
Axonal transport analysis using Multitemporal Association
Tracking

Mark R. Winter,
Department of Electrical Engineering and Computer Science, University of Wisconsin –
Milwaukee, Milwaukee, WI 53211, USA, mwinter@uwm.edu

Cheng Fang,
Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland,
OR 97239, USA, fangc@ohsu.edu

Gary Banker,
Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland,
OR 97239, USA, bankerg@ohsu.edu

Badrinath Roysam, and
Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004,
USA, broysam@central.uh.edu

Andrew R. Cohen
Department of Electrical Engineering and Computer Science, University of Wisconsin –
Milwaukee, Milwaukee, WI 53211, USA, cohena@uwm.edu

Abstract
Multitemporal Association Tracking (MAT) is a new graph-based method for multitarget tracking
in biological applications that reduces the error rate and implementation complexity compared to
approaches based on bipartite matching. The data association problem is solved over a window of
future detection data using a graph-based cost function that approximates the Bayesian a posteriori
association probability. MAT has been applied to hundreds of image sequences, tracking organelle
and vesicles to quantify the deficiencies in axonal transport that can accompany neurodegenerative
disorders such as Huntington’s Disease and Multiple Sclerosis and to quantify changes in transport
in response to therapeutic interventions.
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1 Introduction
Defects in axonal organelle transport are correlated with neurodegenerative diseases
including Huntington’s, Alzheimer’s and Multiple Sclerosis (MS) (De Vos et al., 2008). In
order to precisely evaluate the role of deficiencies in axonal organelle transport in the
pathogenesis of these diseases, and also to evaluate the impact of potential therapeutic
interventions, reliable methods for quantifying the transport of organelles along the axon
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under different experimental conditions are required. Fluorescent protein microscopy has
made it possible to capture time lapse image sequence data showing the transport of
individual organelles along the axon. Manual approaches to analysing such data are tedious
and error-prone. There is a pressing need for accurate and reliable automated tools for
quantifying axonal organelle transport. We present a new approach to multitarget tracking
designed specifically for the high target density and high noise conditions that are typical of
image sequence data showing axonal organelle transport. We demonstrate this approach by
evaluating organelle transport in wild type compared to Huntington’s disease populations,
and also to evaluating the effects of inflammation in the pathogenesis of MS by quantifying
axonal organelle transport of hydrogen peroxide treated versus control groups.

Automated tracking in axonal transport sequences is a challenging problem. Although the
number of organelles being tracked is similar to other subcellular transport problems, all of
the organelles are transported along a thin axon rather than being spread throughout the
image domain. This dramatically increases the target density and exacerbates the problems
of occlusions, missed detections and low signal-to-noise ratio that are observed in most
subcellular transport image sequences. Kymograph projection can circumvent some of these
issues, allowing analysis of axonal transport (Haghnia et al., 2007; Ludington and Marshall,
2009). For example, Mukherjee et al. use kymographs to automatically analyse BDNF
organelle transport (Mukherjee et al., 2011). Kymographs are an excellent way to visualise
axonal organelle transport. However, approaches based on analysing organelle transport
directly from kymographs assume a straight 1D axon. Because the axon has curvature and
thickness, such approaches introduce systematic measurement error into organelle motion
analysis. Tracking organelle transport by extracting motion parameters from the kymograph
also discards 2D motion information that may be discriminative. Our approach is to track
axonal organelle transport directly on the 2D image sequence data, rather than on the
kymograph.

Several other tracking approaches have been proposed for analysing live-cell fluorescence
image sequences. Jaqaman et al. use single frame assignment to build organelle track
segments in fluorescence microscope image sequences (Jaqaman et al., 2008). These track
segments are then linked using a second bipartite matching. The authors have provided a
well designed open-source software implementation of this tracking methodology in
conjunction with the paper. We compare the performance of this implementation with MAT
for simulated organelle data in Section 3.1. Similarly, Broeke et al. quantify organelle
transport along neuronal axons using a single-frame assignment tracker applied to
fluorescence labelled image sequences (Broeke et al., 2009).

