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Abstract

Complex networks describe how entities in systems interact; the structure of such networks is
argued to influence processing. One measure of network structure, clustering coefficient, C,
measures the extent to which neighbors of a node are also neighbors of each other. Previous
psycholinguistic experiments found that the C of phonological word-forms influenced retrieval
from the mental lexicon (that portion of long-term memory dedicated to language) during the on-
line recognition and production of spoken words. In the present study we examined how network
structure influences other retrieval processes in long- and short-term memory. In a false-memory
task—examining long-term memory—participants falsely recognized more words with low- than
high-C. In a recognition memory task—examining veridical memories in long-term memory—
participants correctly recognized more words with low- than high-C. However, participants in a
serial recall task—examining redintegration in short-term memory—recalled lists comprised of
high-C words more accurately than lists comprised of low-C words. These results demonstrate that
network structure influences cognitive processes associated with several forms of memory
including lexical, long-term, and short-term.
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Mathematics, physics, computer science, and other fields use complex networks to model
large-scale systems (for a review see Albert & Barabési, 2002). Entities in these systems,
such as people, animals, or web-pages, are represented as nodes in the network, and
relationships, such as friendships, predator-prey interactions, or hyperlinks connecting web-
pages, are represented as connections (a.k.a. edges or links) between nodes in the network.
The emerging pattern of connections among the nodes may resemble a lattice (/.e., a regular
network), appear to be random (/.e., a random network), or, more interesting, contain certain
features of both regular and random networks. Network structures that contain certain
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features of both regular and random networks are often found in real-world systems, and are
referred to as complex networks.

Although complex networks have primarily been used to model social, biological, and
technological systems, they can also be used to examine complex cognitive systems. The
assumptions associated with complex networks should not be confused with the assumptions
associated with other types of “networks” that have been used in the cognitive sciences, such
as artificial neural networks (Rosenblatt, 1958) semantic networks (Quillian, 1967), or
linguistic nections (Lamb, 1970). An example of the complex network approach applied to
cognitive science is found in Vitevitch (2008), in which nodes represented approximately
20,000 English words, and connections represented phonological similarity between words
(using the metric in Luce & Pisoni, 1998; for semantic relationships see: Hills et al. 2009). A
sample of words from the network examined by Vitevitch (2008) is shown in Figure 1.

Analysis of the network of phonological word-forms in English revealed several interesting
structural features: (1) a large highly interconnected component, as well as many islands
(words that were related to each other—such as faction, fiction, and fission—but not to other
words in the large component) and many “lexical hermits,” or words with no neighbors
(known as isolated or disconnected nodes in the network science literature); the largest
component exhibited (2) the characteristics of a small-world network,' (3) assortative mixing
by degree (a word with many neighbors tends to have neighbors that also have many
neighbors; Newman, 2002), and (4) a degree distribution that deviated from a power-law.

Arbesman, Strogatz and Vitevitch (2010) found the same constellation of structural features
in phonological networks of Spanish, Mandarin, Hawaiian, and Basque, and elaborated on
the significance of these characteristics. For example, the giant component of the
phonological networks contained, in some cases, less than 50% of the nodes; networks
observed in other domains often have giant components that contain 80-90% of the nodes.
Simulations by Arbesman et al. demonstrated that this characteristic contributes to the
robustness of phonological networks when highly connected nodes are targeted for removal
or when nodes are removed at random.

Arbesman et al. (2010) also noted that assortative mixing by degree is found in networks in
other domains. However, typical values for assortativity in social networks range from .1-.3,
whereas the phonological networks examined by Arbesman et al. were as high as .7. Finally,
most of the languages examined by Arbesman et al. exhibited degree distributions fit by
truncated power-laws (but the degree distribution for Mandarin was better fit by an
exponential function). Networks with degree distributions that follow a power-law are called
scale-free networks, and have attracted attention because of certain structural and dynamic
properties (Albert & Barabasi, 2002). See work by Amaral, Scala, Barthélémy and Stanley
(2000) for the implications on the dynamic properties of networks with degree distributions
that deviate from a power-law in certain ways.

A common assertion in the complex network literature is that the structure of such networks
influences processing (Watts & Strogatz, 1998). Chan and Vitevitch (2009; 2010) used
several conventional psycholinguistic tasks to examine how one structural characteristic of
the phonological network of English influenced the process of lexical retrieval during the
on-line production and recognition of spoken words. Of the measurements used to describe

IAs defined by Watts and Strogatz (1998), a network is said to be a small-world network if (i) the average distance between two
randomly chosen nodes in that network is approximately the same distance between two randomly chosen nodes in a network of
comparable size with connections randomly placed between nodes (L ~ Lrandom), and (ii), the clustering coefficient of that network
is much larger than the clustering coefficient of a network of comparable size with connections randomly placed between nodes (C >>

Crandom)-
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the structure of a complex network, two are presently most relevant: degree and clustering
coefficient. Degree is the number of connections incident with a node. In the network of
Vitevitch (2008), degree corresponds to the number of words that sound similar to a given
word." Much research in Psycholinguistics shows that degree influences several language-
related processes, including the production (e.g., Vitevitch & Stamer, 2006; 2009) and
recognition (e.g., Vitevitch, 2002a) of spoken words, word-learning (e.g., Storkel,
Armbruster & Hogan, 2006), and serial recall (e.g., Roodenrys et al., 2002). In Figure 2,
degree corresponds to the number of connections between the words badge and /og to their
respective neighbors (both words have 13 neighbors).

Clustering coefficient, C, (Watts & Strogatz, 1998) measures the extent to which neighbors
of a given node are also neighbors of each other, and was examined by Chan and Vitevitch
(2009, 2010). Cis represented in Figure 2 by the connections between a neighbor of baadge
to another neighbor of badge (e.g., the connection between bass and bai), or that connect a
neighbor of /og to another neighbor of /og (e.g, the connection between /eague and /eg). C
ranges from O (none of the immediate neighbors of a node are connected to each other) to 1
(all of the immediate neighbors of a node are fully interconnected). In the present study, C
was computed for each word (/.¢., the local clustering coefficient for an undirected graph) as
in equation (1):

2l {e}l

- " ° Eq. 1
k=1 (a2

i

&k refers to the presence of a connection (or edge) between two neighbors (and &) of node
/,|...] is used to indicate cardinality, or the number of elements in the set (not absolute

value), and k;refers to the degree (i.e., neighborhood density) of node / By convention, a
node with degree of 0 or 1 (which results in division by 0—an undefined value) is assigned a
clustering coefficient value of 0. Note that degree > 1 for all of the words used in the present
studies. Thus, the (local) clustering coefficient is the proportion of connections that exist
among the neighbors of a given node divided by the number of connections that could exist
among the neighbors of a given node.

As reported in Chan and Vitevitch (2010), the correlation between degree, 4, and C for the
6,281 words with 2 or more neighbors (the minimum number of neighbors required to
compute C) from the network examined in Vitevitch (2008) is r=.005, p= .68 (a
scattergram of those data appears in Appendix A). That is, a word with many neighbors, 4;
could have high or low C. Similarly, a word with few neighbors, &, could have high or low
C. In the present experiments (as in Chan & Vitevitch, 2009; 2010) we used words that
varied in C, but were comparable in & (with k> 1).

