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Regulation of hippocampal inhibitory circuits by nicotinic
acetylcholine receptors
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Abstract The hippocampal network comprises a large variety of locally connected GABAergic
interneurons exerting a powerful control on network excitability and which are responsible for
the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an
important cholinergic innervation from the medial septum-diagonal band complex of the basal
forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors
(mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the
impairment of high cognitive functions, which are particularly relevant in neurodegenerative
pathologies such as Alzheimer’s and Parkinson’s diseases as well as in schizophrenia. Here, we
highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs
regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We
also discuss recent findings concerning the functional role of nAChRs in controlling short- and
long-term modifications of synaptic efficacy. Insights into these processes may provide new targets
for the therapeutic control of pathological conditions associated with cholinergic dysfunctions.
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Introduction

Since the pioneering studies of Ramón y Cajal (1899) and
Lorente de Nó (1922) it has become clear that local circuit
inhibitory interneurons constitute a very heterogeneous
group of cells. By releasing γ-aminobutyric acid (GABA)
into their postsynaptic targets they exert a powerful
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control on network excitability and are responsible for the
oscillatory behaviour, crucial for information processing
in the brain. Interneurons can be differentially classified
according to their morphology, biophysical properties,
molecular expression profile and connectivity (Freund
& Buzsaki, 1996; McBain & Fisahn, 2001). In the
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CA1 hippocampal region for instance, relatively uniform
excitatory pyramidal cells are supported by more than 20
different types of interneurons (Klausberger & Somogyi,
2008).

In contrast to principal cells that exhibit long axons
projecting information to distant brain areas, GABAergic
interneurons present short axons that selectively innervate
different domains of pyramidal cells, thus providing the
main source of feedback and feed-forward inhibition
(Miles et al. 1996; Maccaferri & Lacaille, 2003; Kullmann,
2011). The spatio-temporal dynamics between the activity
of interneurons and pyramidal cells leads to coherent
oscillations (Klausberger et al. 2003, 2004; Somogyi &
Klausberger, 2005), which support different behavioural
states and high cognitive tasks (Klausberger & Somogyi,
2008). Oscillatory rhythms are facilitated by the intrinsic
properties of GABA-releasing cells (Maccaferri & McBain,
1996) and by their electrical coupling via gap junctions
(Hestrin & Galarreta, 2005).

Interestingly hippocampal interneurons receive an
important cholinergic innervation from the medial
septum–diagonal band complex of the basal forebrain
(Frotscher & Léránth, 1985) and are endowed with
nicotinic acetylcholine receptors (nAChRs), the activation
of which contributes to the setting of the cooperative
temporal framework that provides the basis for high
cognitive functions (Rezvani & Levin, 2001).

Neuronal nAChRs belong to the large cysteine loop
of the ligand-gated ion channel superfamily and are
composed of five subunits organized in a variety of
allosteric oligomers (Changeux & Edelstein, 2005). Several
different nAChR subunits, α2–α10 and β2−β4, have
been cloned. They may assemble in various combinations
to generate a large variety of nAChR subtypes with
different biophysical and pharmacological properties (Le
Novère & Changeux, 1995). While α7−α10 subunits form
channels sensitive to the snake venom α-bungarotoxin
(α-BGTx), α2 and α6 combine with β2−β4 subunits to
produce channels insensitive to α-BGTx. The two major
nAChR subtypes present in the hippocampus are homo-
meric α7 and heteromeric α4β2 nAChRs (Alkondon &
Albuquerque, 2004). These receptors are permeable to
cations including calcium. Calcium permeability varies
among different receptor types, being highest in the
homomeric α7 nAChRs (Fucile, 2004). This characteristic
allows nAChRs to play a key role in calcium-mediated
events including neurotransmitter release, regulation of a
variety of signal transduction cascades, cell survival and
apoptosis.

Deficits in the cholinergic system produce impairment
of cognitive functions, which are particularly relevant
during senescence and in age-related neurodegenerative
pathologies (Selkoe, 2002), and nicotine is known to
enhance cognitive functions, via nAChRs, in some
Alzheimer’s disease patients (Nordberg, 1994).