Multitarget tracking has also been posed in a graph-theoretic framework where the
detections are treated as vertices of a graph and the edges are possible inter-frame
associations. Our approach was inspired by the directed graph formulation presented in
Shafique and Shah, where a k-partite hypergraph matching is used to solve for the optimal
track cover (Shafique and Shah, 2005). However, edge weights in the graph are generally
dependent on other associations in the graph e.g., weights based on velocity, acceleration,
etc. The tracking graph changes after every assignment. Thus, their tracking solution
required the addition of a greedy heuristic method, a limitation that our approach removes.
Berclaz et al. use a k-shortest paths algorithm to approximate the solution to Multiple
Hypothesis Tracking (MHT) formulated as an integer programming problem over a
Probabilistic Occupancy Map (POM) (Berclaz et al., 2011). As with other MHT approaches,
this algorithm requires an accurate statistical model of detection errors, in this case the
POM. The motion model of (Berclaz et al., 2011) is limited to edge constraints in the graph,
so this approach would likely be inaccurate in high object-density settings. Chenouard et al.
propose to use a branch and bound approach to solve the full MHT problem in polynomial
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time (Chenouard et al., 2009). Their approach is used for tracking Golgi units in live-cell
image sequences of Drosophila oocytes. However, branch and bound is not guaranteed to
achieve a polynomial time solution to the exponential MHT problem, and their approach
still requires statistical modelling of segmentation errors and occlusions.

We have developed a tracking approach called Multitemporal Association Tracking (MAT)
that solves the tracking problem across multiple image frames, is robust to segmentation
errors and does not require labor-intensive tuning of parameters related to the imaging
conditions or culture density. Instead, tracking cost function parameters are established once
for the type of object being tracked. MAT works by considering multiple frames of
segmentation results simultaneously. MAT searches forward from the current time instance
to find all feasible paths based on typical object behaviour and performs the association
between paths (rather than detected objects) and the current set of tracks. The association is
done at each time instance and uses a minimum spanning tree optimisation (Papadimitriou
and Steiglitz, 1998), iteratively assigning the lowest cost, or equivalently highest likelihood,
associations between tracks and feasible paths. This is described in detail in Section 2. By
minimising this cost function, MAT approximates the Bayesian a posteriori probability
estimate for the data association problem (Saerens et al., 2002). The key difference between
MAT and other approaches to solving the multitarget tracking problem is in the relaxation of
the requirement that a single track can be assigned to at most one detection, or future path in
the case of windowed tracking solutions. Allowing multiple tracks to share a single future
path matches the nature of the biological problem where organelles can appear to merge, and
also greatly reduces the complexity of the tracking solution.

MAT has been applied to image sequences containing phantom data and to the analysis of
transport of organelles and vesicles along neuronal axons. MAT has also been used for
automated stem-cell tracking and lineaging (Winter et al., 2011) where it achieved a
significant improvement in tracking accuracy compared to previous approaches (Cohen et
al., 2010). MAT is implemented in C++ and typically requires just a few seconds to track an
entire image sequence.

2 Methods
2.1 Multitemporal Association Tracking

Given the set of all detections Y returned by a segmentation routine we partition Y into the
subsets Yt where Yt is the set of detections in frame t and denote the ith detection in frame t

as . We construct the graph G with Y as its vertices and let the edges  of G
represent feasible forward-associations of detections in distinct frames t1 < t2. Any path τ on
the graph G represents a possible object track. Tracking is posed as a combinatorial
optimisation problem by assigning to each association a cost, representing the likelihood that
an object assumes a given sequence of states, and choosing the set of tracks, ω, so as to
optimise some objective function over the edge costs. New tracks are initialised with
previously untracked segmentation results. Tracking associations that constitute physically
impossible behaviours of the objects are assigned an infinite cost. We extend tracks so as to
minimise the track costs for each track in ω.

