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Purpose: The adenosine A2A receptor (A2AR) modulates collagen synthesis and extracellular matrix production in ocular
tissues that contribute to eye growth and the development of myopia. We aimed to determine if single nucleotide
polymorphisms (SNPs) in A2AR exons associates with high myopia found in Chinese subjects.
Methods: DNA samples were prepared from venous lymphocytes of 175 Chinese subjects with high myopia of less than
–8.00 diopters (D) correction and 101 ethnically similar controls with between –1.00 D and +1.00 D correction. The coding
region sequences of A2AR were amplified by PCR and analyzed by Sanger sequencing. The detected variations were
confirmed by reverse sequencing. Allelic frequencies of all detected common SNPs were assessed for Hardy–Weinberg
equilibrium.
Results: Five variations in A2AR exons, 5675 A>G, 5765 C>T, 13325 G>A, 13448 C>T, and 14000 T>A, were detected
in controls at a low frequency (<1%). However, one SNP, 13772 T>C (rs5751876), showed its polymorphism in 53.3%
of the total study population. The rs5751876 is a synonymous substitution located in a tyrosine codon of exon 2. Despite
no significant difference in genotype distribution between cases and controls, the frequency of heterozygotes with the
rs5751876 genotype was significantly lower in subjects with high myopia.
Conclusions: The reduced frequency of the heterozygote rs5751876 genotype in subjects suggests a possible association
of A2AR with high myopia in a Chinese population.

Human high myopia is an extreme form of myopia with
an excessive increase in the ocular axial length and with
pathological structural changes in the sclera. These changes
include thinning of sclera due to reduced collagen production
and tissue loss in the posterior segment [1-3]. The exact
mechanism that causes such abnormal eye development is
unknown. It is now widely recognized that in addition to a
series of biologic factors and neurotransmitter pathways
[4-11], genetic factors affecting transcription and other
regulatory activities contribute to the complex process of
ocular development and the occurrence of high myopia
[12-15].

The role of adenosine in vision development and myopia
formation has recently been reported. In the tiger salamander,
the adenosine A2A receptor (A2AR) regulates vision formation
by mediating inhibition of rod opsin mRNA expression [16].
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In form deprivation myopic guinea pigs, adenosine A2AR is
increased in the retina, choroid, and sclera [17]. In addition,
treatment with the adenosine receptor antagonist 7-
methylxanthine decreases myopia progression and eye
elongation in myopic children and in form deprivation myopic
knockout guinea pigs [18,19]. In previous findings we
detected a greater myopic shift with longer axial length,
increased vitreous chamber depth, and altered scleral collagen
fiber structure in A2AR knockout mice compared to wild-type
littermates [20]. We also found that the A2AR agonist
CGS21680 increases the expression of collagen I, III, and V
mRNAs in cultured human scleral fibroblasts and promotes
production of soluble collagen in a concentration-dependent
manner [20].

Adenosine is the product of ATP metabolism present in
all cells and body fluids, where it also acts as an important
neurotransmitter and an effective vasodilator [21]. It elicits
biologic responses by binding to adenosine receptors,
including A1, A2A, A2B, and A3, that are distributed throughout
the body. Adenosine A2AR is expressed in ocular tissues of
vertebrates [22-25]. Based on previous functional studies, we
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hypothesized that A2AR plays an important role in postnatal
refractive development and thus is also a candidate
susceptibility gene for high myopia.

By using single nucleotide polymorphisms (SNPs) as
markers, association analysis is a powerful tool to find
disease-related genes. Recently, various susceptibility genes
have been identified by myopia- or high-myopia-association
studies, including transforming growth factor-1 [26], catenin
delta 2 [27], BH3-like motif containing cell death inducer
[28], gap junction protein delta 2, actin alpha cardiac muscle
1 [29], and Ras protein-specific guanine nucleotide-releasing
factor 1 [30]. However, most association analyses at either
candidate gene or whole genome level have focused on tag
SNPs; few functional SNPs (coding SNPs) have been tested.
The purpose of this study was to determine if there are any
significant associations between high myopia and SNPs in the
A2AR exons in a Chinese population.