This review examines how cholinergic signalling
controls via nAChRs the correlated network activity pre-
sent in the hippocampus early in postnatal life and
orchestrates the functional properties of GABAergic inter-
neurons in a cell-specific manner. In particular, recent
advances in nAChR-mediated modulation of short- and
long-term synaptic plasticity processes in local inhibitory
circuits are highlighted.

nAChRs control correlated network activity in the
immature hippocampus

It has been well established that nAChRs contribute to
the functional maturation of the brain (Chang & Berg,
1999; Aramakis et al. 2000; Rossi et al. 2001; Kawa, 2002)
and that their excessive activation by perinatal exposure to
nicotine impairs cognitive functions by interfering with
the development of areas involved in these processes
(Johns et al. 1982; Levin et al. 1993; Ernst et al. 2001;
Linnet et al. 2003).

In the rat hippocampus, mRNAs for the α7 and β2
subunits are present early during embryogenesis but their
expression patterns differ. The density of [3H]-epibatidine
binding sites, an indicator of heteromeric nAChRs,
remains stable during postnatal development (Tribollet
et al. 2004). Conversely, the expression of α7 mRNA and
the density of [125I]-α-BGTx binding sites, an indicator of
α7 nAChRs, are particularly high during the first postnatal
week and decrease subsequently (Shacka & Robinson,
1998; Tribollet et al. 2004). This suggests that, at least
in the CA1 region of the hippocampus, the balance
between α7- and β2-containing nAChRs changes during
postnatal development. This may lead to differences in
nicotine-induced modulation of synaptic and network
activity.

At the network level, the immature hippocampus is
characterized by a correlated activity (giant depolarizing
potentials or GDPs; Ben-Ari et al. 1989), generated by
the synergistic action of glutamate and GABA which, at
this developmental stage, is depolarizing and excitatory
(Cherubini et al. 1991; Ben-Ari et al. 2007). This activity
represents a primordial form of synchrony between
neurons preceding more organized forms such as the
theta and the gamma rhythms and it is instrumental
in enhancing synaptic efficacy at poorly developed
GABAergic and glutamatergic synapses (Kasyanov et al.
2004; Mohajerani et al. 2007). A previous report on CA3
pyramidal neurons in the hippocampus has demonstrated
that nAChRs are present and functional from the first
postnatal day and that nicotine cholinergic signalling via
α7 and non-α7 nAChRs exerts a powerful regulatory
action on network-driven GDPs (Maggi et al. 2001). Since
glutamatergic terminals projecting to pyramidal neurons
are controlled only by α7 nAChRs, the nicotine-induced
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increase in GDP frequency observed in α7−/− mice can
be attributed to the enhancement of GABA release from
GABAergic interneurons via β2-containing nAChRs (Le
Magueresse et al. 2006; Fig. 1). It is worth noting that,
in α7−/− mice, nicotine failed to increase the frequency
of interictal discharges obtained towards the end of the
first postnatal week by blocking the GABAA receptor with
bicuculline (Le Magueresse et al. 2006). Activation of α7
nAChRs, probably localized on associative-commissural
fibres involved in the generation of bursting activity (Miles
& Wong, 1987), may account for this effect. Therefore,
while modulation of glutamatergic signalling needs the

activation of α7 nAChRs (see also Maggi et al. 2003),
regulation of GABAergic transmission needs the activation
of both α7- and β2-containing nAChRs (Le Magueresse
et al. 2006).

In addition, at least in the CA1 region of the
hippocampus, the potency of the observed effects and
the involved nAChR subtypes vary among different
lamina in a neuron-type-specific way (Le Magueresse
et al. 2006). This may differently affect the fine regional
tuning of GABAergic and glutamatergic transmission and
hippocampal wiring. It is important to mention that
during the first week of postnatal life nicotinic cholinergic