Using several conventional psycholinguistic tasks, Chan and Vitevitch (2009, 2010)
examined how the structural characteristic, C, influenced the process of lexical retrieval
during the on-line recognition and production of spoken words. Chan and Vitevitch (2009)
found in two word recognition tasks—perceptual identification and lexical decision—that
words with high C (badge in Figure 2) were responded to more slowly and less accurately
than words with low C (/og in Figure 2), even though the words were equivalent in degree
and a number of other relevant characteristics. Similarly, Chan and Vitevitch (2010) found
in an analysis of a corpus of speech production errors and a picture-naming task that words

"In the psycholinguistic literature, this measure is commonly referred to as phonological neighborhood density (Luce & Pisoni, 1998).
However, in the present report, we will use the term degr ee rather than neighborhood density. This does not mean we are reinventing,
or redefining the term “neighborhood density” in any way, we simply wish to use the term degree to maintain consistency with the
network science literature that motivated the present study.
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with high Cwere responded to more slowly and less accurately than words with low C.
Thus, network structure, as measured by C, influences the speed and accuracy with which
spoken words are retrieved from the mental lexicon—traditionally defined as that portion of
long-term memory dedicated to language.

In the present experiments we examined whether the influence of phonological network
structure on cognitive processing was limited to the on-line production and recognition of
spoken words examined by Chan and Vitevitch (2009, 2010), or if network structure might
also influence other phenomena associated with long-term and short-term memory. To
examine how network structure influences retrieval from long-term memory we used, in
Experiment 1, the false memory paradigm (Deese, 1959; Roediger & McDermott, 1995). To
examine how network structure influences retrieval of veridical memories (rather than
generating “false” memories) we used an old-new recognition task in Experiment 2. In
Experiment 3, we used a serial recall task to examine how network structure influences the
process of redintegration (Schweickert, 1993), in which information in /ong-term memory is
used to reconstruct degraded representations in short-term memory.

We recognize that these tasks are often used to examine very different types of memory and
very different theories about cognitive processing, but it is not our intention in the present
study to test specific theories of long-term or short-term memory. Rather, we wished to use
well-understood memory tasks and phenomena to further examine how the network
structure exhibited among words in the phonological lexicon influences cognitive
processing.

Experiment 1

The work of Roediger and McDermott (1995) renewed interest in the study of false
memories (Deese, 1959), where participants report in a recall or recognition task events that
never happened. In this paradigm, participants typically hear a list of words containing close
semantic associates of a critical item, and are tested for their recall or recognition of list
items that were studied, and of the non-studied critical items. For example, participants
might hear the words thread, pin, sewing, sharp, etc., which are semantic associates of the
word needle (which, crucially, is not presented for study). Immediately after study,
participants are asked to recall as many of the words from the list as possible. Participants
correctly recalled items from the list 65% of the time, and falsely recalled the non-studied
critical item (need/e, in the example above) 40% of the time, despite specific instructions to
the participants to recall only items that had been presented.

The results of Roediger and McDermott (1995) have been replicated and extended in a
number of interesting ways. One study germane to the present investigation is by Sommers
and Lewis (1999), in which false memories were elicited for phonologically rather than
semantically related words. That is, participants studied words like fat, cab, cot, sat, cut, kit,
mat, cad, etc. that were phonological neighbors of the (non-studied) critical item cat. As
when semantically related words are studied, Sommers and Lewis found false memaories (in
recall and recognition) for the non-studied phonologically similar critical item (i.e., cad).

To examine how the structure of the phonological network in the mental lexicon influenced
one aspect of long-term memory we used the phonological false memory paradigm
developed by Sommers and Lewis (1999). As in Sommers and Lewis (1999) we presented
phonological neighbors of a (non- studied) critical item. That is—referring to the items in
Figure 2—we presented words like bad, bag and back (but not badge), and /long, leg and
lawn (but not /og), and measured how often participants falsely “recalled” hearing the non-
presented critical items (badge and /og). A crucial difference between the current study and
the study by Sommers and Lewis (1999) is that the non-studied critical items in the current
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experiment varied in C. That is, some of the non-studied critical items had many neighbors
that were also neighbors of each other (consider the neighbors of badge in Figure 2),
whereas other non-studied critical items had the same number of neighbors, but few of those
neighbors were neighbors of each other (consider the neighbors of /ogin Figure 2).

The current experiment provides not only the opportunity to demonstrate that the structure
of representations in the mental lexicon influence more general memory processes, but it
also represents an interesting test of the account inspired by the network science approach
described in Chan and Vitevitch (2009) and simulated in Vitevitch, Ercal and Adagarla
(2011). Current models of spoken word recognition view the mental lexicon as a collection
of arbitrarily ordered phonological representations, and the process of lexical retrieval as a
special instance of pattern matching. Lexical retrieval occurs in these models because a
given word-form best matches the acoustic—phonetic input (or other sources of evidence).
Chan and Vitevitch (2009) instead suggested that the mental lexicon could be viewed as a
(small-world) network, and lexical retrieval could be viewed as a search through that
network, much like the PageRank algorithm (Page, Brin, Motwani & Winograd, 1998)
searches through the structured network of information that is the World-Wide Web.
Interestingly, Griffiths et al. (2007) demonstrated that the PageRank algorithm could be used
in a semantic network constructed from word association data to predict performance of
participants who were shown a letter of the alphabet and asked to name the first word
beginning with that letter that came to mind.

Chan and Vitevitch (2009) started with the network structure for the phonological lexicon
observed by Vitevitch (2008). Overlaying that structure was the additional assumption that
“activation” would “spread” from an initially activated node to the nodes that it was
connected to, and then on to the nodes that they in turn were connected to (which included
the node from which activation was initially received). Although other models of cognitive
processing often include additional parameters such as inhibition, decay of activation,
threshold levels, etc., no such assumptions were made in the description offered by Chan
and Vitevitch (2009).

In the case of a word with low Cin the mental lexicon (/og in Figure 2), Chan and Vitevitch
(2009) suggested that the small number of interconnections among the neighbors would
result in some of the activation from the neighbors spreading back to the target word, some
of the activation from the neighbors spreading to other neighbors of the target word, and
some of the activation from the neighbors spreading to the rest of the network (i.e., words
related to the neighbors of /og, but not shown in Figure 2). In the case of a word with high C
in the mental lexicon (badge in Figure 2), some of the activation from the neighbors would
spread back to the target word, and some of the activation from the neighbors would spread
to the rest of the network, just as in the case of words with low C. However, given that the
neighbors of a word with high Care highly interconnected with each other, most of the
activation will remain amongst the interconnected neighbors rather than spread back to the
target word or to the rest of the network, in contrast to words with low C. The larger amount
of activation spreading from the neighbors back to target words with low C, compared to
words with high Cwhere most of the activation is circulating amongst the neighbors, will
result in higher activation levels for words with low C compared to words with high C, and
therefore rapid and accurate retrieval from the lexicon of words with low C.