METHODS
Subjects: We matched 175 unrelated subjects with high
myopia (spherical power of less than −8.00 diopters [D]) in
both eyes with 101 ethnically and socially similar, unrelated
control subjects with refractive errors within ±1.00 D in each
eye. All the subjects were from the Optometry Eye Hospital
of Wenzhou Medical College, Wenzhou, China. Each of the
participating subjects received a complete ocular examination
including visual acuity (Topcon RM-8800; Topcon Corp.,
Tokyo, Japan), slit-lamp evaluation of the anterior segment
(Topcon SL-1E Slit Lamp; Topcon Corp.), dilated fundus
examination (Heine Omega 180 Binocular Indirect
Ophthalmoscope; Heine Optotechnik, Herrsching, Germany)
and axial-length measurements (Zeiss IOL Master; Carl Zeiss
Meditec, Jena, Germany) [31]. Exclusion criteria included
subjects with any known ocular, genetic, or systemic
connective tissue disorders associated with myopia. Written
consent was obtained from every subject after being fully
informed of the purpose and procedures of the study. This
study adhered to the tenets of the Declaration of Helsinki with
subsequent revisions and was approved by the Human
Subjects Ethics Committees of Wenzhou Medical College and
the Eye Hospital, Wenzhou, China.

DNA extraction and amplification: Genomic DNA for
polymerase chain reaction (PCR) was extracted from 2 to 5 ml
of peripheral venous blood from all participants. DNA was
purified from lymphocytes according to the manufacturer’s
instructions using a kit (BBI, Toronto, ON, Canada) [31]. The
accession number for the A2AR sequence used for the
construction of our primers was NT_011520. Four pairs of
primers (Table 1) were used to amplify exon regions of
A2AR. PCR was performed in a 50-μl volume with 31.25 μl
double distilled H2O, 5 μl 10× PCR buffer (100 mM Tris-HCl
pH 8.8, 500 mM KCl, 15 mM MgCl2, 0.8% Nonidet P40),
3.5 μl 25 mmol/l MgCl2, 4 μl 2.5 mmol/l deoxy-
ribonucleoside triphosphate, 2 μl template DNA, 2 μl sense
primer (all these ingredients were from Invitrogen, Carlsbad,
CA), 2 μl antisense primer (Invitrogen, Shanghai, China), and
0.25 μl Ex Taq polymerase (Takara BIO Inc., Tokyo, Japan).
The PCR reaction was initiated at 94 °C for 2 min, followed
by 35 cycles (94 °C for 30 s, 65 °C for 30 s, 72 °C for 45 s),
and ended at 72 °C for 10 min. PCR amplification products
were purified using the PCR Cleanup Kit (Axygen
Biosciences, Union City, CA).
Single nucleotide polymorphism genotyping by sequencing:
After the PCR amplification products were purified,
nucleotide sequence analysis was performed with an ABI
3700 sequencer (Applied Biosystems Inc., Foster City, CA).
Using Clustal W (version 3.0; European Bioinformatics
Institute, Hinxton, Cambridgeshire, Great Britain), we
compared all sequencing results to identify variations and to
check the sequence map of mutable points to confirm the
genotype. Positive results were further confirmed by reverse
sequencing.
Analysis of common single nucleotide polymorphisms: Allelic
frequencies of all detected common SNPs were assessed for
Hardy–Weinberg equilibrium (HWE). The frequency (P) of
allele A was calculated as

PA = (2 × NAANAB) / (2 × N)

where NAA is the number of wild types, NAB is the number of
heterozygotes, and N is the sample size of the group. The
frequency of allele B was calculated as

TABLE 1. PRIMERS USED FOR THE AMPLIFICATION AND SEQUENCING OF A2AR.