Figure 1. Different regulation of GDPs and interictal discharges by nAChRs
A, representative traces recorded at P5–P6 from CA1 pyramidal neurons in hippocampal slices obtained from WT,
α7−/− and β2−/− mice, respectively, in control conditions and in the presence of nicotine (1 μM). The inset above
the traces represents a GDP at an expanded time scale. B, each column represents nicotine-induced changes of GDP
frequency as a percentage of control (dashed line); n = 6–12. C and D, as in A and B but for interictal discharges
induced by bicuculline at P9–P10 (see the inset above the traces); n = 3–13; ∗P < 0.05; ∗∗P < 0.01. While nicotine
enhanced GDPs frequency via activation of α7- and β2-containing nAChRs, it increased the frequency of interictal
discharges only via α7 nAChRs, indicating a different distribution of nAChRs between GABAergic interneurons
and principal cells. Modified from Le Magueresse et al. 2006.
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activity drives, mainly via α7 nAChRs, maturation of
GABAergic signalling, contributing in this way to the shift
of GABA from the depolarizing to the hyperpolarizing
direction (Liu et al. 2006).

nAChRs regulate the functional properties of
GABAergic interneurons in a cell-specific manner

In the rat and mouse hippocampus, nAChRs are
expressed at both pre- and post-synaptic sites (Zoli
et al. 1998; Sudweeks & Yakel, 2000; Fabian-Fine et al.
2001). The activation of presynaptic nAChRs induces
a calcium-dependent increase in the probability of
transmitter release (Gray et al. 1996; Vizi & Lendvai,
1999; Alkondon & Albuquerque, 2001). In particular,
α7 nAChRs that are expressed on both glutamatergic
and GABAergic terminals modulate the release of both
glutamate and GABA. Calcium increase in presynaptic
nerve terminals occurs through nAChR channels, high
voltage-dependent calcium channels (of the N, P/Q and R
types) activated by the depolarizing action of nicotine or
endogenously released ACh and calcium-induced calcium
release from internal stores (Le Magueresse & Cherubini,
2007). Interestingly, activation of α3β4 nAChRs localized
on axon terminals of parvalbumin-positive cells can
boost tetrodotoxin-insensitive GABA release via low
voltage-gated calcium channels (of the T-type) and
calcium-induced calcium release (Tang et al. 2011).
The cholinergic enhancement of GABA release from
perisomatic-targeting parvalbumin-expressing cells may
affect gamma oscillations which, together with theta
waves, occur during spatial navigation, memory tasks
and rapid-eye-movement sleep (Klausberger & Somogyi,
2008). Furthermore, α3β4β2 nAChRs, present on
glutamatergic axons synapsing on stratum radiatum
interneurons, exert a powerful control on their resting
excitability (Alkondon et al. 2011). Thus, mecamylamine
(a non selective nAChRs antagonist) is able to reduce
the frequency of action currents recorded in cell-attached
mode from basket cells in stratum radiatum. The lack
of methyllycaconitine (MLA; a selective α7 nAChR
antagonist) in the modification of the firing frequency
of stratum radiatum interneurons may be attributed
to the low level of ‘ambient’ acetylcholine (ACh) in
hippocampal slices, insufficient to trigger interneuronal
firing via low-affinity α7 nAChRs, apparently localized
together with α3β4β2 on glutamatergic axons.

The activation of nAChRs localized postsynaptically
on the somato-dendritic compartments produces specific
responses in pyramidal cells and interneurons. However,
while in pyramidal cells nAChR agonists produce no
responses or barely detectable responses (Frazier et al.
1998b; McQuiston & Madison, 1999; Khiroug et al.
2003; but see Ji et al. 2001), in interneurons they

