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Summary
Relaxin is an approximately 6-kilodalton peptide hormone secreted by the corpus luteum, and
circulates in the maternal blood during pregnancy. Relaxin administration to awake, chronically
instrumented, nonpregnant rats mimics the vasodilatory phenomena of pregnancy. Furthermore,
immunoneutralization of relaxin or its elimination from the circulation during midterm pregnancy
in awake rats prevents maternal systemic and renal vasodilation, and the increase in global arterial
compliance. Human investigation, albeit limited through 2009, also reveals vasodilatory effects of
relaxin in the nonpregnant condition and observations consistent with a role for relaxin in
gestational hyperfiltration. Recent evidence suggests that the vasodilatory responses of relaxin are
mediated by its major receptor, the relaxin/insulin-like family peptide 1 receptor, RFXP1. The
molecular mechanisms of relaxin vasodilation depend on the duration of hormone exposure (ie,
there are rapid and sustained vasodilatory responses). Newly emerging data support the role of
Gai/o protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent
phosphorylation and activation of endothelial nitric oxide synthase in the rapid vasodilatory
responses of relaxin. Sustained vasodilatory responses critically depend on vascular endothelial
and placental growth factors, and increases in arterial gelatinase(s) activity. Gelatinases hydrolyze
big endothelin (ET) at a gly-leu bond to form ET1–32, which activates the endothelial ETB/nitric
oxide vasodilatory pathway. Although the relevance of relaxin biology to preeclampsia is largely
speculative at this point in time, there are several potential tantalizing links that are discussed in
the context of our current understanding of the etiology and pathophysiology of the disease.
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Relaxin, an approximately 6-kilodalton peptide hormone secreted by the corpus luteum,
circulates in the blood during pregnancy in human beings, nonhuman primates, rats, and
mice1 (Fig. 1, and see Appendix for relaxin ligand and receptor nomenclature). The
hormone also is detectable in the circulation during the luteal phase of the menstrual cycle in
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both women and nonhuman primates.1 Besides the ovary, there is local expression of relaxin
and its major receptor, relaxin/insulin-like family peptide receptor 1 (RXFP1), by various
cell types in the female reproductive tract including the nonpregnant endometrium, decidual
cells in the pregnant endometrium, and in cytotrophoblasts and syncytiotrophoblasts.1 Local
expression of relaxin and its receptor also has been described in blood vessels. 2,3 Thus, in
addition to its endocrine actions, there are autocrine and/or paracrine roles for relaxin.

Traditionally, relaxin has been investigated in the context of the reproductive tract.1

However, Hisaw4 and Ziel et al,5 the hormone’s founders, appear also as the first to provide
evidence (albeit structural in nature) that the vasculature, too, is a relaxin target tissue. They
administered relaxin to ovariectomized monkeys noting marked changes consistent with
hypertrophy and hyperplasia in endothelial cells of endometrial vessels, as well as
enlargement of arterioles and capillaries.6,7 These findings also suggested an angiogenic role
for relaxin and this subsequently was shown (reviewed by Conrad and Novak8 and
Jeyabalan et al9). Evidence for a vasodilatory role of the hormone was reported by St-Louis
and Massicotte,10 who showed that chronic infusion of purified rat or porcine relaxin
decreased systolic blood pressure in female SHR, but not WKY rats. This group
subsequently showed that short-term administration of purified rat relaxin decreased mean
arterial pressure in female SHR rats as early as 8 hours after starting the infusion, and that
vasoconstrictor responses to norepinephrine and arginine vasopressin were attenuated in the
animals’ mesenteric circulation perfused in situ.11 However a report by Ahokas et al12 that
the decline in systolic blood pressure and decrease in vascular reactivity to angiotensin II
were comparable in gravid SHR rats with (circulating relaxin present) and without (relaxin
absent) ovaries created doubt for an important physiological vascular role of circulating
relaxin. However, evidence for such vascular effects subsequently were provided by Bani-
Sacchi et al13 who used Langendorff preparations to show that relaxin acutely increased
coronary blood flow in rat and guinea pig hearts. Searching mechanisms they noted that the
vasodilatory action of relaxin in the coronary circulation was prevented by NG-monomethyl-
L-arginine, a nitric oxide synthase (NOS) inhibitor.13

More recent data pertinent to relaxin’s role as a vasodilatory hormone relate to studies from
investigations of renal and cardiovascular adaptations to pregnancy, and form the objectives
of this review: (1) to highlight the vasodilatory actions of relaxin, particularly in pregnancy;
(2) to outline perspectives on the mechanisms underlying the hormone’s vasodilatory role,
and (3) to consider the implications of relaxin biology to preeclampsia.

