into cognitively and physiologically meaningful
components is the determination of separate groups of mul-
tifocal anatomical brain areas that are coactivated during the
acquisition of the fMRI slices throughout the experimental
trial. Artifacts secondary to subtle movements (8), machine
noise (9), and cardiac and respiratory pulsations (10), which
may make up the bulk of variability in the measured fMRI
signals, should have spatial patterns of activity separate from
the localization of brain areas involved in task-related activa-
tion. Specifically, with such a model, each fMRI scan can be
considered the sum of a mean activity level at each time point
plus activations (or suppressions) belonging to one or more
spatially independent components. Each individual compo-
nent may be described by a graded spatial distribution or map
and an associated time course of activation.

Here we use a recently developed statistical technique,
independent component analysis (ICA) (11, 12), to determine
the three-dimensional brain topographies and time courses of
activations associated with spatially independent components
that together sum to the measured fMRI signals recorded
during the performance of a Stroop color-naming task. Our
results suggest that ICA can be used effectively to isolate the
spatiotemporal extent of both consistently and transiently
task-related activations from artifacts and other sources of
variability that comprise the fMRI signals.

Independent Component Analysis

Separating fMRI data into independent spatial components
involves determining three-dimensional brain maps and their
associated time courses of activation that together sum to the
observed fMRI data. The primary assumption is that the
component maps, specified by fixed spatial distributions of
values (one for each brain voxel), are spatially independent.
This means that, if pk(Ck) specifies the probability distribution
of the voxel values Ck in the kth component map, then the joint
probability distribution of all N components factorizes:

p~C1, C2, . . . , Cn! 5 P
k51

N

pk~Ck!. [1]

This is equivalent to saying that voxel values in any one map
do not convey any information about the voxel values in any of
the other maps. This is a much stronger criterion than merely
assuming that map values of voxel pairs from different com-
ponents are uncorrelated, i.e.,

CizCj 5 O
k51

M

CikCjk 5 0, for all components i ° j, [2]

where M is the number of voxels and Cij is the jth value in the
ith component map. This is because Eq. 1 implies that higher
order correlations, or polynomial sums of map voxel values, are
also zero. For example, for two maps,

O
k51

M

Cik
p Cjk

q 5 0 [3]

for all natural numbers p and q.
With these assumptions, fMRI signals recorded from one or

more sessions can be separated by the ICA algorithm of Bell
and Sejnowski (11, 12) into a number of independent compo-
nent maps with unique, associated time courses of activation.
Assuming that the data are mixtures of spatially independent
components, the algorithm determines an unmixing matrix, W,
from which the component maps and time courses of activation
can be computed (see Appendix). The matrix of component
map values, C, can then be computed by multiplying the
observed data by W,

Cij 5 O
k51

N

WikXkj, [4a]

where X is the (row mean-zero) N by M fMRI signal data
matrix (N, the number of time points in the trial, and M, the
number of brain voxels) obtained by removing the mean signal
level from each time point. In matrix notation, this simplifies
to:

C 5 WX. [4b]

Noise in the data is not explicitly modeled, but instead is
included in one or more of the components. The number of
components determined by the algorithm is equal to the
number of input time points in the data. Note that although a
nonlinear function is used in the determination of W (de-
scribed in the Appendix), W still provides a linear decompo-
sition of the data.

To determine whether a given component map is influenced
by its requirement to be spatially independent of other maps,
the data may be reconstructed with one or more of the
components removed and the resultant data matrix may be
separated again by using the ICA algorithm (see Appendix).

Methods

A subject volunteer participated in two 6-min trials of a Stroop
color-naming task. Each trial consisted of five 40-sec control
blocks alternating with four 40-sec experimental task blocks. A
1.5 T General Electric Signa MRI system was used to monitor
brain activity by using blood oxygen level-dependent (BOLD)
contrast. Ten 64 3 64 echo planar, gradient-recalled (TR 5
2,500 msec, TE 5 40 msec) axial images (5-mm thick, 1-mm
interslice gap) with a 24-cm field of view were collected at
2.5-sec sampling intervals, corresponding to 146 images for
each slice.