induce responses whose kinetics and pharmacology vary
among different cell types (Frazier et al. 1998a). Previous
studies, using conventional pharmacological tools, have
indicated that a local application of ACh to interneurons
present in stratum radiatum and stratum lacunosum
moleculare induces fast and slow decaying responses
selectively blocked by α-BGTx/MLA or DHβE, indicating
that they are mediated by α7 and β2 containing nAChRs,
respectively (Frazier et al. 1998a, Alkondon et al. 1999).
It is worth noting that α7 nAChRs undergo rapid
desensitization (Hogg et al. 2003), a condition that would
limit, in case of excessive agonist stimulation, membrane
excitability and action potential firing (Alkondon et al.
2000). Fast and slow responses to ACh can be also recorded
in stratum oriens interneurons (McQuiston & Madison,
1999). These cells are innervated by axon collaterals
of pyramidal cells (Blasco-Ibanez & Freund, 1995) and
project back to principal cells in stratum lacunosum
moleculare (Lacaille et al. 1987; Ali & Thompson, 1998;
Maccaferri et al. 2000; Maccaferri, 2005), contributing in
this way to local feedback circuits. The kinetics correlation
of currents evoked by ACh in stratum radiatum and
stratum oriens interneurons with single-cell RT-PCR
analysis revealed responses with fast kinetics, mediated
by α3 and α7 subunits and responses with slow kinetics
mediated by α2 and α4 subunits (Sudweeks & Yakel, 2000).
The α4 and α2 subunits, certainly in combination with
one or more β subunits, may be the major contributors
to slow activating non-α7 responses detected in stratum
radiatum and stratum oriens interneurons. In particular,
stratum oriens interneurons express high levels of α2
subunits (Wada et al. 1989; Yakel & Shao, 2004), which
support sustained non-desensitizing responses (Jia et al.
2009). According to McQuiston & Madison (1999), inter-
neurons localized near the stratum pyramidale with
axons providing perisomatic inhibition are insensitive to
nAChR agonists. A schematic simplified view of different
subtypes of nAChRs expressed on pyramidal cells and
GABAergic interneurons of the CA1 hippocampal region
is represented in Fig. 2.

nAChRs can be endogenously activated by acetylcholine
released from the septal cholinergic projection (Frotscher
& Léránth, 1985) or from intrinsic cholinergic inter-
neurons (Frotscher et al. 1986). The latter comprise a
small number of cells localized in the dentate gyrus
and in the hippocampus proper, immunopositive for
the acetylcholine-synthesizing enzyme choline acetyl-
transferase (Frotscher et al. 2000) and projecting
specifically to GABAergic interneurons (Freund &
Buzsaki, 1996). ACh released from cholinergic inter-
neurons would regulate, via nAChRs present on
GABAergic cells, network activity generated in the rat
and mouse CA3 hippocampal region (Cobb et al.
1999). Thus, after degeneration of septal cholinergic
terminals, the hippocampal network is still able to support
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nAChR-dependent theta-mode activity, suggesting that
intrinsic cholinergic circuits may provide the neuro-
transmitter necessary for nAChR activation (Cobb et al.
1999).

It is important to mention that cholinergic fibres arising
from the medial septum–diagonal band complex have a
number of transmitter-containing varicosities which only
in a few cases face postsynaptic specializations (Descarries
et al. 2004). This has led to the idea that cholinergic
signalling may occur mainly via non-synaptic volume
transmission (Umbriaco et al. 1995). In the volume trans-
mission mode, ACh released from the synaptic cleft
and/or from non-synaptic varicosities diffuses away to
activate extrasynaptic nAChRs. This may explain the
higher probability of producing slow nAChRs-mediated
responses upon sustained stimulation of cholinergic fibres
(Ren et al. 2011).

Fast cholinergic synaptic signalling involving vesicle
exocytosis has been clearly detected in interneurons,
while its presence in principal cells has been questioned
(but see Hefft et al. 1999 and Grybko et al. 2011,
for fast nAChR-mediated EPSCs in rats and mice,
respectively). Hence, electrical stimulation of cholinergic
fibres, in the presence of blockers of ionotropic
glutamatergic and GABAergic transmission, elicits in

stratum radiatum interneurons fast α7-mediated synaptic
responses (Alkondon et al. 1998; Frazier et al. 1998b, 2003).

It is clear from this overview that nAChRs enhance
GABAergic transmission from hippocampal interneurons.
The magnitude and the final output of the response
would depend on the subtypes of receptors involved and
on neuronal connectivity. This may inhibit or disinhibit
principal cells ( Ji & Dani, 2000). Disinhibition of
pyramidal neurons has been shown to facilitate gamma
oscillations (Wang & Buzsaki, 1996).

nAChRs regulate the activity of O-LM interneurons

O-LM interneurons constitute a well-defined cellular
population with soma and horizontal dendrites running
parallel to the alveus and long axons that target the
apical dendritic tufts of CA1 pyramidal cells aligned
with entorhinal cortical inputs in stratum lacunosum
moleculare (Lacaille et al. 1987; Maccaferri & McBain,
1996; Ali & Thomson, 1998; Maccaferri et al. 2000).
O-LM interneurons, which contain somatostatin and
express mGluR1α and neuropeptide Y receptors (Baude
et al. 1993; Freund & Buzsaki, 1996; Katona et al.
1999; Maccaferri et al. 2000; Losonczy et al. 2002),
exhibit fast spiking firing patterns caused by high