MATERNAL ADAPTATIONS IN NORMAL PREGNANCY
Systemic Hemodynamics and Arterial Mechanical Properties

The maternal circulation is markedly vasodilated throughout gestation. In human beings,
systemic vascular resistance (SVR) decreases and cardiac output increases reciprocally by
approximately 50%, reaching nadir and peak, respectively, by the end of the first or the
beginning of the second trimester (reviewed by Jeyabalan and Conrad14). Similar
vasodilation occurs during pregnancy in chronically instrumented, awake rats.15,16 In both
species, the increase in cardiac output during early gestation is in apparent anticipation of
the high oxygen and nutrient demands of the rapidly growing placenta and fetus that occur
mainly in the second half of pregnancy.15,17 Consistent with this concept is the narrowing of
the difference in oxygen content between arterial and mixed venous blood, consequent to
oxygen delivery exceeding demand at this early stage of gestation.15,18 Interestingly,
hemodynamic changes similar to human gestation, but of a lesser degree, occur in the luteal
phase of the menstrual cycle when SVR decreases and cardiac output increases (relative to
the follicular stage).14,19 Coincidentally, relaxin emanates from the corpus luteum during the
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luteal phase of the menstrual cycle, producing low (compared with pregnancy) but readily
detectable concentrations of the hormone.1

Global arterial compliance (AC) increases during human pregnancy in parallel with the
systemic hemodynamic changes.20 In keeping with this, other measures indicative of
increasing AC—augmentation index, carotid-radial and carotid-femoral pulse wave
velocities—all significantly decline during early pregnancy.21 Similarly, the gestational
decline in augmentation index is anticipated in the menstrual cycle’s luteal phase,21 and
increases in global AC also occur in chronically instrumented, awake pregnant rats.22 In the
face of large increases in stroke volume and cardiac output and decrease in SVR, the
simultaneous increase in global AC is pivotal to cardiovascular homeostasis during
pregnancy by maintaining efficient ventricular-arterial coupling and diastolic perfusion
pressure.20,23

Renal Hemodynamics
Renal vascular resistance decreases in early pregnancy and is a major contributor to the
overall reduction in SVR. Consequently, renal plasma flow (RPF) and glomerular filtration
rate (GFR) both increase by approximately 50% compared with nonpregnant levels
(reviewed by Jeyabalan and Conrad,14 Conrad et al,24 and Conrad25). Comparable changes,
but of lesser magnitude, occur in the luteal phase of the menstrual cycle (relative to the
follicular stage),14,24,25 when serum relaxin becomes detectable.1 Increases in RPF and GFR
also transpire during pregnancy in chronically instrumented, conscious rats, peaking at
midterm.14,25,26

RELAXIN ADMINISTRATION MIMICS VASODILATORY CHANGES OF
PREGNANCY
Systemic Hemodynamics and Arterial Mechanical Properties

Administration of recombinant human relaxin by subcutaneous osmotic pump to chronically
instrumented, awake, virgin female rats significantly decreased SVR and increased cardiac
output by approximately 20%.23 A comparable magnitude of change in systemic
hemodynamics was reported in midterm pregnant rats.15,16 Similar changes in systemic
hemodynamics in response to chronic relaxin administration also were observed in male and
female, normotensive control and hypertensive rats.27,28 In contrast, short-term intravenous
infusion of relaxin for several hours was only vasodilatory in the angiotensin II model of
hypertension, but not in SHR or normotensive rats.28 Of note, in all of these studies of
chronically instrumented, awake rats, the vasodilatory action of relaxin failed to decrease
mean arterial pressure because the SVR decrement was compensated by an increase in
cardiac output.23,27,28 Indeed, in the face of the marked decrease in SVR during pregnancy,
there is but a modest decline in mean and diastolic arterial pressures owing to the reciprocal
increases in cardiac output and global arterial compliance, respectively.20,23

There are recent data revealing the effects of relaxin on systemic hemodynamics in human
beings. Based on the potentially therapeutic profile of relaxin on systemic hemodynamics
and arterial mechanical properties, as well as renal hemodynamics (presented later), relaxin
was proposed as a novel means to reduce ventricular after load in congestive heart failure.23

Indeed, in a phase I trial of relaxin in stable congestive heart failure, Dschietzig et al29

showed that the hormone decreased SVR and increased cardiac output, and improved renal
function. They further showed that relaxin decreased pulmonary capillary wedge pressure
and N-terminal pro brain natriuretic peptide, findings not predicted from the studies in
normal healthy rats. The differences in the circulating concentration of relaxin attained or
the pathologic setting of congestive heart failure may explain these additional findings in
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human beings.29 Thus, the systemic vasodilatory action of relaxin initially described in
conscious rats may translate to human beings.