Stimuli spanning a visual angle of 2° by 3° were presented
one at a time by overhead projector onto a screen placed at the
base of the magnet. In control blocks, the subject was simply
required to covertly name the color of a displayed rectangle
(red, blue, or green). During experimental Stroop-task blocks,
the subject was required to covertly name the discordant color
of the script used to print a color name. For example, if the
word ‘‘green’’ was presented in blue script, the subject was to
covertly ‘‘say’’ the word ‘‘blue’’ without vocalizing or activating
the muscles of articulation.

Voxels corresponding to active brain regions were deter-
mined by examining their mean signal values. These were
found to have a bimodal probability distribution. The local
minimum between the two peaks of a third-order polynomial
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fitted to the voxel mean-value histogram determined a cutoff
value. Voxels with mean signal values above the cutoff value
were assumed to represent active brain signals. Voxels with
weaker signal means were found to be almost exclusively
outside the head and therefore were eliminated from subse-
quent analyses.

Data were temporally smoothed by using a three-point filter
based on a Hanning window (2). The three points were shifted
along the window by 250 msec for each successive slice to
decrease the time misalignments induced by the successive
250-msec acquisition delays between slices. For each time
point, the filtered BOLD signals from all brain voxels were
placed into a row of the data matrix after subtracting the mean
voxel value for the time point from each voxel.

An ICA algorithm (11, 12) was applied separately to the data
matrix from each of the two trials (see Appendix). Around 60
min on an Alphaserver 2100 (Digital Equipment Corporation,
Maynard, MA) was required for convergence. For comparison,
the eigenimages from each trial were determined by using
standard PCA techniques, along with their associated time
courses. To explore the effects of higher-order statistics on
determining uncorrelated spatial maps, the fourth-order cu-
mulant ICA technique proposed by Comon (13), computa-
tionally more expensive than the ICA algorithm (around 390
min of computer time to analyze one trial), was also used to
find partially independent maps and associated time courses.

The computed ICA component maps were read into the
functional neuroimaging display program MCW AFNI (14) for
display and registration with structural T1-weighted MRI
brain images for the subject.

Convolving the task block design with a 7.5-sec-long rect-
angular function (to take into account the lags caused by the
hemodynamic response) created a task reference function. The
reference function was then correlated with the time courses
of the individual voxel time courses and the ICA and PCA
components.

To display voxels contributing most strongly to a particular
component map, the values in each map were scaled to
z-scores. Voxels with absolute z-scores greater than some
threshold (e.g., uzu . 2) were considered to be the ‘‘active’’
voxels of that component. Negative z-scores indicate voxels
whose BOLD signals are modulated opposite to the given time
course of activation for the component. (Here, z-scores are
used only for descriptive purposes and have no particular
statistical significance).

Results

The application of ICA to a 6-min Stroop trial produced 144
component maps and their associated time courses. Some spatial
ICA component maps contained multifocal groupings of active
voxels, whereas others, typically those explaining the least vari-
ance in the data, had diffuse, noise-like, or ‘‘speckled’’ spatial
distributions. All component maps had a super-Gaussian distri-
bution of voxel values, i.e., having more values around zero and
longer tails compared with a Gaussian distribution of the same
variance, resulting in sparse maps after thresholding. Some
components were slowly varying, quasi-periodic with a period of
;12 sec, or had sharp changes in their time courses or ring-like
spatial distributions suggesting head movements (Fig. 1). These
will be described in more detail elsewhere.

Only one component from each trial had a CTR time course
closely matching the reference function for the trials (r 5 0.92
and 0.68) (Fig. 2). In contrast, many principal components had
projections that were somewhat correlated with the reference
function. The principal components whose projections most
correlated with the reference function (r 5 0.46 and r 5 0.45)
differed both spatially and temporally with the ICA CTR
component (Fig. 2). The fourth-order cumulant technique for
ICA proposed by Comon (13) provided one component in

each trial whose time course was correlated to the reference
function (r 5 0.85 and 0.71) almost the same as that found by
the Bell and Sejnowski algorithm for ICA (Fig. 2).