Viewing the simple spreading activation model described in Chan and Vitevitch (2009) as a
special instance of diffusion dynamics in network science (that is, how a disease or a fad
spreads across a system), Vitevitch, Ercal, and Adagarla (2011) replicated in a network
simulation not only the influence of Con spoken word recognition observed in Chan and
Vitevitch (2009), but also the influence of phonological neighborhood density (i.e., degree)
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often seen in studies of spoken word recognition (e.g., Luce & Pisoni, 1998). For examples
of studies exploring diffusion dynamics in other cognitive domains see Borge-Holthoefer &
Arenas (2010), and Borge-Holthoefer, Moreno, & Arenas (2011).

Note that the account above explains how processing of a target word (like badge or /log) is
influenced by the structure found among the neighbors that are stored in the mental lexicon.
In the psycholinguistic tasks used in Chan and Vitevitch (2009; 2010), only the target words,
not the neighbors were presented to participants. In the current false memory experiment,
however, the neighbors, not the target words are presented to participants, providing an
interesting test of this (verbal) model. Based on the spreading-activation account described
in Chan and Vitevitch (2009, 2010; see also Vitevitch, Ercal & Adagarla, 2011), we
hypothesized that the different amount of activation spreading from the neighbors back to
the target word for words with low versus high Cwill impact the rates of false memories of
the (non-studied) critical item (i.e., the target word). Note that the words with low and high
Cused in Chan and Vitevitch (2009, 2010)—as well as in the present studies (as described
in the Methods section)—are comparable on a number of other relevant psycholinguistic
measures, so the initial activation of the target words will be the same. Only C, and therefore
the amount of activation that feeds back to the target words from the neighbors, will differ.

For words with low C (like /og in Figure 2), the neighbors of /og will spread activation to
the rest of the network—including to the non-studied critical item, /og—resulting in the
“erroneous” activation of the critical item, and higher rates of false memories for critical
items with low C. However, in the case of words with high C (like badge in Figure 2), most
of the activation will remain amongst the highly interconnected neighbors of badge resulting
in less activation being sent to the rest of the network and, crucially, to the non-studied
critical item, producing lower rates of false memories for critical items with high C.

Twenty-one native English speakers from the Introductory Psychology students enrolled at
the University of Kansas received partial credit towards the completion of the course for
their participation. None of the participants reported a history of speech or hearing disorders,
or participated in the other experiments reported here.

Thirty words were used as critical items (CI) in the present experiment (see Appendix B).
Fifteen critical items had high C (mean=.576, sd=.12) and 15 had low C (mean = .218, sd
=.02; F(1, 28) = 128.42, p<.0001). Cwas computed as in Equation (1) using Pajek, a
computer program used for network analysis (Batagelj & Mrvar, 1988). Although the two
sets of words differed in C, they were equivalent (all g's > .10) in familiarity (measured on a
seven-point scale), word frequency (Ku€era & Francis, 1967), degree/neighborhood density
(Luce & Pisoni, 1998), neighborhood frequency (the mean word frequency of the neighbors
of the target word), neighborhood spread (the number of phoneme positions in a word that
form a neighbor [Vitevitch, 2007]), segmentand biphone frequency (Vitevitch & Luce,
2004), concreteness ratings, and network density of the 2-hop neighborhood (See Table 1).
Network density measures the number of connections that exist in an entire network in
relation to the maximal number of connections that could exist in that network. A network
density value near 0 indicates that there are actually few connections in the network
compared to the number of connections that could exist in the network. A network density
value near 1 indicates that the number of connections in the network is approaching the
maximal number of connections that could exist in the network. (The term “network
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1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Vitevitch et al.

Procedure

Page 7

density” is from the field of network science, and should not be confused with the term
“phonological neighborhood density” from the field of psycholinguistics.) The region of the
network that was measured in the following experiments contained the critical item, the
neighbors of the critical item (known as 1-hop neighbors), and the neighbors of the
neighbors (known as 2-hop neighbors).

For each of the critical items, participants studied 10 phonological neighbors. Note that each
critical item has more than 10 neighbors, but only 10 were used due to time constraints in
the experimental session. Phonological similarity was assessed with a commonly employed
metric: a word was considered a neighbor of the critical item if a single phoneme could be
substituted, deleted, or added into any position of the critical item to form that word
(Greenberg & Jenkins, 1967; Landauer & Streeter, 1973; Luce & Pisoni, 1998). For
example, the word cat has as phonological neighbors _at, scat, mat, cut, cap. Note that cat
has other neighbors, but only a few are listed for illustration. The order of the 10 neighbors
of each CI in the word lists was randomized, and the same order was used for all
participants.

For the purpose of counterbalancing, the 30 stimulus lists were divided into three sets of 10
lists. Each set contained five lists from the high C condition and five lists from the low C
condition. Each participant was presented with two sets of the 10 lists (i.e., 20 of the 30 lists)
for study. The remaining set of 10 lists was not presented to the participants, but was used as
foils in the recognition task following the final study list. The specific lists presented for
study were counterbalanced across participants such that the 30 lists were presented equally
often for study. The order of list presentation was pseudo-randomized such that no more
than three lists of the same condition could be presented consecutively, and the same order
was used for all participants.

The 120-items in the recognition test consisted of an equal number of studied (also referred
as “old”) and non-studied (also referred as “new”) items. The old items included the 60
studied items, three taken from each of the 20 studied lists from the 2nd, 4th and 8th
positions. The new items included the 30 Cls (20 from the studied lists and 10 from the non-
studied lists) and the 30 non-studied items, three taken from each of the 10 non-studied lists
(positions 2, 4, 8). All of the stimulus words were produced by the first author at a normal
rate and loudness in an IAC sound-attenuated booth into a high-quality microphone, and
recorded digitally at a sampling rate of 44.1 kHz with a Marantz PMD671 Portable Solid
State Recorder. Each stimulus word was edited into an individual sound file using
SoundEdit 16 (Macromedia, Inc.).

The procedure we used in the present experiment followed that used in Experiment 1 of
Sommers and Lewis (1999). Participants were tested individually. Each participant was
seated in front of an iMac computer running PsyScope 1.2.2 (Cohen et al., 1993), which
controlled the presentation of stimuli and the collection of responses. Participants were
instructed that they would hear a list of words, complete as many math problems as they
could in 1.5 minutes, and after all of the lists had been presented, complete a 120-item
recognition task where they would indicate by pressing the appropriately labeled button on a
response box if the word they heard was one of the items from the previously presented lists.

Presentation of a list began with the word READY appearing on the screen for 500ms. After
the 10 items in the list were presented (each item separated by 1.5s interstimulus interval),
the prompt MATH appeared on the screen to indicate that the participant should complete as
many math problems (e.g., addition of two-digit numbers) on a pre-printed test sheet as
possible in 1.5 minutes. After 1.5 minutes had elapsed, a 500 ms warning tone was presented
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and the word READY appeared on the screen to indicate the next list of words was about to
be presented.