We denote a partially constructed object track terminating at vertex . Similarly an

extension of  passing through detections  is written  and the set

of all such feasible extensions is written as  for a constant window size W. The MAT

algorithm examines all possible associations of  to extensions  and we define
extension-to-track association costs
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(1)

 is the cost function encapsulating typical axonal organelle transport behaviour.

We define a matching edge in frame t, , if

(2)

for all feasible edges . The set of assigned edges is then , and
tracks are extended by

(3)

This optimisation approach guarantees a minimum cost for the extended object tracks 
within the window size W. This follows directly from equation (2) since any edge with cost

 would imply  does not satisfy equation (2) and thus . Figure 1 shows a
flow diagram for the MAT algorithm. Similar to a minimum spanning tree approach
(Papadimitriou and Steiglitz, 1998), we always choose the minimum cost edge to extend
tracks. One important consideration when using graph-theoretic combinatoric optimisation
to analyse multi-target tracking problems is that whenever we extend a track, it changes the
costs of other connected edges in the graph, due to the nature of the tracking problem. We
must therefore run the algorithm iteratively extending tracks from previously assigned edges
and subsequently computing new costs to future track extensions. This approach is similar to
belief propagation approaches to the data association problem (Chen et al., 2006). In
contrast to Chen et al. (2006), we relax the constraint that detections must be assigned to
only one track, allowing a ‘softer’ assignment of tracks to detections.

In order to analyse organelle transport on the axon we define a cost encapsulating typical
organelle behaviour. The axonal transport cost function is modelled as a combination of two
aspects, motion cost and appearance cost,

(4)

We multiply by a length penalty in order to discourage short tracks which will otherwise
have lower costs. Axonal transport is accomplished by kinesin proteins that are known to
move at a constant velocity. The main component of the motion cost is the coefficient of
variation of track velocity.

(5)

where μ(|ν(τ)|) and σ(|ν(τ)|) are the mean and standard deviation of instantaneous track
speed. This motion cost favours tracks with a constant velocity, encouraging track
extensions that adhere to the kinesin protein motion model. Similarly, aside from imaging
variations, a given organelle’s appearance should not vary much while being transported.
The appearance cost is a coefficient of variation over the track intensities to discourage
intensity variation.
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(6)

The appearance and motion cost terms encapsulate the typical behaviour of organelles
transported along the axon.

Because the axon is a narrow structure, axonal organelle transport imaging scenarios are
very crowded and noisy. As stated previously, this is challenging for a tracker as it creates a
large number of false detections and occlusions or missed segmentation errors. MAT uses
typical object behaviours rather than statistical models of segmentation errors and
occlusions. MAT implicitly handles false detection noise as false detections will not adhere
to the object model. Occlusions (merged detections) and missed detections are handled by

considering k-frame track extensions of the form  for k > 1, allowing a track to predict
past a missed segmentation or occlusion.

In the case of axonal transport analysis, organelles or vesicles are fluorescently labelled and
appear as bright dots or blobs in the microscope image sequences. We use a scaled Otsu
threshold (Otsu, 1979) with scale parameter α to identify foreground regions within a radius
of the axon centreline. For each foreground region we apply an extended-maxima transform
(Soille, 1999) with parameter h to find the local maxima in the blobs. These maxima
approximate the organelle centres to be tracked, and the foreground region corresponding to
each maximum is defined as the connected-component of the associated organelle. Figure
4(a) shows some segmentation results identifying foreground regions (green dots) and
organelle centres (red dots).