The right column of Fig. 3 superimposes the four 80-sec task
cycles of the ICA CTR component for both Stroop trials.
Several details of the shape of CTR-component activation
were reproducible across experimentalycontrol blocks (Fig. 3).
The bottom right plot shows the mean of the eight CTR
component task-cycle activations in the two trials, superim-
posed on one cycle of the reference function. Note that the
mean time course of activation was not precisely predicted by
the reference function. The CTR component time course
suggested that the true hemodynamic response or brain acti-
vation during each 40-sec Stroop task block was not constant,
but tended to decline after 20 sec on task, and had an
unexpectedly long (8-sec) rise time.

Active voxels of these CTR components highly overlapped
areas deemed active by standard correlation methods (to be
reported elsewhere). Both methods detected activation in
Brodmann’s areas 18 and 19 (not involving the calcarine
fissure) and in the supplementary motor area and cingulate
system. In each of the trials, the ICA method also detected
CTR activation in frontal areas including left dorsolateral
prefrontal cortex.

In both trials, separating the fMRI data into independent
spatial components also produced several components that
appeared TTR (Fig. 4). Most often, these showed a marked
activation at the onset of one or two of the four Stroop task
blocks, especially the first and second blocks (Figs. 1b and 4,
in trial 1 ) or the second and third blocks (in trial 2). In contrast
to the CTR components, the most active areas of the TTR
components were largely frontal, implying that frontal Stroop
task-related activations differed in strength and spatial distri-
bution during and across trials.

Component Removal. To explore whether the TTR com-
ponents were affected by the ICA requirement that their
spatial distributions be independent of the map voxel values of
each other and the CTR component, the CTR component was
removed from the first trial by using the method described in
the Appendix. The resulting reduced-rank data set was then
decomposed by ICA applied to eigenimages of the first 100
eigenvectors (explaining 99.99% of data variance).

Removal of the CTR component had varying effects on the
recomputed independent component maps. For example, Fig. 5
shows a scatter plot comparing the map voxel values of a
suspected artifact (head movement) component in the two ICA
decompositions (i.e., before and after the removal of the CTR
component using the method outlined in the Appendix). The two
spatial distributions are highly similar (r 5 0.9), suggesting the
removal of the CTR component had a minimal effect on the
spatial distribution of this component. Similarly, comparisons of
map voxel values before and after CTR removal revealed minimal
effects on a quasi-periodic component (r 5 0.97) and a slow head
movement component (r 5 0.82).

Fig. 6a shows a TTR component (Lower Left) whose active
area overlapped significantly the active area of the CTR
component (Upper). Re-analysis of the data set into spatially
independent components with the CTR component removed
(Lower Right) yields a component task-related to the second
Stroop block, but with mesial frontal active areas. A scatter
plot comparing the map voxel distributions of the TTR com-
ponents before and after the removal of the CTR component
reveals significant differences in the component maps ( Fig. 6b,
r 5 0.23).

Simulations. A simulation was performed to test the effect
of component removal on linearly mixed, spatially indepen-
dent, and spatially dependent activations. Three simulated
activations (one CTR and two TTR) were added to the data
from the first trial in brain regions with specified distributions
DCTR, DTTR1, and DTTR2 (Fig. 7 Upper). The DCTR (posterior)
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FIG. 1. Different classes of components detected by ICA decomposition of Stroop task fMRI data. (red, z $ 2.0; blue, z # 2.0). Negative z values
mean those voxels are activated opposite to the plotted time course. (a) Consistently task-related (CTR) component. (b) Transiently task-related
(TTR) component. The dotted line shows the time course of the consistently task-related component for comparison. (c) Slowly varying,
non-task-related component. The active region for this component was mostly localized to the ventricular system. The lower line shows the mean
time course of the active voxels for this component. (d) Quasi-periodic component. This component was largely active in a single slice and had
a dominant period of about 12 sec. The spatial distributions of such components were highly reproducible between trials. (e) Suspected abrupt head
movement. Note abrupt change in time course, suggesting an abrupt head movement. ( f) Component with a ‘‘ring-like’’ spatial structure is suggestive
of a head movement.
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and DTTR1 (frontal) distributions were highly overlapped for
all but the most highly active voxels (Fig. 7). The DTTR2

(parietal) was independent from the other two distributions.
An ICA decomposition was performed both before and after
removal of DCTR by using the method outlined in the Appendix.