After all 20 lists had been presented, participants completed the recognition task.
Participants heard individual words presented over headphones, and indicated whether each
word was old (i.e., a word from the studied lists) or new (i.e., it was not from the studied
lists). Participants were instructed to call an item old only if they were sure it had appeared
on one of the lists. It is common for both recall and recognition tasks to be used in the false
memory paradigm. However, we chose to use only a recognition task for several reasons: (1)
the pattern of results in recall and recognition are similar, (2) as in Sommers and Lewis
(1999), we were concerned that false recall in the recall task might inflate false recognition
rates in the recognition task, and (3) (serial) recall memory was tested in Experiment 3.

Results and Discussion

In addition to following the methodology used in Sommers and Lewis (1999), we also
conducted analyses that were similar to those reported in Sommers and Lewis (1999).
Therefore, to test how network structure—as measured by clustering coefficient—influences
long-term memory, we compared the rate of false memories that occurred for non-studied
Cls with high and low clustering coefficient. Although other types of analyses of false
memories are possible (e.g., comparisons of d), they do not affect our interpretation of the
most relevant comparison in the present experiment: the rate of false memories for words
with low C compared to the rate of false memories for words with high C. More false
memories occurred for words with low C (/mean= .64, sd= .18) than for words with high C
(mean= 51, sd=.18; F (1, 20) 8.437, p=.009, n2 = .297). The greater false memory rate
for words with low Cis consistent with our hypothesis that the activation of the neighbors
spreads primarily to the network, including to the non-studied ClI, producing a high false
memory rate for Cls with low C. In the case of words with high C, presentation of the
neighbors leads to activation that spreads mostly amongst the highly interconnected
neighbors, with relatively less activation going to the rest of the network and to the non-
studied Cl, yielding lower false memory rates for Cls with high C.

Furthermore, to check whether the influence of Con false memory rates for Cls would also
be found with a different set of words, a linear multiple regression analysis was performed
on the 24 critical items used in the experiments by Sommers and Lewis (1999). The
variables clustering coefficient, concreteness, word frequency, phonotactic probability (i.e.,
segment and biphone frequency), degree, and neighborhood frequency were used to predict
the false alarm rates observed in Experiment 1 (as reported in Figure 2) of Sommers and
Lewis (1999).

Although the overall analysis was not statistically significant (/2=.34, F (7, 16) = 1.18, p=".
36), we report in Table 2 the beta coefficients (13; also known as standardized coefficients)
for each variable. The magnitude of § allows one to compare the relative contribution of
each independent variable in the prediction of the dependent variable. The sign (+ or -)
associated with the B coefficient indicates the direction of the relationship between the
independent and dependent variables. We also report for each B coefficient the results of a #
test, which indicates that the independent variable made a statistically significant
contribution to the prediction of the dependent variable (even though the value of B might be
numerically small).

None of the independent variables made a statistically significant contribution to the
prediction of the false alarm rates in Sommers and Lewis (1999), by the conventional
standard of p < .05. However, Cdoes have the largest 3 coefficient, and it is negative
(indicating few false alarms for higher Cvalues, and many false alarms for lower C values).
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Replicating the effect—at least in direction—observed in the present experiment with a
different set of words provides a reassuring piece of converging evidence, and minimizes the
concern that the observed effect was due to a “specially selected” set of items. '!!

Before discussing the implications of these findings we address a few other ancillary issues
in the present experiment. First, one might wonder if the false memory phenomenon was
actually observed in the present experiment. The mean proportion of studied items called old
in the recognition task was .58 (sd'=.12), and the mean proportion of Cls that were falsely
recalled was .57 (sd= .17). This difference was not statistically different (F (1, 20) = .323, p
=.576, n2 =.16), suggesting that participants were as confident that they studied the Cls as
they were that they had studied items from the lists that had actually been presented.
Furthermore, the false recognition rate for non-studied items other than Cls was less (.43, sd
=.17) than the false recognition rate for the Cls (.57, sd= .17, F (1, 20) = 19.76, p < .0001,
n? = .497), indicating that participants did not indiscriminately respond “old” to most items
in the recognition task. These results suggest that false memories were indeed elicited.

To further examine the nature of the “false memories” for the Cls, we analyzed the false
recognition rates for the Cls used as foils in the recognition task (i.e., words that varied in C,
but whose neighbors were not presented in the study session). A difference in Cwas
observed for the Cls used as foils in the recognition task, such that more false memories
occurred for words with low C (mean= .53, sd'=.29) than for words with high C (mean=.
40, sd=.21; t(20) = 2.75, p< .05, Cohen's d=.52), even though the neighbors of these Cls
had not been presented during the study phase of the experiment. This finding is consistent
with the idea that the fluency with which information is retrieved from long-term memory
(i.e., the mental lexicon) can influence memory judgments (Benjamin, Bjork & Schwartz,
1998). However, we further observed that the false recognition rates for the Cls whose
neighbors had been presented in the study session was greater (/mean= .57, sd=.17) than
the false recognition rates for the Cls whose neighbors had not been presented in the study
session (mean= .47, sd=.23; t(20) = 2.34, p< .05, Cohen's d=.49), indicating that
memory for the studied neighbors had an additional influence on the false recognition of the
non-studied Cls. These results further suggest that false memories were indeed elicited in
the present experiment, and that C not only influences perceptual processes, but memory-
based processes as well.

One might also wonder if some other characteristic about the phonologically similar words
that were studied (i.e., the neighbors of the CI) influenced the present experiment. We
acknowledge the possibility that the lists of phonologically similar words may differ on
some psycholinguistic measure.'Y However, recall that the network science measure known
as network density (of the 2-hop neighborhoods) was the same for the two types of words.
The network density of the 2-hop neighborhoods assesses the number of neighbors of the
phonologically similar words that were studied, as well as the connectivity among those
words. Based on our account of the diffusion of activation in the network, and the similarity
in the 2-hop neighborhoods of words with high and low C, it is not surprising that no
difference was observed in the recognition rates for the studied neighbors of critical items
with high (mean =58, sd= .15) versus low C (mean= .58, sd=.11; t(20) = .12, p=.90). In

INote that the values of Cfor the stimuli used in Sommers and Lewis (1999) were more restricted (lowest C=.214; highest C=.
341) than those used in the present experiment (meanlow C=.218; meanhigh C=.576). We believe the restricted range of Cfound
in the stimuli used by Sommers and Lewis (1999) is a contributing factor in our failure to find a difference that was statistically
significant in our post-hoc analysis of their stimuli.

IVSommers and Lewis (1999) analyzed the influence that several other characteristics of the phonologically similar words that were
studied might have on false recognition rates, and found that none of the additional factors they examined—including the frequency of
the CI (which was controlled in the present experiment) and the number of list items that had frequencies higher than the Cl—
significantly influenced performance either.
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other words, it appears unlikely that some characteristic about the phonologically similar
words that were studied (or the neighbors of those words) is responsible for the observed
difference in false alarm rates for words varying in C.

The results of the present experiment demonstrate that the network structure exhibited by
phonological word-forms in the mental lexicon influences the long-term memory
phenomenon of “retrieving” false memories, not just the on-line production and recognition
of spoken words (Chan & Vitevitch, 2009; 2010). It is also interesting and theoretically
elegant that (at an abstract level) a common mechanism—the structure of the network—may
account for observations made in several cognitive domains, and in social, biological, and
technological domains (Newman, 2003).

