Skip to main content
. Author manuscript; available in PMC: 2013 Sep 1.
Published in final edited form as: J Chem Thermodyn. 2012 Mar 5;52:11–15. doi: 10.1016/j.jct.2012.02.019

TABLE 6.

Emf of Cell B and pH values with δEj correction at (298.15 and 310.15) K for TRICINE buffer

m1 m2 m3 I Ex/V δEjb/mV Withoutc δEj corr Withd δEj corr Extendede D-H eqn. Withoutc δEj corr Withd δEj corr Extendede D-H eqn.

298.15 K 310.15 K 298.15 K 310.15 K 298.15 K 310.15 K
0.09 0.03 0.00 0.03 0.69003 0.68740 0.3 0.4 7.538 7.543 7.544 7.329 7.334 7.335
0.08 0.02 0.14 0.16 0.68180 0.67861 2.1 2.3 7.399 7.434 7.435 7.188 7.223 7.224
0.09 0.03 0.13 0.16 0.68926 0.68591 2.1 2.2 7.526 7.561 7.562 7.305 7.340 7.341
0.06 0.02 0.14 0.16 0.68902 0.68599 2.1 2.2 7.522 7.556 7.557 7.307 7.342 7.342

Emf of Cell Ca Es/V fEj/mV

0.008695 m KH2PO4 + 0.03043 m Na2HPO4 0.68275 0.69147 2.6 2.9
a

Published data [4, 6, 8] for physiological phosphate buffer solutions; units of m, mol·kg−1

b

The residual liquid junction potential, δEj = Ej(s) − Ej(x), which can be calculated from equation (1) and the values of tables 46. The pH of the primary standard phosphate buffer is 7.415 and 7.395 at T = (298.15 and 310.15) K, respectively.

c

Values obtained from equation (3) and Ex and Es data from this table

d

Obtained from equation (2) using values of Ex, Es, and δEj from this table, and k = 0.059156 V and 0.061538 V at 298.15 K and 310.15 K, respectively

e

Obtained from extended Debye-Hückel (DH) equation of the Bates-Guggenheim convention, data listed in tables 45

f

Ej is the liquid junction potential in mV.