ICA decomposition on the data including the simulated acti-
vations recovered three components (Fig. 7b) with time courses
similar to the added signals. The separated spatial component
voxel values (scaled to z-scores) correlated 0.92, 0.54, and 0.99,
respectively, with the original simulated distributions DCTR,
DTTR1, and DTTR2. Re-computation of the maps after removal of
the CTR component with the method outlined in the Appendix
resulted in a more accurate separation of the original distributions
(r 5 0.97 and 0.99 with DTTR1 and DTTR2, respectively). Com-
ponent TTR2 (parietal), with a different spatial distribution to
CTR, was largely unaffected by the removal of the CTR com-
ponent (Fig. 7 b and c). Conversely, TTR1, which significantly
overlapped with CTR, was recovered more accurately after CTR
removal (Fig. 7c).

Discussion

The Stroop color-naming task has long been used for the
assessment of patients with closed head injury and frontal lobe
lesions (15, 16). Although the brain region affected in closed
head injury is typically diffuse, frontal lobes and particularly
orbitofrontal cortex are most often affected. Previous PET
studies of Stroop task performance reported occipital and
medial frontal activation (17). The active participation of
frontal areas in the CTR components found by ICA for both
Stroop task trials confirm the association of Stroop task
performance with frontal activation in this subject. An ICA
analysis of data from two other subjects, reported elsewhere

FIG. 2. Comparison of three linear models for analyzing fMRI
data. PCA and two versions of ICA were used to linearly separate the
data into partially spatially independent maps. The most consistently
task-related component determined by each of the three methods
from the first trial are shown, along with the correlation coefficient
between the associated time courses and the reference function for the
behavioral experiment. The ICA algorithm components resembled the
task reference function much more strongly than the most highly
correlated PCA components.

FIG. 3. ICA separated one CTR component for each of the two
trials. The right column superimposes the four controlytask blocks in
each trial on the linearly detrended CTR component. The mean of all
eight component activations is shown at the bottom of the right
column, superimposed on one cycle of the expected task reference
function.

FIG. 4. Examples of activations TTR to the task block design. The
CTR component is shown with a dotted line. Bolded portions indicate
time periods when TTR activations appear task-related.

FIG. 5. A scatter plot comparing the map voxel values of a
suspected artifact (head movement) component before and after
removal of the CTR component. Map voxel values are scaled to
z-scores. Note the reproducibility of map voxel values for both the
highly active and less-active voxels in each map. Voxel values before
CTR removal are shown on the abscissa.
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(18), was similar. As expected, visual and visual-association
areas dominated the active maps of these components. Several
features of the time course of the CTR components, including
a longer than expected rise time and a trend toward decreasing
activation during the second half of each 40-sec Stroop block,
were similar in each task block. These features differed from
the task reference function used in correlation analyses.

In both trials, separating the fMRI data into independent
spatial components also produced several components that
appeared TTR. Most often, these showed a marked activation
at the onset of one or two of the four Stroop task blocks,
especially the first and second blocks (Figs. 1b and 4, in trial
1) or the second and third blocks (in trial 2). The most active
areas of the TTR components contained large frontal regions
(Fig. 1b), implying that frontal Stroop task-related activations
differed in strength and spatial distribution between task
blocks. Analysis methods involving averaging over task blocks
or trials to detect CTR areas of activation necessarily ignore
the possibility of TTR activations, although these may poten-
tially be of considerable interest. Changes in the amount and
distribution of frontal activation during cognitive performance
reported in several previous PET and fMRI studies have been
linked to changes in stimulus novelty (19), verbal f luency (20),
verbal suppression (21), working memory (22), visual–spatial
attention (23), and language processing (24), all of which may
be involved in Stroop task performance.

Our exploratory results suggest that ICA can be used to
discover both transient andyor consistently appearing activa-
tions, without requiring either their general or precise time
courses to be known in advance of the analysis. In particular,
details of the time courses of task-related activations found by
ICA for our data were unanticipated and might be expected to
differ between subjects. Unlike correlational methods, ICA
considers all time points individually, without requiring aver-
aging across stimuli or task blocks (5). For these data, as few
as 50 time points seemed sufficient to detect details of the CTR

and TTR components. Fewer time points would result in fewer
components separated by the ICA algorithm, requiring the
noise inherent to the data being distributed among the fewer
components. Thus, ICA has several advantages compared with
other methods of fMRI analysis including correlation and
statistical parametric mapping (SPM) (25), in which the time
courses andyor spatial extents of anticipated effects must be
modeled explicitly before analysis.