Experiment 2

Methods

Participants

In Experiment 1 we demonstrated that activation spreading through lexical networks with
different structural characteristics (i.e., clustering coefficient) can differentially influence the
activation of non-studied target words, thereby producing more “false memories” for target
words with low Cthan high C. In the present experiment we wished to further examine how
the structure of the lexical network might influence processes associated with long-term
memory by demonstrating that network structure would also influence veridical memories of
studied target items in an old-new recognition memory task. In the study phase of the
present experiment, participants heard a list of words that they were asked to remember. In
the test phase, participants were then presented with a list of words that included the items
that they had studied, as well as words that they had not studied, and were asked to indicate
if the word they heard in the test phase was one of the words from the previously studied list
(i.e., old) or not (i.e., new).

If the structure of the lexicon influences subsequent recognition of the target words, we
predict that words with low Cwill be better recognized than words with high Cin the
recognition test. Because the words used in the present study (as described in the Methods
section) are comparable on a number of other relevant psycholinguistic measures, the initial
activation of the target words will be the same. Only C, and therefore the amount of
activation that feeds back to the target words from the neighbors, differs between the two
conditions.

For words with low C, like /ogin Figure 2, activation will spread from the target word to the
neighbors. Because the neighbors are less interconnected, only a small amount of activation
will circulate amongst the neighbors. The rest of the activation will spread from the
neighbors back to the target word (resulting in higher activation of the target word), and
from the neighbors to other parts of the network. For words with high C, like badgein
Figure 2, activation again spreads from the target word to the neighbors. However, most of
the activation will tend to circulate amongst the highly interconnected neighbors, with less
activation spreading from the neighbors back to the target word and to the rest of the
network. The different amount of activation remaining amongst the neighbors (and therefore
the different amount of activation feeding back to the target words) will result in words with
low Cbeing recognized more accurately than words with high C.

Forty-four native speakers of Australian-English from the University of Wollongong took
part in the experiment. None of the participants reported a history of speech or hearing
disorders, or participated in the other experiments reported here.
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Forty monosyllabic words were used as studied items in the present experiment (see
Appendix C). Twenty studied items had high C (mean= 531, sd=.15) and 20 had low C
(mean = .302, sd=.05; ¢(38) = 6.26, p < .0001). Although the two sets of words differed in
C, they were equivalent (all gs > .10) in word frequency, degree/neighborhood density,
concreteness ratings, network density of the 2-hop neighborhood and imagability ratings
(See Table 2). Forty additional monosyllabic words were selected as distracter items for use
in the test phase of the recognition task. The distracter items were comparable to the studied
items (all g's > .10) in word frequency, degree/neighborhood density, concreteness ratings,
and /magability ratings (See Table 3). All stimuli were digitally recorded by a female native
Australian English speaker and edited to single word files using ProTools LE software and
MBox hardware (Digidesign, Inc.).

Participants were tested in groups of up to 5 at a time, on separate computers using the
experimental control software SuperLab (Cedrus Corp.). Each participant listened, via
headphones, to a different random arrangement of the forty target stimuli and then
completed 2 minutes of simple arithmetic as a delay task. The arithmetic problems were
presented visually and participants responded on the computer keyboard. Following the
delay task participants heard the forty target words randomly mixed with the distracters and
responded “old” or “new” by pressing designated keys on the keyboard.

Results and Discussion

To examine the ability of participants to discriminate between old and new items we
computed d"values for the words with high Cand low C for each participant (following
MacMillan and Creelman, 2005). This measure combines “hits” (i.e., successfully indicating
that a word was indeed from the list of studied words) and “false alarms” (i.e., incorrectly
indicating that a word was from the studied list) in discrimination tasks, thereby giving a
single, bias-free measure of sensitivity. Larger values of &’indicate that participants were
better able to discriminate that a word had indeed appeared on the studied list, and were not
simply inclined to indicate that all words had appeared on the studied list (or that a word
could be retrieved fluently from long-term memory; Benjamin, Bjork & Schwartz, 1998). "
is the most appropriate measure to use in this instance as it takes into account individual
differences in false alarm rates and bias.

Words with low C (mean=1.89, sd=.79) had larger values of d’than words with high C
(mean=1.74, sd=.78; t(43) = 2.03, p< .05), indicating that participants were more
accurate in indicating whether words with low Cwere (or were not) from the studied list.
This finding is consistent with the prediction derived from the verbal framework described
in Chan and Vitevitch (2009)—words with low Cwill be better recognized than words with
high Cin the recognition test.

These results further suggest that the influence the structure of the phonological network has
on processing is not limited to language-related processes such as word recognition (Chan &
Vitevitch, 2009) or word production (Chan & Vitevitch, 2010). Rather, as demonstrated in
Experiments 1 and 2, the structure of the phonological network influences the retrieval of
information from long-term memory as well.

Experiment 3

The present experiment examined how the network structure found in the mental lexicon
might influence redintegration in short-term memory (Schweickert, 1993). Examining the
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process of redintegration provides a conceptual bridge from the previous two experiments
(which examined certain aspects of long-term memory) to another fundamental domain of
cognition: short-term memory. In redintegration, information in /ong-term memory is used
to reconstruct degraded representations retrieved from short-term memory. In the account of
redintegration described by Hulme et al. (1997), an item is retrieved directly from the short-
term memory store if its representation is intact. However, if a representation in short-term
memory is partially degraded, it will be compared to phonological representations that are
permanently stored in long-term memory (i.e., the mental lexicon) to “clean up” the
representation in short-term memory. Furthermore, the proposal of Hulme, Maughan &
Brown (1991) that verbal short-term memory processes might be considered a by-product of
processes involved in speech perception and production makes the process of redintegration
an ideal phenomenon to further examine the influence that the structure observed in the
mental lexicon might have on other cognitive processes.

A task commonly used to examine short-term memory and the process of redintegration is
the serial recall task in which participants hear a list of words and immediately recall them
in the order the words were presented. Using this task, Roodenrys et al. (2002) found that
lists of words that activated many phonologically similar words in the lexicon (i.e., lists of
words with high degree/dense phonological neighborhoods) were recalled more accurately
than lists of words that activated few phonologically similar words in the lexicon (i.e., lists
of words with low degree/sparse phonological neighborhoods), demonstrating the influence
that the number of phonologically similar words stored in long-term memory have on the
redintegration of decayed memory traces retrieved from short-term memory.

The results of Experiments 1 and 2 from the present study suggest that the amount of
activation that circulates amongst phonological neighbors influences how much activation
flows back to the target word, differentially activating target words with low C over words
with high C. Therefore, we hypothesized that words with low Cwould be more highly
activated and therefore have more intact representations in short-term memory than words
with high C, resulting in lists composed of low Cwords being recalled more accurately than
lists composed of high Cwords. Furthermore, Hulme et al. (1997) claimed that items that
appear later in a list are more likely to become degraded than items that appear earlier in the
list. Therefore, we hypothesized that the difference in performance between lists of words
with high versus low Cwould be greatest in the later items in a word-list than in the earlier
items in a word-list in the serial recall task.