By using methodology developed for its use in chronically instrumented, conscious rats,23

global AC was assessed using two independent approaches: (1) diastolic decay of aortic
pressure, and (2) ratio of stroke volume-to-pulse pressure. The results were comparable for
the two methods. In the same experiments in which systemic hemodynamics were measured,
administration of relaxin by subcutaneous osmotic pump significantly augmented global AC
by approximately 20% in chronically instrumented, awake female rats.23 Similar increases
of global AC in response to chronic relaxin administration were observed in male and
female, normotensive control and hypertensive rats.27,28 In contrast, short-term intravenous
infusion of relaxin over several hours only increased global AC in the angiotensin II model
of hypertension, and not in SHR or normotensive rats.28

In addition to large arteries, small arteries contribute to global AC.30 Small renal arteries
dissected from female rats after 5 days of relaxin administration showed increases in passive
compliance relative to controls.23 Moreover, small renal arteries from relaxin knock-out
mice were stiffer than those from wild-type animals.3 These results implicate alterations in
vascular structure (ie, cellular components or extracellular matrix), in addition to decreased
vascular smooth muscle tone in the relaxin-induced increase in global AC.23,31

Renal Hemodynamics
Chronic administration of recombinant human or porcine relaxin by subcutaneous osmotic
pump to chronically instrumented, awake, virgin female rats reduced renal vascular
resistance, and increased RPF and GFR to levels observed during midterm pregnancy, when
renal function peaks in this species.26,32 This vasodilatory effect of relaxin was observed in
ovariectomized female32 and male rats.33 Also, chronic relaxin treatment attenuated the
renal vasoconstrictor response to intravenous angiotensin II,32 and a similar attenuated renal
pressor response to angiotensin II also occurred during rat gestation.34–36 In anesthetized
male rats, chronic subcutaneous osmotic pump administration of relaxin increased RPF, but
not GFR,37 and small renal arteries isolated from rats chronically administered relaxin
showed inhibited myogenic reactivity.38 This latter finding is identical to the inhibition of
myogenic reactivity in small renal arteries isolated from midterm pregnant rats.39

Short-term administration by infusion (1–6 hours intravenously) or osmotic pump
(subcutaneously) of relaxin to conscious rats also produced significant renal vasodilation
and hyperfiltration.40 In anesthetized male rats, 2-hour intravenous infusion of relaxin
increased RPF, but not GFR.37 In normal human subjects, short-term intravenous infusion of
relaxin for 6 hours increased RPF by 60%, but surprisingly did not increase GFR.41 This
renal vasodilatory effect occurred in both men and women as early as 30 minutes after
starting the infusion, and with no significant changes in blood pressure.41 Finally, during 26
weeks of subcutaneous relaxin infusion in patients with mild scleroderma, the creatinine
clearance (calculated as estimated GFR) increased by approximately 20% and diastolic
blood pressure declined slightly, but significantly.42,43 Thus, the renal vasodilatory effects
of relaxin first described in awake rats is likely to translate to human beings, although GFR
was increased inconsistently among the various studies in rats and human beings.
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RELAXIN IMMUNONEUTRALIZATION OR ELIMINATION FROM THE
CIRCULATION INHIBITS MATERNAL VASODILATION OF PREGNANCY
Systemic Hemodynamics and Arterial Mechanical Properties

Relaxin is essential to the alterations in systemic hemodynamics and arterial mechanical
properties during midterm pregnancy in conscious rats.22 The increase in cardiac output and
global AC and decrease in SVR during midterm pregnancy were prevented by daily
administration of rat relaxin-neutralizing antibodies when started on day 8.22 However, in
preliminary studies, relaxin immunoneutralization during late pregnancy only partly
prevented the approximately 45% gestational increase in cardiac output and global AC and
decrease in SVR, suggesting that other hormones (possibly of placental origin) may
contribute at this stage of gestation (unpublished data). Whether relaxin might contribute to
the gestational changes in systemic hemodynamics and global AC in pregnant women is
currently under investigation.

Renal Hemodynamics
Relaxin is also critical for the changes in renal hemodynamics during midterm pregnancy in
conscious rats.44 The gestational increases in RPF and GFR and decrease in renal vascular
resistance observed during midterm pregnancy were completely prevented either by
ovariectomy (while maintaining pregnancy with exogenous estrogen and progesterone), or
daily administration of rat relaxin-neutralizing antibodies beginning on day 8.44 These
interventions also precluded the gestational inhibition of myogenic reactivity in small renal
arteries isolated from the same rats.44

In women with ovarian failure made pregnant through egg donation, in vitro fertilization,
and embryo transfer, the first trimester increase in GFR was blunted significantly.45 These
women lacked ovarian function and a corpus luteum, and circulating relaxin was
undetectable,1 implicating relaxin in the initiation of gestational hyperfiltration. However,
unlike gravid rats in which the gestational increase in GFR was completely dependent on
circulating relaxin, a partial increase in GFR may have persisted in these pregnant women
despite the absence of circulating relaxin.

