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Abstract

Background:
Optimizing a closed-loop insulin delivery algorithm for individuals with type 1 diabetes can be potentially 
facilitated by a mathematical model of the patient. However, model simulation studies that evaluate changes 
to the control algorithm need to produce conclusions similar to those that would be obtained from a clinical 
study evaluating the same modification. We evaluated the ability of a low-order identifiable virtual patient 
(IVP) model to achieve this goal.

Methods:
Ten adult subjects (42.5 ± 11.5 years of age; 18.0 ± 13.5 years diabetes; 6.9 ± 0.8% hemoglobin A1c) previously 
characterized with the IVP model were studied following the procedures independently reported in a pediatric 
study assessing proportional–integral–derivative control with and without a 50% meal insulin bolus.  
Peak postprandial glucose levels with and without the meal bolus and use of supplemental carbohydrate to 
treat hypoglycemia were compared using two-way analysis of variance and chi-square tests, respectively.

Results:
The meal bolus decreased the peak postprandial glucose levels in both the adult-simulation and pediatric-
clinical study (231 ± 38 standard deviation to 205 ± 33 mg/dl and 226 ± 51 to 194 ± 47 mg/dl, respectively;  
p = .0472). No differences were observed between the peak postprandial levels obtained in the two studies 
(clinical and simulation study not different, p = .57; interaction p = .83) or in the use of supplemental carbohydrate 
(3 occurrences in 17 patient days of closed-loop control in the clinical-pediatric study; 7 occurrences over  
20 patient days in the adult-simulation study, p = .29).

Conclusions:
Closed-loop simulations using an IVP model can predict clinical study outcomes in patients studied independently 
from those used to develop the model.
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Introduction

Metabolic modeling is widely believed to be essential 
to achieving a closed-loop insulin delivery system. 
As algorithms linking glucose-sensing and insulin-
delivery components become more complex, the ability 
to optimize design parameters and evaluate changes 
in system components using animal or clinical studies 
becomes increasingly impractical. Even the simplest of 
closed-loop algorithms may have multiple parameters 
that need to be adjusted. Improvements in the insulin 
formulation or the means of insulin delivery resulting 
in a more desirable pharmacokinetic/pharmacodynamic 
(PK/PD) response may require adjustments in closed-
loop parameters to capitalize on these developments. 
Glucose sensors have complex filtering/calibration 
routines that might also be optimized to effect an improve-
ment in closed-loop performance. Closed-loop control 
parameters per se could potentially be optimized by 
empirical adjustments in much the same way as open-
loop control parameters—e.g., glucose correction factors, 
carbohydrate-to-insulin ratios, basal rates, and insulin-
on-board—are adjusted but changes in closed-loop 
parameters involve a putative higher risk. Animal studies 
can be conducted to mitigate some of this risk but 
animal models have limitations of their own. Insulin PK/
PD profiles, meal absorption profiles, and the diurnal 
variation in metabolic parameters in any given animal 
model may not accurately reflect those observed in humans.

Generally, research groups seeking to develop closed-
loop algorithms have developed model simulators in 
parallel with their closed-loop algorithms, with the models 
being used to make key decisions in the design process. 
Examples include metabolic models developed in 
Karlsberg,1 Cambridge,2 University of Virginia (UVA),3 
and Medtronic4–6 that are paired with controllers 
developed at these same sites (Karlsburg,7 Cambridge,8,9 
UVA,10 and Medtronic11–14). Of these, the Karlsburg model 
is now used primarily for optimizing open-loop insulin 
delivery;15,16 however, the UVA simulator3 is the only 
simulator accepted by the Food and Drug Administration 
as a replacement for animal studies.