To test whether the segregation into occipital CTR and
frontal TTR components was in part a consequence of the
spatial independence criterion used by the algorithm, we
removed the CTR component from the data. ICA decompo-
sition of this new data set gave several TTR components with
both frontal and occipital active areas, but left maps unrelated
to task activation relatively unaffected (e.g., a component
capturing an apparent head movement artifact, Fig. 5). This,
coupled with the simulation results, lends support to the
original supposition that the spatial patterns of task-related
brain activation are spatially independent from the spatial
patterns of activity related to artifacts and other physiological
processes. Spatial independence of task-related changes from
artifact can also be inferred from the observation that the CTR
maps had time courses more closely related to the task
reference function as stricter criteria for independence be-
tween map voxels were applied, from PCA (second order),
Comon’s ICA technique (fourth order), to the higher-order
ICA algorithm used here (Appendix). However, the fact that
some TTR maps were altered by removal of the CTR com-
ponent suggests that there is some spatial dependence between
these task-related components. Further work is needed to
determine more clearly the ways in which CTR component
removal affects TTR components, as well as methods for
assessing the reliability of ICA maps and time courses.

Conclusions

ICA is a new method for analyzing fMRI that is able to
separate task-related activations from artifactual and other

FIG. 6. (a) A marked effect on a TTR component of removing the CTR component. The CTR component for trial 1 (Upper) had areas of
activation in predominately posterior regions. The same ICA decomposition revealed TTR activation during the second experimental block (blue
rectangle) whose map voxel distribution was constrained by the algorithm to be independent to the CTR component (Lower Left). Application of
ICA after the removal of the CTR component (by Eqs. 11–18) again revealed a TTR component with strong mesial frontal activation (Lower Right).
(b) Scatter plot showing the effects of removal of the CTR component on a TTR component. Here, CTR-component removal had a significant
effect on the map voxel values, in contrast to Fig. 5. Yellow voxels denote activation with the time course shown, and blue voxels denote suppression
with the same time course.
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physiological f luctuations in the fMRI signal, including tran-
sient brain activity. ICA does not make assumptions about the
time courses or spatial extent of activations, and thus appears
to be well suited for the detection of both consistently and
transiently task-related brain activations as well as separating
out artifactual and other physiological processes from fMRI
data (8–10). Possibly the greatest promise lies in its potential
for separating and measuring multiple neurophysiological
processes taking place during learning or other normal and
abnormal brain state transitions whose time courses are dif-
ficult to predict or measure by other means.

Technical Appendix

The Extended Independent Component Analysis (ICA) Al-
gorithm. Bell and Sejnowski (10, 11) have proposed a simple
neural network algorithm for performing ICA. The algorithm
iteratively finds a linear transformation, W, that minimizes the
statistical dependence between components:

C 5 WX 5 WHWSX, [5]

where WS, the ‘‘sphering matrix,’’ is defined,

WS 5 2~ÎXXT!21 [6]

and X is the (row mean-zero) N by M fMRI signal data matrix
(N, the number of time points in the trial, and M, the number
of brain voxels) obtained by removing the mean signal level
from each time point. The sphering matrix makes the maps
uncorrelated, whereas WH reduces the higher-order correla-
tions between the component maps contained in the rows of
C.

Unless otherwise specified, we define W as WHWS. The
algorithm attempts to maximize the entropy H() of y, a
nonlinear transform by a specified function g() of the com-
puted map matrix. It does this by iteratively updating the
elements of WH by using small batches of data vectors drawn
at random from {WSX} without substitution, according to

DWH 5 «SH~y!

WH
DWH

T WH 5 «~I 1 ŷCT !WH, [7]

where « is a small learning rate and the vector ŷ is composed
of elements:

ŷi 5


Ci
lnS y

Ci
D . [8]

The WH
T WH term in Eq. 7 avoids matrix inversion and speeds

convergence. During training, the learning rate is reduced
gradually until the weight matrix WH stops changing apprecia-
bly.