Figure 2. Simplified view of the expression of different nAChR subtypes on pyramidal cells and
GABAergic interneurons present in the CA1 hippocampal region
SLM, stratum lacunosum moleculare; SR, stratum radiatum; SP, stratum pyramidale; SO, stratum oriens;
PY, pyramidal cells; PV+, parvalbumin-positive; CCK+, cholecystokinin-positive; AA, axo-axonic interneurons;
O-LM, oriens-lacunosum moleculare; PPA, perforant path-associated lacunosum moleculare or lacunosum
moleculare-radiatum interneurons; NG, neurogliaform cell. Dashed lines represent glutamatergic terminals from
pyramidal cells (yellow) or from GABAergic interneurons (blue).
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densities of expression of voltage-gated sodium and
potassium channels (Atzori et al. 2000; Martina et al.
2000; Lien et al. 2002; Lien & Jonas, 2003; Lawrence
et al. 2006a). Moreover, they are endowed with
hyperpolarization-activated channels (HCNs) carrying Ih,
which underlies their pacemaker properties (Maccaferri &
McBain, 1996; Ali & Thomson, 1998; Minneci et al. 2007)
and with calcium-dependent potassium channels (BK and
SK), which control action potential repolarization and
the afterhyperpolarization (AHP), respectively (Zhang
& McBain, 1995a,b). In vivo studies have demonstrated
that during theta oscillations, O-LM cells become very
active and, in cooperation with bistratified cells, modulate
the dendrites of pyramidal cells one-quarter of a theta
cycle after parvalbumin-expressing basket cells discharge
(Klausberger & Somogyi, 2008). The O-LM firing is
suppressed during ripple episodes (Klausberger et al.
2003). Furthermore, in vitro studies have shown that
O-LM interneurons exhibit intrinsic resonance and spike
transfer frequency preference within the theta range
(Gillies et al. 2002; Pike et al. 2000; Hájos et al. 2004;
Gloveli et al. 2005).

We used transgenic mice expressing enhanced green
fluorescent protein in a subpopulation of stratum oriens
interneurons containing somatostatin (Oliva et al. 2000)
to assess the functional role of nAChRs on the firing
properties of O-LM cells. Hence, we found that the post-
synaptic calcium increase through calcium-permeable
nAChRs and voltage-dependent calcium channels,
activated by the depolarizing action of nicotine, facilitates
the mobilization of calcium from intracellular stores.

This, in turn, activates apamin-sensitive
calcium-dependent potassium conductances responsible
for cell firing adaptation (Griguoli et al. 2009; Fig. 3). This
effect follows the initial one consisting in an enhanced cell
firing caused by the opening of cation-permeable channels
(see also McQuiston & Madison, 1999) and probably
mediated by non-desensitizing α2-containing nAChRs
(Jia et al. 2009). Calcium increase via calcium-induced
calcium release mechanisms will contribute to the
prolongation of the effects of nicotine on firing
adaptation. Like O-LM interneurons, auditory outer hair
cells in the cochlea present a unique inhibitory synapse
that uses a calcium-permeable excitatory acetylcholine
receptor to activate hyperpolarizing currents mediated
by SK channels (Art et al. 1984; Fuchs & Murrow,
1992; Blanchet et al. 1996). Previous studies from
stratum oriens interneurons have demonstrated that
cholinergic signalling via muscarinic receptors is crucial
for tuning active conductances and for enhancing cell
firing reliability (Lawrence et al. 2006a,b). Therefore, the
dynamic integration of muscarinic and nicotinic signals
will differentially control the firing properties of O-LM
interneurons and rhythmogenesis.