The model used to aid in developing the Medtronic 
proportional–integral–derivative (PID) algorithm is itself  
composed of a set of submodels: the identifiable two-
compartment model of subcutaneous insulin absorption 
proposed by Sherwin and colleagues,17 the so-called 
minimal model developed by Bergman and Cobelli,18–21 

and a two-compartment model of glucose appearance 
following meals developed by Hovorka and colleagues.2 
The combined model, termed identifiable virtual patient 
(IVP) model in this article, was shown to fit data obtained 
in the initial feasibility study of PID control with no 
significant residual error and with well-estimated 
parameters6 (with initial closed-loop study reported11). 
Although the ability to fit data is a necessary component 
of model validation, more stringent criteria can be 
developed.22,23 These include the ability of a model to 
reproduce results obtained in subjects that are independent 
from those used to develop the model. Ideally, the model 
should also be able to predict how a change in control 
parameters might impact an individual subject identified 
with the model and be able to predict regions of control 
stability (different combinations of control and patient 
parameters for which the closed-loop system provides 
acceptable control). In the present study, we evaluated the 
ability of the IVP model to satisfy the first of these 
additional criteria: the ability to reproduce closed-loop 
study results in subjects who are independent from 
those used to develop the model.

Methods
Ten virtual patients, 42.5 ± 11.5 years of age with 
diabetes for 18.0 ± 13.5 years, hemoglobin A1c (HbA1c) 
of 6.9 ± 0.8%, and metabolic model parameters reported in 
the literature6 were studied (i.e., simulated). Each subject 
was studied with the protocol and procedures reported 
in a clinical study of pediatric subjects assessing the 
impact of adding a meal insulin bolus to the Medtronic 
PID algorithm.11–14 Briefly, in the clinical pediatric study,12 
closed-loop insulin delivery was started at 7 a.m. on 
day 1 and continued through until 3 p.m. on day 2.  
Breakfast, lunch, and dinner were served at 8 a.m.,  
12 p.m., and 5 p.m. each day. Eight subjects were studied 
without meal boluses [full closed-loop (FCL); subject 
age: 16.8 ± 1.6 years, duration of diabetes: 6.9 ± 4.6 years,  
HbA1c: 6.9 ± 0.8%]. Nine subjects were studied with 
a meal insulin bolus given 0–15 minutes in advance 
of the meal [hybrid closed-loop (HCL); subject age: 
15.1 ± 1.0 years, duration of diabetes: 5.7 ± 2.9 years,  
HbA1c: 7.3 ± 0.9%; meal bolus about one-half that which 
would normally be given to the subject based on their 
carbohydrate-to-insulin ratio (CIR)]. These procedures 
were repeated in the simulation study with the exception 
that each of the 10 adult virtual subjects was studied 
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once with FCL and once with HCL. For the simulation 
subjects, the CIR (g/Unit) was obtained as 500/DIR (daily 
insulin requirement in Units). Meal size was not changed 
from that reported in the clinical study used to identify the 
virtual patients.11

The IVP model is composed of five equations character-
izing the subcutaneous (SC) insulin concentration at the 
catheter site (ISC), the concentration of insulin in plasma (IP), 
insulin’s effect (IEFF) to lower plasma glucose (G), and the 
rate of appearance of glucose following meals (RA):

dISC(t)
dt

 = – 
1
t1

 · ISC(t) + 
1
t1

 
ID(t)

CI
          (1)

dIP(t)
dt

 = – 
1
t2

 · IP(t) + 
1
t2

 · ISC(t)            (2)

dIEFF(t)
dt

 = –p2 · IEFF(t) + p2 · SI · IP(t)           (3)

dG(t)
dt

 = –(GEZI + IEFF) · G(t) + EGP + RA(t)      (4)

RA(t) = 
CH(t)

VG · tm
2  · t · e

– t
tm                (5)