Using MAT as defined above, with windows size (W) of 6 frames, we can find the set of
tracks which best adheres to typical organelle transport behaviours. However, assuming on
average n detections per frame, we must examine nW track extensions per frame. Given m
frames this leads to a total of mnW cost evaluations over an entire sequence. The number of
extensions is polynomial in n, but clearly can be prohibitive in problems where there is
considerable noise or n is large. Generally, a small subset of the extensions represent
realistic object behaviours and we wish to gate the set of track extensions such that we only
consider this feasible subset. We constrain the instantaneous velocity, acceleration, and blur
distance of tracks to find the feasible subset. Organelle velocity is limited to 20 pixels/frame
and acceleration is constrained to less than 8 pixels/frame2. The blur constraint is derived
from the microscope imaging setup. The camera shutter captures photons from the
microscope for only the exposure ratio rexp=Δtexposure/Δtframe. A moving organelle will be
blurred during exposure. We approximate the blurred organelle by its connected-component
and thus the distance between organelle connected-components in adjacent frames should
not exceed 1–rexp times the organelle instantaneous velocity. Figure 4(c) shows blur
constraints projected onto a kymograph, yellow lines indicate that the blur constraint is
satisfied, blue lines indicate associations which will not be considered because they violate
the constraint.

3 Results
3.1 Phantom data

We project our tracking results onto kymographs to qualitatively verify the accuracy of
MAT applied to axonal organelles (see e.g., Figure 4(d)). More quantitative verification,
however, quickly becomes extremely difficult as there are generally between 40–70
detections per frame and hand verification for just a single organelle in one image sequence
can take hours – we are developing automated tools to improve this in the future. In order to
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make it easier to accurately evaluate and compare tracking performance, we generated
phantom data sets with properties similar to axonal transport data. Since the tracker relies on
an underlying segmentation to generate the set of detections, the phantom data sets also
decouple the evaluation of tracking performance from the segmentation algorithm.

Phantom data generation is initialised by creating a set of detection positions and associated
speeds such that the detections are randomly distributed within a radius of a phantom axon.
We move each detection following the curvature of the axon at the chosen speed and
distance from the centreline. Whenever a track leaves the frame a new track is initialised at
one of the ends of the axon. These rules create a set of tracks which maintain a constant
velocity. We also specify a percentage of randomly distributed false detections to add to
each frame. Figure 2 shows an example frame from the phantom axon data with 100
detections per frame and 60% false detection noise. We can then measure the accuracy of
the tracking algorithm under varying amounts of noise as follows. We write an edge
association originating from detection Ym ∈ Y as em ∈ Edges, with Edges the set of all
associations. We define tracking errors as

(7)

This is the set of incorrect associations in the tracking results. We also define a percentage
error.

(8)

which is simply the count of erroneous associations over the total true associations in the
phantom data set.

We generated phantom data sets ranging from 10–100 detections per frame and 0–60% false
detections per frame. For each combination of false detections and detections per frame we
generated 20 data sets resulting in a total of 600 phantom image sequences. For comparison
purposes we created a bipartite matching tracker which used exactly the same multitemporal
cost function, and the same input data, but applied the Hungarian algorithm (Kuhn, 2005), a
standard bipartite matching technique, to associate segmentation results to tracks. We also
applied the source implementation of the single particle tracking algorithm from (Jaqaman et
al., 2008). This implementation utilises a Kalman filter (Simon, 2006) single frame cost
function, which is the appropriate state estimation given that the organelles move at a
constant velocity. The search radius for this tracker was set to our maximum velocity gate,
and the gap closing parameter was left at the default of 10 frames. No additional parameter
tuning was attempted as our interest was in comparing with a generic tracking solution. We
applied the three tracking approaches to all 600 simulated image sequences and found the
median error rate ε over each of the 20 data sets with the same detections and false
detections per frame. As shown in Figure 3, MAT performs significantly better in crowded
noisy environments with an error rate of 1.6% compared to 12.4% for the bipartite matching
tracker that uses the same multiframe cost function and compared to 72% for the single
particle tracking approach in (Jaqaman et al., 2008). Because a single image sequence can
have tens or even hundreds of thousands of assignments, this reduction in error rate
translates into a very significant improvement in tracking performance. Figure 3 also shows,
however, that all the trackers are dependent on the accuracy of the underlying segmentation,
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i.e., as we increase false detections tracking errors also increase. This highlights the need to
improve segmentation as well as tracking in high target-density problems.