nAChRs control activity-dependent synaptic plasticity
processes

It is well known that nicotine, the neuroactive component
of tobacco, enhances certain forms of memory (Rezvani
& Levin, 2001). This occurs through nAChRs, highly
expressed at pre- and post-synaptic sites in brain areas
controlling learning and memory processes. In the
hippocampus, a brain structure essential for encoding new
declarative memories, nicotine has been shown to facilitate
long-term potentiation (LTP) and convert short-term
potentiation (STP) to LTP (Fujii et al. 1999; McGehee,
2002; Mann & Greenfield, 2003; Nashmi et al. 2007).
The direction of synaptic changes (LTP or long-term
depression, LTD) is strictly dependent on the localization
of nAChRs and on the timing of their activation (Ji
et al. 2001; Ge & Dani, 2005). For example, activation of
nAChRs on CA1 pyramidal neurons can boost STP to LTP
while stimulation of nAChRs on nearby interneurons can
block LTP (Ji et al. 2001). In addition, exogenously applied
ACh may convert STP to LTP or LTD, depending on the
timing relative to afferent stimulation (Ge & Dani, 2005).
In a series of elegant experiments, Gu & Yakel (2011),
using electrophysiological and optogenetic tools, have
demonstrated that different types of synaptic plasticity
could be elicited in CA1 principal cells depending on
the timing of the septal cholinergic input related to the
Schaffer collateral input. Thus, stimulation of cholinergic
afferents 100 ms or 10 ms prior to the Schaffer collateral
resulted in α7 nAChR-dependent LTP or short-term
depression (STD), respectively. It would be of interest to
know how the precise timing of cholinergic modulation of
synaptic plasticity at glutamatergic synapses affects local
inhibitory circuits and rhythmogenesis.

In stratum radiatum interneurons, activation of α7
nAChRs by local photolysis of caged carbachol has been
shown to significantly enhance cytoplasmic calcium levels
in the perisomatic area (Khiroug et al. 2003). However,
in these experiments, the extension of nAChR-mediated
responses was probably underestimated due to dendritic
filtering. More recently, calcium transients induced by
activation of extrasynaptic nAChRs could be revealed also
on dendrites of stratum radiatum interneurons (Rózsa
et al. 2008). Dendritic calcium signalling, which increases
as a function of the distance from the soma, interacts
with back-propagating action potentials and, depending
on the timing of α7 nAChR activation, may either
potentiate or depress excitatory postsynaptic potentials.
This cholinergic switch may be relevant for memory
encoding and retrieval (Chang & Gold, 2003).

It is worth mentioning that a novel form of short-term
plasticity involving extrasynaptic nAChRs, which closely
depends on the time of agonist exposure and on the inter-
val between exposures, has been described in stratum
radiatum interneurons. By combining a dual-pulse
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uncaging protocol with patch clamp recordings, Klein
& Yakel (2005) have found that at short intervals (less
than 200 ms) the second α7 nAChR-mediated response
evoked by photolysis of caged carbachol is potentiated
whereas at longer intervals it is depressed, probably
because of nAChR desensitization. The potentiating effect
is mediated by calcium-dependent processes and requires
receptor phosphorylation. Calcium-permeable nAChRs
may also modulate the activity of other nearby localized
receptors. Two recent studies (Wanaverbecq et al. 2007;
Zhang & Berg, 2007) have demonstrated that calcium
increase via α7 nAChRs, activated by direct application of
nicotine or by endogenously released ACh, down-regulates
GABAA-mediated synaptic currents. This effect can be
favoured by the co-clustering of α7 nAChRs with GABAA

receptors (Zago et al. 2006) but may occur also at distant

sites via volume transmission (Umbriaco et al. 1995).
The depressant effect which involved the activation of
PKC, calcium–calmodulin-dependent protein kinase II
and mitogen-activated protein kinase (MAPK), was clearly
postsynaptic since it was blocked by chelating calcium
in the postsynaptic cell and was not associated with
modification in the paired-pulse ratio, a clear index of
presynaptic release probability (Zucker, 1989). Whether
the observed effect can be attributed to PKC-driven
GABAA receptor phosphorylation or receptor inter-
nalization remains to be clarified. Interestingly, in the pre-
sence of α7 nAChR antagonists no run-down of whole
cell GABAergic currents occurred, suggesting that in
physiological conditions, GABAA receptors are controlled
by ACh endogenously released from cholinergic fibres
(Zhang & Berg, 2007). Down-regulation of GABAergic