Model parameters τ1 and τ2, (PK time constants, min); 
CI (insulin clearance, ml/min); p2, (time constant for 
insulin action, min-1); SI (insulin sensitivity, ml/µU/min); 
GEZI (glucose effectiveness at zero insulin, min-1); 
EGP (endogenous glucose production, mg/dl/min); 
VG (glucose distribution volume, dl); and τm  (peak time of 
meal glucose appearance, one value for each meal) were 
identified during different time slots of varying length,  
with values in the first and third slots constrained to 
be identical (diurnal variation). Parameter values are 
reported in the original manuscript describing the 
identification procedure.6 A glucose sensor was assumed to 
be placed in a SC interstitial fluid (ISF) fluid compartment 
described by

dGISF(t)
dt

 = – 
1

tSEN
 · GISF(t) + 

1
tSEN

 · GP(t)        (6)

where, GP(t) is defined as the glucose concentration in 
plasma and GISF(t) defined as the concentration of glucose 
in ISF. The ISF delay (τSEN) was fixed at 10 min.24 
Sensor glucose (SG) values were obtained each minute 
and processed in the identical manner to the clinical 

study.12 SG was obtained by filtering the ISF signal with 
a seven-point, low-pass, finite impulse response (FIR) 
filter and the rate of change of SG (dSG / dt) estimated 
from an FIR filter, calculating the slope of SG versus 
time for the precious 15 min.24

The PID algorithm was also configured identical to that 
reported for the clinical study,12 with proportional (P), 
integral (I), and derivative (D) terms calculated at time 
points corresponding to minute-to-minute glucose values 
(time interval denoted as k):

P(k) = KP · [SG(k) – Gtarget]                (7)

I(k) = I(k – 1) + 
KP

TI
 [SG(k) – Gtarget]           (8)

D(k) = KP TD · dSG/dt(k)                 (9)

PID(k) = P(k) + I(k) + D(k)              (10)

and integral term (basal) constrained by a wind-up 
protection routine defined by

if SG > 80 mg/dl then IMAXA

else if SG ≥ 60 mg/dl then

  IMAX = 
(GFIL – 60) · (IMAXA – IMAXB)

20
 IMAXB · KP

else IMAXB

   (11)

IMAXA was set to the maximum overnight basal rate plus 
2.4 U/h, and IMAXB was set to KP·(Gtarget – 60) to prevent 
the algorithm from delivering insulin with SG < 60 mg/dl  
and not increasing Gain KP was set in proportion to 
the subject’s daily insulin requirement: KP=DIR/135000 
where DIR is in U/day and the resulting KP is in 
(U/min)/(mg/dl). Derivative and integration times TD 
and TI were set to 90 and 450 min during the day (6 
a.m. to 10 p.m.), and 60 and 150 min otherwise (night).  
Target glucose was 100 mg/dl during the day and  
120 mg/dl during the night. The integrator initial condition 
[I(k – 1)] was set to the subject’s basal rate at the start 
of closed-loop control and thereafter constrained to be 
greater than 0.

Although no changes were made in the virtual subject 
parameters or meal absorption parameters, the timing 
of each meal was modified to correspond to the timing 
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in the clinical study. Breakfast, lunch, and dinner were 
moved from 8 a.m., 1 p.m. and 6 p.m. to 8 a.m., 12 p.m., 
and 5 p.m. Supplemental carbohydrate (15 g with a peak 
appearance time τm = 15 min) was given in the event SG 
fell below 60 mg/dl. One subject was excluded from the 
simulation analysis for breakfast on day 1 and dinner on 
day 2 as that subject, in the original closed-loop study, 
had requested to follow the Atkins diet routine during 
those meals (negligible carbohydrates with little or no 
meal response).

Statistical Analysis
Presentation of the simulation study results follows that 
used by Weinzimer and colleagues12 in the report of the 
pediatric clinical study results, with Figures 1 and 2 from 
that report reproduced here. Peak postprandial glucose 
level with and without meal bolus were compared using 
two-way analysis of variance (ANOVA) with study type 
(simulation vs clinical) and controller type (FCL vs HCL) 

as factors. Need for supplemental carbohydrate to treat 
hypoglycemia (SG < 60 mg/dl) was compared using a 
chi-square test. Results are reported as mean ± standard 
error of the mean unless otherwise noted. Simulations were 
performed using routines available in Matlab (Math Works, 
Natick, MA). Statistical analysis (two-way ANOVA,  
chi-square tests) was performed using GraphPad Prism 
version 5.04 for Windows (GraphPad Software, San Diego, 
CA). A posteriori power calculations were performed by 
Monte Carlo simulation using Mlab (Civilized Software, 
Silver Spring, MD).