The form of the nonlinearity g() plays an important role in
the success of the algorithm. The ideal form for g() is the
cumulative density function (c.d.f.) of the distributions of the
voxel values in the component maps. In practice, if we choose
g() to be a logistic sigmoid function g(C) 5 (1 1 exp(2C))21,
as in ref. 11, the algorithm is limited to separating sources with
super-Gaussian distributions, but is otherwise relatively insen-
sitive to the exact probability distributions of the component
maps. For this choice of g(), ŷ 5 1 2 2 y.

The ICA learning rule has been extended to components
with either sub- or super-Gaussian distributions (26) by ap-
proximating the estimated probability density function (p.d.f.)
by a fourth-order Edgeworth approximation, as derived by
Girolami and Fyfe (27), giving

DWH 5 «
H~y!

WH
WH

T WH

5 «@I 2 sign~K4!tanh~C!CT 2 CCT #WH, [9]

where K4 is the diagonal matrix of kurtosis values for the
computed component map value distributions C, defined by,

K4ii
5 H 1

M O
l51

M SCil 2 Ci

sCi
D 4J 2 3. [10]

Intuitively, for super-Gaussian components (K4 . 0), the
(sign(K4)) term is an anti-Hebbian rule that tends to push the
probability density of C toward sparse distributions, whereas
for sub-Gaussians (K4 , 0), the corresponding term is a
Hebbian rule that tends to push the densities of C toward
sub-Gaussian distributions.

Component Removal. Removal of one or more compo-
nent(s) can be accomplished by

Xa 5 Wa
21 WX [11]

where Wa21 is the inverse of W with columns corresponding to
the component(s) to be removed subsequently set to zero, and
Xa is the reconstructed data with the given component(s)
removed.

Matrix Xa in Eq. 11 will now be of reduced rank and cannot
be separated by the ICA algorithm. Using principal component
analysis (PCA) to reduce the dimension of Xa averts this
problem:

Ap 5 Vp
T Xa, [12]

where Vp is n by p (p , n) matrix whose columns are the unit
length eigenvectors of the covariance matrix, ^Xa Xa

T&, corre-

FIG. 7. Simulation depicting the effects of removal of an ICA
component on subsequent ICA decomposition. (a) Three simulated
activations with different spatial distributions were added to the data
set from the first trial. Two of the simulated distributions were highly
overlapping for all but the most highly active voxels in anterior and
posterior regions (illustrated voxels). The simulated parietal distribu-
tion was independent from the other two distributions. (b) After
spatial ICA decomposition, the spatial component voxel values for
three of the ICA components correlated 0.92, 0.54, and 0.99, respec-
tively, with the distributions of the simulated activations. (c) Removal
of the CTR component and reanalysis by ICA resulted in a more
accurate separation (r 5 0.97) of the least-well-separated distribution
(frontal). The separated parietal distribution was largely unaffected by
CTR removal (r 5 0.99).

Colloquium Paper: McKeown et al. Proc. Natl. Acad. Sci. USA 95 (1998) 809



sponding to the p largest eigenvalues, Vp
T is transpose of Vp, and

Xa is calculated from Eq. 10. Ap is a now smaller but full-rank
matrix of eigenimages of Xa. The number p may be taken as the
number of eigenvectors required to explain a predetermined
proportion of the variance in the original data (e.g., .99%).
ICA decomposition of the resulting eigenimages, Ap, gives,

Ca 5 WE Ap, [13]

where Ca is the p by n matrix of component maps, and WE is
the computed unmixing matrix.

Substituting for Ap from Eq. 11 gives:

Ca 5 WEVp
T Xa [14]

or

WE
21Ca 5 Vp

T Xa [15]

whence

VpVp
T Xa 5 VpWE

21Ca [16]

giving

Xa 5 VpWE
21Ca, [17]

since VpVpT 5 I because eigenvectors are mutually orthogonal.
Finding the p time courses (of length n) associated with each
of the p maps can now be determined by examining the
columns of the matrix,

VpWE
21. [18]
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