To test these hypotheses we used a serial recall task as in Roodenrys et al. (2002). However,
instead of manipulating degree/the number of phonological neighbors as in Roodenrys et al.
(2002), we instead manipulated C. In the serial recall task used in the present experiment,
participants heard lists that contained 6 words, such that all the words had high Cor all the
words had low C. Crucially, the word-lists varying in Cwere the same in terms of the
number of phonologically similar words they would activate in the lexicon (and on a number
of other relevant variables), therefore the initial activation of the list of words will be the
same. Only C— and the amount of activation that feeds back from their respective neighbors
to the words on the list—differs between the two conditions.

Forty participants from the same population in Experiment 1 took part in the present
experiment.
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Thirty-two words were used in the present experiment (see Appendix D). Sixteen words had
high C (mean =349, sd=.04) and 16 words had low C (mean= .237, sd=.03; F(1, 31) =
76.01, p<.0001). Although the two sets of words differed in C, they were equivalent (all g's
>.10) in familiarity (measured on a seven-point scale), word frequency (Kucera & Francis,
1967), degree/neighborhood density, neighborhood frequency, neighborhood spread,
segment and biphone frequency, and concreteness ratings (See Table 4).

The words in each condition were pseudo-randomly assigned (such that phonological
neighbors could not appear in the same list) to create 16 lists of 6 words in each condition.
Creating two different samples of 16 lists, and two different orders of the lists in each
condition minimized potential order effects. As there were no statistically significant
differences in recall across the various orders, subsequent analyses collapsed across this
factor.

Participants were presented with the 16 lists in each condition in a counterbalanced order in
a single session lasting approximately 30 minutes. The lists were presented over headphones
at the rate of approximately 1 word per second using the same equipment as used in
Experiment 1. At the end of each list the prompt “Recall” appeared on the screen, and
participants recalled aloud the list of words in the order they were presented. Participants
were instructed to say “pass” if they could not remember an item in a particular position.
Responses were recorded for independent scoring at a later time by two research assistants
(reliability = 98.91%). Discrepancies in scoring were resolved by an independent judge.

Results and Discussion

Consistent with our initial hypotheses, we observed an interaction of Cand serial position (£
(5, 195) = 7.58, p< .0001, 12 = .51), such that large differences in recall performance were
observed in the later positions of the lists (~10%; see Figure 3) compared to the earlier
positions of the lists. However, in contrast to our initial hypotheses, participants overall
recalled more words from lists containing high Cwords (mean = 3.15 words out of 6, sd=
1.1) than from lists containing low Cwords (/mean = 2.84 words out of 6, sd=1.4; F(1, 39)
=15.18, p<.0001, n? = .30). We initially hypothesized that words with low Cwould be
more highly activated and therefore have more intact representations in short-term memory
than words with high C, resulting in lists composed of low Cwords being recalled more
accurately than lists composed of high Cwords. As seen in Figure 3, better recall for words
with low C compared to words with high Cwas observed in the first position of the lists.
However, this difference was not statistically significant; it was only observed numerically.

A statistically significant advantage for low Cwords over high Cwords in the initial
positions of the list might be observed if the primacy effect was accentuated, perhaps by
reducing the length of the list or slowing the rate of presentation. Such well-studied
manipulations in a serial-recall task using word lists varying in C could provide additional
insight into models of STM and on the process of redintegration. However, such
manipulations are beyond the scope of the present study, which sought simply to determine
if the network structure exhibited among words in the phonological lexicon influenced
cognitive processes other than spoken word recognition and spoken word production (Chan
& Vitevitch, 2009; 2010).

Although the observed results are not entirely consistent with our initial predictions, the
observed results are informative in a number of ways. First, C clearly influences short-term
memory. Just as the use of phonological neighborhood density (known as degree in the
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network science literature) in studies by Roodenrys et al. (2002) provided new insight to the
processes of short-term memory and redintegration, the results from the present study open
up a new avenue of investigation for memory researchers. Indeed, if we consider the work of
Roodenrys et al. (2002), as well as the account of redintegration described by Hulme et al.
(1997), and the spreading-activation account described in Chan and Vitevitch (2009, 2010)
the present result hints toward an interesting phenomenon—stochastic resonance—that also
warrants future investigation.

Recall that Hulme et al. suggested that items with intact representations are retrieved
directly from the short-term memory store. However, if a representation in short-term
memory is partially degraded, it will be compared to phonological representations that are
permanently stored in long-term memory to “clean up” the representation in short-term
memory. Furthermore, items that appear later in a list are more likely to become degraded
than items that appear earlier in the list. Moreover, Roodenrys et al. (2002; see also
Roodenrys & Hinton, 2002) showed that the number of phonologically similar words in the
lexicon (i.e., neighborhood density, or degree) influenced the processes of recall and
redintegration. Here we make the same assumptions made by Roodenrys et al. (2002; pg.
1028):

If we assume that words in a phonological neighborhood are associatively linked in
lexical memory, our hypothesis would be that such groups of associated words will
all be activated to some extent by the presentation of one word from the
neighborhood. A further assumption is that members of a neighborhood form a
mutually supportive network of items. Words from large neighborhoods will
receive supportive activation from more other words at recall than words from
small neighborhoods.

In the present case, representations of the words in the beginning of the lists remained
relatively intact, but representations of words at the end of the lists began to decay. For the
decaying representations in the later part of the list, phonologically similar representations
stored in long-term memory are called upon to “clean up” the representation in short-term
memory. That is, redintegration is more likely to take place in the later part of the list than
the beginning of the list. As per Roodenrys et al. (2002), redintegration relies on the
activation of the target word in long-term memory as well as the activation of the neighbors
of the target word.

As per Chan and Vitevitch (2009), activation is thought to circulate predominately amongst
the neighbors for words with high C, but to disperse to other parts of the network for words
with low C. Although this pattern of spreading activation is beneficial to performance for
words with low Cin most contexts, in the present case—when phonologically similar
representations are needed to “clean up” a representation in short-term memory—the
dispersion of activation to the rest of the network provides little support to the decaying
representation in short term memory. The lack of support that phonologically similar
representations provide in the redintegration of words with low Cresults in poor
performance on these words in the latter part of the list in the serial recall task.

However, in the case of words with high C, activation tends to circulate amongst the highly
interconnected neighbors. The activation in this cadre of phonologically similar
representations may provide sufficient information to “clean up” the representations of
words with high Cin short-term memory, resulting in successful redintegration and better
performance in the serial recall task for words with high C. Although the activation
circulating among phonologically similar representations may, in many contexts, produce
“noise” in the system and prove detrimental to performance for words with high C, in the
present context this noise may improve detection of a weak signal (i.e., the decayed
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representation of the target word with high C), much like moderate—but not excessively
high or low—amounts of noise can improve signal-to-noise ratios in systems undergoing the
phenomenon of stochastic resonance. Stochastic resonance has been observed in neural (e.g.,
Martinez, Pérez, Mirasso, & Manjarrez, 2007) and perceptual systems (cf,, Shepherd &
Hautus, 2009). The hint of this phenomenon in a cognitive system, as observed in the
present experiment (see also Usher & Feingold, 2000), warrants further research. Thus, even
though the present result is not consistent with the prediction derived from the computer
model in Vitevitch et al. (2011), the result is consistent with other findings in the broader
literature on short-term memory and redintegration, and hints towards a new phenomenon—
stochastic resonance—to investigate in future research.