Results
Closed-loop control with meal bolus in the adult virtual 
patients (FCL; Figure 1A; Table 1) resulted in similar 
peak postprandial glucose values to closed-loop control 
in the pediatric clinical subjects (Figure 2B; Table 2). 
This result was obtained despite differences in meal 

Figure 1. (A) Left panels show closed-loop simulation results in 10 adult virtual patients. (B) Right panels, adapted from Figure 1 of Weinzimer 
and colleagues,12 show clinical data obtained in 8 pediatric subjects using the same protocol.

Figure 2. (A) Left panel shows simulation of 24 h closed-loop control in 10 virtual adult subjects using FCL and the same algorithm modified by 
a meal bolus given by the subject 15 min in advance of a meal (HCL). Each subject was simulated twice with the same meal on both occasions. 
(B) Right panel shows results from a clinical study performed in pediatric subjects. Different patients (n = 8 and 9 for FCL and HCL, respectively) 
were studied with meals of their choosing (meal size shown in grams).
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Table 1.
Insulin Delivery and Glycemic Control Parameters in FCL versus HCL Virtual Simulation Study

Table 2.
Glycemic Control Parameters in FCL and HCL Subjects from Pediatric Clinical Studya

a Reprinted with permission from Diabetes Care.12

sizes [55 ± 27 standard deviations (SD), 88 ± 36, 69 ± 28 
for adult virtual subjects vs 68 ± 24, 77 ± 26, and 99 ± 18 
for the pediatric subjects; overall amount not different,  
p = .078 but with interaction, p = .023]. Time between 
peak insulin delivery and peak plasma insulin 

concentration during each meal was similar in the 
simulation and clinical studies but with the magnitude 
of insulin-delivery and concentrations being about 
two-thirds that observed in the pediatric clinical study 
(compare y-axis in lower panels for both).
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Analyzed as independent studies, adding a meal bolus  
15 min in advance of a meal lowered the peak post-
prandial glucose from 231 ± 38 to 205 ± 33 mg/dl in the 
adult simulation study (p = .0081; Table 1), and from 
226 ± 51 to 194 ± 47 mg/dl in the clinical pediatric study 
(p = .04; Table 2 reproduced from original publication). 
Combining the simulation and clinical studies together 
and reanalyzing the data by two-way ANOVA showed 
the effect of the meal bolus to be significant with p = .047 
and with no difference between the simulation and 
clinical studies (p = .57; interaction, p = .83). There were 
3 occurrences of supplemental carbohydrate over 17 patient 
days in the clinical study versus 7 occurrences over  
20 patient days in the simulation study (not different;  
p = .29, chi-square test). Sensor glucose was in the target 
range 70–180 mg/dl 85% of the time in the clinical study 
versus 71% in the simulation. Mean absolute relative 
difference (MARD) introduced by the ISF delay and 
filter routine in the simulation study was 5.9%; MARD 
estimated from all sources of error was 13.9% in the 
pediatric clinical study.

Discussion
The present study showed that a low-order IVP simulator 
can reproduce clinical study results obtained in a 
population of subjects that are independent from those 
used to develop the model. Key observations made 
in the clinical study12 used for comparison were that 
(1) 85% of all sensor glucose levels were between 70 and 
180 mg/dl, (2) there was large intersubject variability in 
peak post-prandial glucose levels, (3) the closed-loop 
algorithm did not respond until 15–20 min into the 
meal, (4) peak insulin concentrations did not occur until 
120 min after the meal started, and (5) plasma insulin 
concentration did not return to basal level until 8–10 h 
after dinner. These observations were all reproduced in 
the simulation study with only minor differences noted.