Fragment Direction Primer sequence PCR product (bp) Exon
A2A1 S 5′- CGCCCTCTGCAGATGGTTCAGCT-3′ 428 1

 AS 5′- GTTGCTGTTGAGCCACACGGCC −3′   
A2A2 S 5′- CCGTGCTGAGCCTGCCTGTCGTC −3′ 434 2

 AS 5′- CCTGGCTCCGGGCACAGACCAA −3′   
A2A3 S 5′- CCCTGGCTTCTCAGATCTCTGAT −3′ 577 2

 AS 5′- GGCGTAGATGAAGGGATTCACA −3′   
A2A4 S 5′- CTCATGTACCTGGCCATCGTCCTC −3′ 611 2

 AS 5′- CTTCTTGCTGGGCCTCATGCTG −3′   

          S, sense strand; AS, antisense strand.
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PB = 1 – PA

The theoretical value of the three genotypes was calculated
according to the following allele frequencies:

NAB(E) = 2N × PA × PB

where (E) is the expected value and NBB is the number of
homozygous mutations. The HWE for the genotype
distributions was examined by the χ2 test in each group, where

The level of HWE was set at p>0.05. All samples were
assumed to be from the same Mendelian population.
Differences in the observed genotype, allelic frequencies, and
heterozygous frequency (AB versus AA+BB) between the
subjects with high myopia and the control subjects were also
examined by the χ2 test. Statistical analyses were performed
with the Statistical Package for the Social Sciences software
(SPSS, version 13.0 for Windows; SPSS Science Inc.,
Chicago, IL). The power analysis for the χ2 test was run using
Statistical Analysis Software (SAS, version 9.0; SAS
Institute, Cary, NC).

RESULTS
For the high myopia group, the spherical power (OD; OS,
mean±SD, D) was -15.44±6.06 D; -15.18±6.28 D; the
astigmatism (OD; OS, mean±SD, D) was -1.60±1.21 D;
-1.85±1.26 D; the axial length (OD; OS, mean±SD, mm) was
29.58±2.64 mm; 29.52±2.86 mm [31].

Common and rare single nucleotide polymorphisms in
A2AR exons: Purified PCR products specific to A2AR exons
were sequenced to detect functional SNPs correlating to high
myopia (Table 2). In total, six exonic substitutions were found
(Table 3). Five of these, 5675 A>G, 5765 C>T, 13325 G>A,
13448 C>T, and 14000 T>A, were seen only in the control
panel and had minor allele frequencies lower than 1%; as a
consequence, no further analysis was conducted for these rare
variants. In contrast, SNP 13772 T>C was common, with a
frequency of 53.3% in all subjects (Figure 1, Table 3). Listed
as rs5751876 (National Center for Biotechnology
Information, Entrez SNP database, dbSNP Build 129), this is
a synonymous substitution in codon Y361, which is located
in the second exon of A2AR (Figure 2). The rs5751876 was also
reported to be associated with anxiety in various
investigations [32-34].

Lower heterozygous frequency of rs5751876 in subjects
with high myopia: To examine the association between
rs5751876 and high myopia, we compared the variation
frequency of this SNP in subjects with high myopia and
control subjects by the χ2 test. No significant difference was
observed between the case and control groups by either
genotype frequency test (p=0.11) or allele frequency test
(p=0.76).

However, the genotype distribution of rs5751876 in
subjects with high myopia deviated significantly from HWE
(p=0.0016), while no such deviation was seen in control
samples. Further testing on the distribution of homozygotes
and heterozygotes demonstrated a significantly lower
frequency of the heterozygous genotype in subjects with high
myopia compared to that of the control subjects (p=0.033,
Table 4). This result suggests a possible association of A2AR
with high myopia in Chinese population.

TABLE 2. QUANTITIES OF EFFECTIVE SEQUENCE RESULTS.

Fragment High myopia group (n) Control group (n) Total (n)
A2A1 170 98 268
A2A2 163 101 264
A2A3 158 97 255
A2A4 161 96 257

TABLE 3. OBSERVED FREQUENCY OF THE VARIATIONS IN HIGH MYOPIA AND CONTROL GROUPS.