Finally, the observed result points to potential limitations of the computational model
examined by Vitevitch et al. (2011). The simple model examined by Vitevitch et al. (2011)
contained only lexical representations (and connections among phonologically related word-
forms), but was able to account for several results observed in studies of spoken word
recognition, including the influence of C(Chan & Vitevitch, 2009) and the influence of
neighborhood density (Luce & Pisoni, 1998) on spoken word recognition. To account for the
present result (as well as other results in the literature, as acknowledged in Vitevitch et al.,
2011), an additional short-term memory store or an additional level of representation may
need to be added to the model. Indeed, a number of studies have demonstrated the role that
sub-lexical representations—phonological segments, or sequences of segments—play in
spoken word recognition (e.g., Vitevitch & Luce, 2005; Vitevitch, 2003; Vitevitch et al.,
2002) and speech production (e.g., Vitevitch, Armbruster & Chu, 2004), two processes that
have been implicated in some models of short-term memory and redintegration (e.g., Hulme
et al., 1997). The unanticipated results of the present experiment suggest further that the
simple computational model examined by Vitevitch et al. (2011) may indeed be too simple.

Although the results of the present experiment did not conform entirely to our initial
predictions, the results point to several new avenues of investigation. In addition, the results
of the present experiment further demonstrate that network structure not only influences the
on-line recognition and production of spoken words (e.g., Chan & Vitevitch, 2009; 2010),
but it also influences other cognitive phenomena associated with long-term and short-term
memory (i.e., redintegration).

General Discussion

Previous network science analyses of phonological word-forms in the mental lexicon found
a set of structural characteristics appearing across a variety of languages (e.g., Vitevitch,
2008; Arbesman et al. 2010). Because it is often argued that the structure of a network
influences processing in that system (Watts & Strogatz, 1998), Chan and Vitevitch (2009;
2010) used several conventional psycholinguistic tasks to examine how one structural
characteristic—clustering coefficient—might influence the production and recognition of
spoken words. In the present study, we further examined how the emergent structure of
representations in the mental lexicon—that portion of long-term memory devoted to
language—might influence phenomena in long-term and short-term memory.

In Experiment 1 we examined processes associated with long-term memory by eliciting
false memories for English words that varied in clustering coefficient. Participants studied
lists of words that were phonologically similar to non-studied critical items (which varied in
clustering coefficient). In a recognition task, participants falsely recognized more non-
studied critical items that had low Cthan high C. In Experiment 2 we examined recognition
memory for events that actually occurred (rather than “false” memories as in Experiment 1).
In an auditory old-new recognition task, participants were more accurate recognizing words
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with low Cthan high C. In Experiment 3 we examined the process of redintegration, in
which representations in long-term memory are used to reconstruct degraded representations
in short-term memory. In a serial recall task, a task commonly used to examine
redintegration, participants more accurately recalled word-lists comprised of words with
high Cthan with low C, especially in the later portion of the word-list.

Despite the different types of memory and different cognitive processes being examined, the
network framework described in Chan and Vitevitch (2009) was able to provide an account
for the results of all of the present experiments, although it must be acknowledged that the
counter-intuitive results of Experiment 3 would require additional assumptions from the
short-term memory literature and require further model development. In this framework the
mental lexicon is viewed as a small-world network, and lexical retrieval is viewed as a
search through that network (e.g., Kleinberg, 2000), much like the PageRank algorithm
(Page, Brin, Motwani & Winograd, 1998) searches through the structured network of
information that is the World-Wide Web.

A common way to conceptualize search processes in cognitive science is with a spreading
activation mechanism. Chan and Vitevitch (2009) described a network with a resource-
limited form of spreading-activation. In the case of words with low C, activation spreads
from the target word to the phonological neighbors. Because the neighbors are less
interconnected, only a small amount of activation will circulate amongst the neighbors. The
rest of the activation will spread from the neighbors back to the target word, and from the
neighbors to other parts of the network. For words with high Cactivation again spreads from
the target word to the neighbors. However, most of the activation will tend to circulate
amongst the highly interconnected neighbors, with less activation spreading from the
neighbors back to the target word and to the rest of the network. The different amount of
activation feeding back to the target words (and remaining amongst the neighbors) results in
differences in the speed and accuracy with which words varying in Care responded to (see
Vitevitch et al., 2011 for a network simulation of the word-recognition effects observed in
Chan & Vitevitch, 2009).

In the present study, we further examined the framework proposed by Chan and Vitevitch
(2009) by presenting participants in Experiment 1 with phonological neighbors, and
assessing how much activation spread from the neighbors to the (non-studied) target words,
resulting in false memories for those critical items. In Experiment 2 we extended the
framework by measuring how the spread of activation influenced the recognition of
previously presented words. In Experiment 3 we extended the framework by measuring how
activation in long-term memory might influence processes related to retrieval from short-
term memory (i.e., redintegration). The results of these experiments suggest that the
structure of the lexical network may influence more than just on-line recognition and
production of spoken words.

Cognitive scientists have made much use of “networks” to explore human cognition (e.qg.,
artificial neural networks, Rosenblatt, 1958; networks of semantic memory, Quillian, 1967;
linguistic nections, Lamb, 1970). However, these earlier approaches should not be confused
with the current approach of network science (Jasny, Zahn, & Marshall, 2009; Watts, 2004).
Without denying the broad and important influence that spreading-activation/semantic
networks and connectionist networks have had on Cognitive Science, the present study
examined how the alternative approach of network science might be used to understand
certain aspects of cognition. Although the network science perspective has been widely
employed in other fields to explore technological, biological, and social systems (e.g., Albert
& Barabasi, 2002), the network science perspective has been relatively underutilized in the
cognitive and neural sciences (see Borge-Holthoefer et al. (2011) and Sporns (2010) as
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exceptions). The results of the present experiments, as well as the experiments reported in
Chan and Vitevitch (2009; 2010), demonstrate how the network science perspective can be
used to examine the structure of complex cognitive systems, and, more importantly, to test
novel hypotheses about cognitive processing.

It is not clear how the questions examined in the present experiments regarding the
relationship among phonological neighbors, as measured by C, could have been posed in the
context of current models of long-term memory (e.g., Izawa, 1999) or short-term memory
(e.g., Hulme et al., 1997; Lewandowsky, 1999; Roodenrys & Miller, 2008; Schweickert,
1993). Furthermore, it is unclear if any of these current models can account for the influence
of Cthat was observed in the present experiments, suggesting that network science might
offer psychological science a new perspective on fundamental questions of cognitive
processing. Clearly additional work is required to understand how network structure might
influence other cognitive processes, providing a potentially fruitful opportunity for
collaboration between network and cognitive scientists.
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Appendix A Figure.
The scattergram for the 6,281 words with 2 or more neighbors (the minimum number of
neighbors required to compute clustering coefficient, C) from the network examined in
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Vitevitch (2008) illustrating that Cand degree (4) are not correlated. The correlation value
for these data is reported in the text and in Chan and Vitevitch (2010).