Differences that were noted included a slightly lower 
percent of sensor glucose readings in target range (71 vs  
85%, simulation vs clinical) and an increase in the use of 
supplemental carbohydrates (6 occurrences in 20 patient 
days vs 3 in 17). The difference in sensor values in the 
target range could potentially be attributed to the sensor 
underestimating glucose at high values in the clinical 
study.12 Underestimation of sensor glucose can be due 
to nonlinearities in the sensor response, intrinsic offset 
in sensor current, or delays in glucose equilibration 
with ISF.24 In our simulations, we included the delay 
in glucose equilibration with the SC ISF but did not 
simulate an offset in sensor current or nonlinearity in 

the sensor response. This resulted in a better MARD 
for the simulation than was reported in the pediatric 
study (5.1 vs 13.2%). Despite the better sensor, the virtual 
subjects still proved to be more difficult to control, 
with supplemental carbohydrate being used to correct 
hypoglycemia 7 times during 20 patient days of control 
in the simulation study and only 3 times in 17 patient 
days of real control. Although the difference was not 
statistically significant (p = .29), having a simulator that 
predicts the need for supplemental carbohydrate may be 
beneficial when testing algorithms for safety in advance 
of performing a clinical study.

Minor differences were also observed in the relative 
magnitude of the breakfast versus lunch glucose excursions 
within each study. The two excursions were of similar 
magnitude in the simulation study, whereas the lunch 
excursion was smaller than the breakfast excursion in 
the clinical study. This may have been due to differences 
in the meal sizes consumed in each study. The meal sizes 
in the clinical study used to identify virtual patient 
subjects11 and the pediatric study used for comparison12 
were determined by the subjects, with the total amount 
of carbohydrate not different. However, while the total 
amount of carbohydrate consumed was not different, the 
distribution by meal was. Thus, to have the same ratio of 
breakfast to lunch carbohydrate in the two studies, the 
pediatric subjects would have had to consume 41% more 
carbohydrate at lunch in the FCL control subjects and  
31% more in the HCL subjects. Still, despite the 
differences in patient population and relative carbohydrate 
consumed at each meal, the average closed-loop glucose 
profiles obtained in the simulation closely matched that 
of the clinical study despite insulin delivery rates that 
were approximately one-third less in the virtual subjects. 
Similar glucose profiles with different insulin delivery 
rates can be expected for a closed-loop system that adjusts 
insulin delivery rates to achieve the same target at the 
same rate.

The inability to match all conditions in the simulation 
to those of the clinical study is nonetheless a limitation 
in the present study. The differences were, however, 
unavoidable, as IVP model parameters have not been 
published for pediatric subjects. Differences in the 
clinical versus simulation study design, population, and 
meals, may have masked our ability to detect differences 
between the simulation and clinical studies, or otherwise 
have affected the power of our statistical analysis.  
For example, in the simulation study, the difference in 
the peak postprandial glucose for breakfast on day 2 
was significant [77 mg/dl with 95% confidence interval (CI)  
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(55.12 to 99.16); FCL vs HCL], whereas the same comparison 
in the clinical study was not [32.43 ± 24.95 with 95% CI 
(-20.75 to 85.61)]. Effectively, the simulation study had 
more power to detect differences in peak postprandial 
glucose than the clinical study. However, rather than 
being an advantage, this suggests that there was an 
important component on variability that was not captured 
in the simulation. Conversely, the two-way ANOVA used 
to evaluate differences between the simulated and 
clinical results failed to detect differences in the peak 
postprandial glucose in the simulated and clinical 
data, raising the possibility that the comparison was 
underpowered. For the analysis performed, the peak 
postprandial values for breakfast, lunch, and dinner 
were combined leaving only study type (simulation vs 
clinical) and controller type (FCL vs HCL) as factors in 
the two-way ANOVA. However, combining breakfast, 
lunch, and dinner resulted in similar values [231 ± 35 (SD) 
vs 226 ± 51 for FCL, and 205 ± 38 vs 194 ± 47 for HCL]. 
As the difference was small, just 5 mg/dl for FCL, the  
power to detect significance was also low (13% estimated 
from Monte Carlo simulation). We estimate that to have 
detected a difference between simulated and clinical results, 
this difference would have needed to be at least 15%  
(~30 mg/dl) for both the FCL and HCL peak postprandial 
values (80% power). Given the limitations introduced by  
the nonmatched patient populations consuming different 
meals, further validation will be required to validate 
clinical closed-loop study results that can be reproduced 
with this simulator.