3.2 Brain Derived Neurotrophic Factor
Deficiencies in Brain Derived Neurotrophic Factor (BDNF) transport have been shown to
play a role in several neurodegenerative disorders such as Huntingon’s disease (Gauthier et
al., 2004). In order to examine the relationship between BDNF transport and Huntington’s
disease, image sequences were captured with the BDNF organelle fluorescently labelled for
two populations; a mutant huntingtin protein population and a wild-type population. Image
sequences were captured for eight experiments with 10–12 neurons in each experiment. Four
of the experimental data sets were made up of wild-type neurons and the other four were
comprised of mutant huntingtin neurons. We tracked BDNF transport in 90 image sequences
using MAT and calculated instantaneous velocities over all tracks. We collected all
velocities by data set and computed empirical probability distributions over the velocities for
each data set using a normalised histogram. The probability distributions were compared
using the Bhattacharya distance (Theodoridis and Koutroumbas, 2009) to create a pairwise
distance matrix over all eight data sets. The Bhattacharya distance has been shown to be an
effective measure of separability of probability distribution functions (Comaniciu et al.,
2000); it is related to the optimal Bayesian classification error. The distance matrix was
analysed with gap spectral clustering (Cohen et al., 2009), a robust computational technique
that provides a multiresolution, multidimensional anlaysis of the time sequence data
obtained from segmentation and tracking. Gap spectral clustering uses algorithmic statistics
(Vitanyi, 2006) to select the most meaningful clustering method for extracting information
from the distance matrix. The gap spectral clustering found two groups in the data, however
one data set from each group was misclassified for a total classification error of 25%. Table
1 summarises the classification results of the BDNF data sets.

3.3 Secretory sequence of Neuropeptide Y
As stated previously, axonal transport defects have been proposed as a mechanism leading
to axonal degeneration in several neurodegenerative diseases including MS. Inflammation is
an early symptom of MS; quantifying the effects of inflammation on axonal transport is an
important step in characterising the pathogenesis of MS. Labelling secretory sequence of
Neuropeptide Y (ssNPY) fluorescently marks all Golgi-derived vesicles, in contrast to
BDNF labelling which marks BDNF organelles specifically, thus it is a useful marker for
examining general axonal vesicle transport. In order to study the effects of inflammation on
axonal transport an ssNPY labelled neuron was treated with hydrogen peroxide (H2O2), a
common in vivo inflammatory mediator. Six image sequences of the labelled neuron were
captured before and periodically after the treatment. Though biologically distinct, ssNPY
and BDNF labelled image sequences are similar from an image analysis perspective, and in
both cases the organelles or vesicles being tracked behave in a similar manner, i.e., they are
transported along the axon of a neuron at a piecewise constant velocity by kinesin or dynein
motor proteins. Our analysis of the ssNPY vesicles used the same segmentation and axonal
transport cost function as the BDNF organelles described previously. Figure 4(d) and (e)
shows tracking results projected onto the kymograph and an associated image frame for the
ssNPY pre-treatment sequence. It is clear from the kymograph projection that there are still
tracking errors which might disrupt downstream analysis. Nonetheless our automated
tracking results achieved good concordance with manual analysis of the same data, as shown
in Figure 5.

The six movies from this data set show transport along a neuron before and at various times
after undergoing H2O2 treatment. We applied our tracker to all six movies and collected
counts of vesicles moving in the anterograde (toward the distal end of the axon) and
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retrograde (toward the soma) directions. The transport direction is biologically significant
because generally anterograde and retrograde transport are carried out by different proteins.
Figure 5 shows a comparison of our results to manual measurements of anterograde and
retrograde transport made on a kymograph for the same image data. Both the manual and
automated tracking results detected a difference in the effect of the H2O2 treatment on
anterograde versus retrograde motion. Interestingly, the retrograde transport was impacted
differently than anterograde transport, with anterograde transport declining as the fraction of
retrograde transport increased.