Appendix B

The words used in Experiment 1. The (non-studied) critical item is in the left column, and

the (studied) neighbors are in the right column.

High C

badge back, bad, bag, ban, bang, badger, bass, bat, batch, bath

bathe babe, bail, bait, baize, bake, bane, base, bay, beige, lathe

chair air, bare, care, check, cherry, fair, pair, rare, share, their,
chill bill, chin, chip, fill, hill, ill, kill, mil, pill, will,

gear beer, cheer, dear, ear, fear, gear, hear, mere, pear, rear
hair air, bare, care, fair, head, hear, hell, pair, share, their

league lea, leaf, leak, lean, leap, lease, leave, leg, legal, log

leash lash, lea, leaf, leak, lean, leap, lease, leave, lied, lush

path bath, math, pack, pad, pal, pan, pass, pat, patch, wrath
robe aerobe, roar, rob, roe, role, rope, rose, rote, rub, road

shot chute, got, hot, knot, lot, pot, sheet, shock, shop, shut
siege cease, cede, sage, scene, seal, seam, seat, seek, seize, serge

thug bug, chug, dug, hug, jug, mug, rug, thud, thumb, tug

vat at, cat, fat, hat, pat, sat, that, van, vast, vote

Low C

fray fry, frail, frame, freight, gray, phrase, pray, ray, tray, bray

glow blow, flow, glee, gloat, globe, glue, go, grow, low, slow

gut but, cut, gait, get, got, gum, gun, hut, nut, shut

limb dim, gym, him, lamb, lid, lime, limp, lip, live, slim

merge | dirge, emerge, midge, mirth, murk, myrrh, purge, serge, urge, verge

thought | aught, bought, caught, fought, naught, sought, taught, thaw, thong, wrought

ply fly, lie, pie, play, plea, plight, plough, ploy, pry, apply

pose chose, hose, nose, pause, peace, pole, poor, pop, rose, those

sauce boss, cease, loss, moss, saucer, saw, song, sought, souse, toss

serve curve, nerve, salve, save, search, serf, serge, sieve, sir, verve

side seed, cite, hide, ride, sad, said, sign, size, tide, wide

sing king, ring, sick, sin, sink, sit, song, swing, thing, wing

slay clay, lay, play, say, slate, slave, slow, slain, stay, sway

sly fly, lie, sigh, sky, slaw, sleight, slice, slide, slow, spy

tree free, tea, three, tray, treat, trio, trow, troy, true, try

verse curse, hearse, nurse, purse, vase, verb, verge, vice, voice, worse
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The high Cwords, low Cwords, and distracter items used in Experiment 2.

HighC | Low C | Distracter items
badge bib bears noon
beef boot boil pays
beige bug cage pill
born bush chap pine
cough couch chart

dot deck chess porch
gain goat dim raid
gauze kick dish rash
jet lag fees ridge
joke ledge fetch rub
knife luck fork sack
math lurch fuss seal
merge mile harsh shark
morgue | mood juice shone
mouse nerve lace shout
nudge purse leap tooth
pub ripe lid toys
thumb sauce mate warn
wash shove nail wit
zip soup nod zone

Appendix C

Appendix D

The high Cand low Cwords used in Experiment 3.

HighC | LowC
bib bush
bug boot
dot gas
gang goat
gain gull
gum cough
case couch
lag ledge
look luck
lose merge
math mood
mouse mile
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HighC | LowC
ring sauce
ripe beach
size deck
wire purse
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Figure 1.

A sample of words from the phonological network analyzed in Vitevitch (2008). The word

“speech” and its phonological neighbors (i.e., words that differ by the addition, deletion or

substitution of a phoneme) are shown (i.e., 1-hop neighbors of “speech”). The phonological
neighbors of those neighbors are also shown (i.e., 2-hop neighbors of “speech”).
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Figure2.

The word badge has high Cand the word log has low C. Both words have the same number
of neighbors (a.k.a. degree). Connections are placed between words that are phonologically
similar. For visual clarity, connections from the neighbors to other words in the network are
not shown.
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In the serial recall task participants more accurately recalled words with high Cthan low C,

especially toward the end of the to-be-recalled list.
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Mean (and standard deviation) values of the lexical characteristics of the non-studied critical items in

Experiment 1.

Table 1

High C LowC

Familiarity 6.80 (.56) 6.73 (.59)
Word Frequency® 1.21(.81) 1.15(.78)
Degree (ak.a. Neighborhood Density) 17.00 (4.47) 17.00 (4.47)
Neighborhood Frequency:t 1.07 (.30) 98 (.16)
Spread 2.60 (.51) 2.86 (.35)
Segment Frequency 134 (.012) .152 (.009)
Biphone Frequency .006 (.001) .008 (.001)
Concreteness Ratings 477.00 (73.60) | 499.40 (34.53)
Network Density of 2-hop neighborhood .06 (.01) .06 (.01)

Notes:

7 -
log10 values of occurrences per million.
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Summary information of linear multiple regression predicting false alarm rates for words used in Experiment
1 of Sommers and Lewis (1999).

B t p-value
C -42 | -1.78 .09
Concreteness .25 .88 .39
Word frequency 31 1.28 22
Segment frequency -05 | -.16 .87
Biphone frequency -16 | -.63 .54
Neighborhood frequency | .06 .22 .82
Degree -33 | -1.19 .25
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Mean (and standard deviation) values of the lexical characteristics of the studied words in Experiment 2.

Table 3

High C LowC Distracter Items
Word Frequency 248.70 (252.38) | 284.90 (248.93) 218.85 (94.44)
Degree (a.k.a. Neighborhood Density) 19.25 (11.01) 21.00 (8.68) 21.84 (8.91)
Concreteness Ratings 512.08 (115.11) | 504.87 (123.71) 518.52 (89.33)
Imagability Ratings 535.00 (91.96) 524.80 (64.75) 530.04 (70.06)
Network Density of the 2-hop neighborhood .08 (.06) .06 (.02) .06 (.03)
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Mean (and standard deviation) values of the lexical characteristics for the stimuli from Experiment 3.

Table 4

High C LowC

Familiarity 6.91(.16) 6.95 (.10)
Word Frequency® 137 (.71) 1.21 (.49)
Degree (ak.a. Neighbor hood Density) 19.38 (5.10) 18.19 (7.42)
Neighborhood Frequency:t 2.02(.20) 1.91(.16)
Spread 2.88 (.34) 2.94 (.25)
Segment Frequency .138 (.03) .137 (.04)
Biphone Frequency .006 (.005) .005 (.003)
Concreteness Ratings 316.88 (239.92) | 315.81 (274.85)
Network Density of 2-hop neighborhood .05 (.01) .06 (.02)

Notes:

7 -
log10 values of occurrences per million.
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