The IVP model represents one of several models that 
could have been used for the simulations performed here. 
Other models include the KADIS simulator,1 the Cambridge 
simulator,2 and the simulator developed at UVA.3 It is not 
clear if the simulators yield significantly different results. 
Generally, equations for all the simulators are known 
but model parameters for individual subjects are often 
proprietary. The exceptions to this are the parameters 
for the 10 adult IVP subjects used here (reported in 
Kanderian and colleagues)6 and the 10 patients in each 
of the adult, pediatric, and child groups described in the 
UVA patent.25 Equations for the different models differ 
primarily in number (model order) and the number of 
parameters. The trend has been to use high-order models 
for simulation,26 although the parameters of such models 
are unidentifiable from data that is routinely collected 
in clinical studies (meal information, insulin delivery, 
and insulin and glucose concentrations). Lower order 
models are still well accepted for measuring metabolic 
parameters or as components of model predictive control 

algorithms.26 However, low-order models do continue to 
be used as simulators. The KADIS model, for example, 
is identifiable from logbook or continuous glucose 
monitoring data. Once identified, the model is used to 
perform simulations to optimize open-loop therapy.27 
Although IVP model parameters are identifiable from the 
same routine data collection, the model is not suited for 
predicting a single future meal excursion as the model 
parameters are time-varying. Time-varying parameters 
were chosen as a basis for the model as it is well known 
that individuals with type 1 diabetes can have high inter- 
and intraday variability in insulin requirements. As the 
IVP model is set up to capture this variability, it can only 
be used to predict average glucose responses that would be 
obtained by an individual on repeated days, or the average 
results obtained in a study involving multiple subjects. 
Results from the present study support its ability to predict 
results obtained across multiple subjects. The model has 
also been used as a guide in developing modifications to 
the PID controller,14 which have been tested and shown 
to work well in subsequent clinical studies.13 Nonetheless, 
given the limitations described earlier (nonmatched 
patient populations consuming different meals), further 
validation may still be required to assess its ability to 
reproduce other closed-loop clinical study results.

Components of the IVP model—specifically the two-
compartment PK model described by Equations (1) 
and (2)—have been used as components of different 
control algorithms. The PID closed-loop insulin delivery 
algorithm developed by Medtronic13 and the MPC controller 
developed by Damiano and colleagues28 both incorporated 
this characterization of the PK insulin response to predict 
plasma insulin concentrations during closed-loop insulin 
delivery. Noteworthy is that in both of these cases,13,28 
model parameters were preset to values obtained from 
the literature and no attempt was made to adjust or 
identify them in real time. In the study by Damiano and 
colleagues,28 the insulin profiles were not well predicted 
in some individual cases, leading to poor control. 
However, when the parameters were retrospectively 
identified and the subjects studied on a subsequent 
occasion, both the real-time prediction and resulting 
control were substantially improved. Generally, closed-
loop controllers utilizing models as part of the control 
algorithm can be configured to identify the parameters 
of the model in real time; however, the ability of the 
real-time identification algorithms to track time-varying 
parameters needs to be carefully assessed. Subjects with 
parameters that differ substantially may need their 
parameters to be set off-line.
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In summary, results presented in the original IVP model 
development and identification study6 showed that the 
IVP model can be identified from routine insulin, glucose, 
and meal data. The present study showed that once 
a population of virtual patients is identified, that 
population can be used to perform closed-loop studies 
with the expected result not statistically different 
from that which would be obtained in a clinical study. 
Additional validation of the model, however, is required 
to confirm that the model can be used to optimize 
control in an individual subject or identify regions of 
control stability for the individual.
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