Variations Polymorphism High myopia group Control group Total
5675 A→G 0/196 (0.00%) 1/340 (0.30%) 1/536 (0.19%)
5765 C→T 0/196 (0.00%) 2/340 (0.59%) 2/536 (0.37%)
13325 G→A 0/194 (0.00%) 1/316 (0.32%) 1/510 (0.20%)
13448 C→T 0/194 (0.00%) 1/316 (0.32%) 1/510 (0.20%)
14000 T→A 0/192 (0.00%) 2/322 (0.62%) 2/514 (0.39%)

13772 (rs5751876) T→C 104/192(54.17%) 170/322 (52.80%) 274/514 (53.31%)
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DISCUSSION

Two facts prompted us to conduct this investigation to
determine if coding SNPs in the A2AR gene contributes to the
development of high myopia. First, previous association
studies on high myopia mainly focused on tag SNPs [35]; few
functional variants (e.g, coding SNPs) were identified for their
association with high myopia [36]. Furthermore, myopic
changes observed in knockout mice suggest that certain genes
may cause or contribute to refraction error in humans. In
particular, myopic changes occur in early growth response 1
knockout mice [37] and in A2AR knockout mice [20]. Although
these pathologic abnormalities are similar to those in humans
with high myopia [1-3], no mutation was found in early

growth response 1 exons in Chinese subjects with high myopia
[37], and correlation between A2AR and high myopia remains
unknown.

In our sequencing results only one SNP (rs5751876)
shows a statistical power for association analysis (minor allele
frequency=46.7%). Previous association studies have linked
this locus to susceptibility of anxiety [32-34]. Despite no
observed correlation in the genotype and allele frequency test,
the significant deviation from HWE and the lower
heterozygote genotype frequency in case but not in control
subjects suggest an association between this SNP and high
myopia, at least in Chinese population. Moreover, the C allele
frequency of rs5751876 in our individuals (53.3%) was lower

Figure 1. The common SNP 13772 T>C (rs5751876) was identified in A2AR. Although rs5751876, which codes for tyrosine, was located in
coding regions, it did not affect the amino acid sequence.

Figure 2. Schematic diagram of the
single nucleotide polymorphism
rs5751876 within A2AR. The gray
rectangles represent exons, and the lines
represent introns.

TABLE 4. GENOTYPE FREQUENCY OF 13772 T>C (RS5751876).

Genotype* High myopia group Control group Total
TT 26/96 (27.08%) 35/161 (21.74%) 61/257 (23.74%)
TC 36/96 (37.50%) 82/161 (50.93%) 118/257 (45.91%)
CC 34/96 (35.42%) 44/161 (27.33%) 78/257 (30.35%)

        TT, genotype with homozygous normal allele; TC, genotype with heterozygous sequence alterations; CC, genotype with
        homozygous sequence alterations. *Based on association test using χ2 statistics, Poverall=0.11 and PTCversus TT +CC=0.03.
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than that in Europeans and Africans (72.2% and 60%,
respectively, dbSNP), further implying different signals of
A2AR among populations. Expanding the sample size may
provide stronger signals for the association of this SNP to high
myopia.

Being a synonymous substitution, the association signal
of rs5751876 to high myopia could be explained in two ways.
First, this substitution may change the codon of Y361 (TAC
to TAT), which in turn affects the translation efficiency by
tRNA-dependent codon usage bias [38]. Another possibility
may be a high linkage disequilibrium of this SNP with
rs2298383 (D’=1) in an upstream transcription factor binding
site [33]. Therefore, rs5751876 is perhaps a marker for
surrounding SNPs corresponding to A2AR expression.

Adenosine A2AR is expressed in ocular tissues and
participates in eye growth. As described above the relevance
of A2AR to high myopia is supported by a line of evidence from
cellular and animal studies [20]. These findings as well as our
genetic results indicate that adenosine and adenosine
receptors contribute to the development of high myopia. The
mechanism(s) by which A2AR and/or other adenosine receptors
contribute to myopia is currently unknown. Functional
analysis will help elucidate the molecular pathways of A2AR
and determine if pharmaceutical intervention targeting
adenosine receptors may inhibit development of myopia.
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