4 Discussion
Neural axon transport image sequences offer a particularly challenging environment for
automated tracking and analysis algorithms. There is a great need for automated tools which
perform well on such sequences, as manual analysis of the data is quickly becoming
infeasible due to the large number of image sequences being analysed. We have developed a
multiframe graph-theoretic tracking algorithm which performs well in noisy, high occlusion
environments such as those found in axonal transport image sequences. The MAT algorithm
does not require explicit modelling of imaging parameters or object densities but relies only
on typical object behaviours modelled by the cost function. This has allowed use of the
MAT tracker in the examination of several similar axonal transport problems as well as use
in a stem-cell tracking and lineaging application (Winter et al., 2011).

We present preliminary results of application of MAT to the analysis of organelle and
vesicle transport along neuronal axons as well as phantom data with similar properties.
Analysis on the phantom transport data shows MAT consistently outperforms other bipartite
matching trackers with an error rate of about 1.6% compared with 72% for the tracker of
Jaqaman et al. (2008). We applied MAT to BDNF organelle transport sequences and were
able to use gap spectral clustering to separate the data into mutant-huntingin and wild-type
groups with an error rate of 25%. MAT analysis of percentage of retrograde and anterograde
transport of Golgi-derived vesicles before and after H2O2 treatment agrees with manual
analysis, highlighting an interesting difference between the impact of the treatment on
retrograde versus anterograde transport.

MAT does have limitations. First, MAT requires a window size (W) image frames be
available at the time of tracking. If an application requires the tracks be updated every time a
new image frame becomes available, then a hybrid approach combining MAT with other
methods would have to be developed. Also, the MAT cost function must be carefully
constructed to capture typical behaviour for objects being tracked. Once the cost function is
constructed however MAT is applicable to any sequence containing the modelled objects.
Finally, though MAT has a very low error rate, e.g., 1.6% on the phantom data, even minor
tracking errors in biological image sequences may significantly affect further analysis. We
are thus developing editing tools to allow for the correction of segmentation and tracking
errors. We have previously developed tools for the validation and editing of stem-cell
lineages (Winter et al., 2011) and similar editing tools are in development for axonal
transport analysis.
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Figure 1.
Flow diagram for multitemporal association algorithm

Winter et al. Page 11

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2012 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Single frame of phantom data. (left) All detections generated within 8-pixels of a phantom
axon (blue line). (right) Zoom view showing true objects with organelle centres (red dots)
and tails indicating direction and magnitude of velocity. False detections are marked with a
magenta ‘x’ (see online version for colours)
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Figure 3.
Comparison of error rate for MAT (green surface), a bipartite assignment tracker using
axonal transport cost function (orange surface) and a conventional single particle bipartite
tracking solution using source code provided by Jaqaman et al. (2008) (blue surface). MAT
achieves significantly better performance in the presence of high noise and target densities
(see online version for colours)
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Figure 4.
Segmentation of ssNPY organelles, peaks (red) and connected components (green), the blue
line is the axonal centreline used to generate the kymograph (a). Kymograph generated from
pretreatment ssNPY organelle image sequence; (b). Blur distance constraints projected onto
a portion of the kymograph, detections (red), satisfied constraints (yellow), and outside blur
constraint (blue) (c). Pretreatment ssNPY tracks overlaid on the kymograph, example track
highlighted in red (d). Axon image with arrows pointing to tracked organelles and an
example organelle track highlighted and labelled (e) (see online version for colours)
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Figure 5.
Manual and automated analysis of the transport of the ssNPY vesicle before and after
treatment with H2O2 (see online version for colours)
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Table 1

BDNF classification results

Dataset Movies in dataset Actual classification Gap spectral clustering classification

1 9 Wild-type Group A

2 14 Huntington’s Group A

3 14 Wild-type Group A

4 7 Huntington’s Group B

5 10 Huntington’s Group B

6 14 Wild-type Group B

7 12 Huntington’s Group B

8 10 Wild-type Group A

Total movies Total classification errors

90 2 (25%)

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2012 September 21.