Figure 3. Activation of nAChRs by nicotine or
endogenously released ACh reduces the firing rate
of O-LM interneurons
A, camera lucida reconstruction of a O-LM cell. B, puff
application of nicotine induces a fast inward current
followed by a slow one. In the presence of αBGTx
(100 nM, middle) a slow component is unveiled.
Pressure application of choline to another cell induces a
fast response. C, regular spiking interneuron in control
and after bath application of nicotine. D, each column
represents the mean spike frequency values (expressed
as percentage of control, dashed line), obtained in the
presence of nicotine (n = 21) and nicotine plus MLA
(n = 16) or DHβE (n = 16). E, a regular spiking neuron
recorded before (Control) and immediately after
delivering one train of high-frequency stimuli (2 s
duration at 25 Hz) to cholinergic fibres in the alveus (in
the presence of atropine). F, as in E but in the presence
of a high (50 μM) concentration of DHβE. G, each
column represents the mean spike frequency values
obtained after stimulation of cholinergic fibres in the
absence (open, n = 8) or in the presence (filled, n = 8)
of DHβE and expressed as percentage of control
(dashed line). ∗P < 0.05; ∗∗∗P < 0.001. Modified from
Griguoli et al. 2009.
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signalling may potentiate NMDA-mediated synaptic
currents in principal cells and facilitate LTP induction,
as demonstrated at CA3–CA1 synapses (Yamazaki et al.
2005, 2006),

At excitatory synapses between CA1 pyramidal cells
and O-LM interneurons, a novel NMDA-independent
form of LTP has been recently described (Lamsa et al.
2007). This form of LTP requires the activation of
calcium-permeable AMPA receptors and type I mGluRs,
and it has been named anti-Hebbian because presynaptic
activation coincides with postsynaptic quiescence. This
occurs when high-frequency stimulation (HFS) of pre-
synaptic fibres is delivered to postsynaptic neurons
maintained hyperpolarized (Lamsa et al. 2007; Le Duigou
& Kullmann, 2011). Calcium-permeable AMPA receptors
exhibit, in fact, a strong inward rectification that favours
calcium entry at hyperpolarizing membrane potentials.
Calcium rise via calcium-permeable AMPA receptors and
mGluRs would activate a transduction pathway necessary
for LTP induction. It would be of interest to test whether
cholinergic signalling via nAChRs and mAChRs (activated
by ACh released from cholinergic fibres during HFS)
may contribute to anti-Hebbian LTP. It is known that,
as calcium-permeable AMPA receptors, nAChRs exhibit a
pronounced inward rectification (Bertarnd et al. 1993) due
to polyamine block at depolarizing potentials (Haghighi
& Cooper, 1998), a condition that favours calcium entry at
relatively negative membrane potentials. In addition, since
the concentration of polyamines in the cytoplasm could
be dynamically regulated and nAChRs are several times
more sensitive to spermine block than AMPA receptors
(Haghighi & Cooper, 1998), it may be possible that
their attenuation following repetitive synaptic activation
(Rozov & Burnashev, 1999) will preferentially block
nAChRs, promoting in this manner calcium flux via these
receptor types.

Conclusions

The data reviewed here clearly indicate that cholinergic
signalling via nAChRs plays a crucial role in regulating
local GABAergic circuits in the hippocampus. Much
remains to be discovered about the underlying cellular and
molecular processes. In particular, most of the reported
studies failed to characterize how nAChR signalling
regulates the activity of well-identified interneuronal sub-
types. In addition, it is unclear how nAChR-mediated
changes in synaptic efficacy may affect the dynamic
properties of the hippocampal circuit, rhythmogenesis,
and how these functional changes relate to behaviour.
These have important implications not only for the under-
standing of how information is stored and processed in
the brain but also for pathological conditions including
Alzheimer’s and Parkinson’s diseases and schizophrenia

in which a cholinergic dysfunction parallels the loss of
high cognitive functions (Kenney & Gould, 2008).

Selectively activating or silencing cholinergic input
in specific neuronal ensembles using optogenetic tools
will allow the correlation of hippocampal microcircuit
functional structure with animal behaviour in both
physiological and pathological conditions.
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