MOLECULAR MECHANISMS OF RENAL VASODILATION AND
HYPERFILTRATION DURING PREGNANCY OR RELAXIN ADMINISTRATION

The vasodilatory mechanisms of relaxin may differ depending on the duration of hormone
exposure (ie, there are sustained and rapid vasodilatory responses to relaxin).

SUSTAINED VASODILATORY RESPONSES
Nitric Oxide

When a major role for prostaglandins in the vasodilatory phenomena of pregnancy proved
unlikely,24,25 attention turned to the more recently discovered and attractive candidate,
endothelium-derived relaxing factor (Fig. 2). First guanosine 3′, 5′-cyclic monophosphate
(cGMP), a major second messenger of endothelium-derived relaxing factor, or NO was
studied because its extracellular levels reflect intracellular production. Plasma levels, 24-
hour urinary excretion, and the “metabolic production rate” of cGMP were measured in
conscious rats, with increases in all observed during pregnancy and pseudopregnancy.46,47

Comparable increments in plasma levels and urinary excretion were reported for human
pregnancy.48–50 These studies were consistent with the potential role for NO in the
vasodilation of pregnancy.
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Upon identifying endothelial-derived re laxing factor as NO,51 the stable metabolites, nitrate
and nitrite (NOx), were explored. Twenty-four–hour urinary NOx increased in pregnant and
pseudopregnant rats consuming low-NOx diets, paralleling an increase in cGMP.52 This
increase was inhibited by nitro-L-arginine methyl ester administration, which provides
strong evidence that the increment derived from NO, and ultimately its substrate L-
arginine.52 Plasma levels of NOx also were increased during rat gestation, and NO-
hemoglobin was detected in red blood cells from pregnant, but not nonpregnant, rats.52

These findings have been confirmed (eg, by Lubarsky et al53 and Deng et al54), and support
the concept that NO production is augmented during pregnancy. Although the tissue
source(s) for the gestational increases in NO and cGMP were not identified, the arterial wall
was an attractive candidate, thus placing these molecules in the vasodilatory pathway of
pregnancy. Interestingly, similar increases in NOx were reported in gravid ewes.55

However, the status of NO biosynthesis during normal pregnancy in women (and in
preeclampsia) is not clear.48,56–58

Discovery that some arginine analogs inhibit NOS and NO production51 produced tools to
explore the functional role of NO in gestational renal vasodilation and hyperfiltration. Short-
term, low-dose administration of arginine analogs to chronically instrumented, conscious
virgin control and midterm pregnant rats led to a convergence of GFR, RPF, and renal
vascular resistance in both groups, with total blockade of gestational renal vasodilation and
hyperfiltration.35 That is, gravid rats responded more robustly to NOS inhibition with
greater declines in GFR and RPF, and increases in renal vascular resistances. Some,59,60 but
not all,61 reports have suggested that the gestational renal vasodilation and hyperfiltration
are also prevented by chronic administration of NOS inhibitors. In line with these in vivo
investigations, loss of myogenic reactivity in small renal arteries from midterm pregnant rats
was restored to the robust levels of arteries from virgin control rats after addition of NOS
inhibitors to the bath or removal of the endothelium.39

Basal hand and forearm blood flows, assessed by venous occlusion plethysmography,62,63

were increased during late pregnancy, and the vasoconstrictor response to brachial artery
infusion of NG-monomethyl-L-arginine was enhanced significantly relative to nonpregnant
control subjects. These studies suggested that NO contributes to reduced arterial tone during
pregnancy.

An essential role for NO in the renal vasodilation, hyperfiltration, and reduced myogenic
reactivity of small renal arteries also was established for nonpregnant rats administered
relaxin, again by using NOS inhibitors.32,38 Unexpectedly, however, the 24-hour urinary
excretion of cGMP and NOx did not increase in relaxin-treated rats despite the proven
functional role of NO in relaxin-mediated vasodilation of the renal circulation.32 Thus,
ironically, the increases in urinary and plasma cGMP and NOx that initially were observed
during pregnancy, and motivated further investigation of NO in pregnancy vasodilation, may
not be of vascular origin or of hemodynamic relevance.

Endothelial EndothelinB Receptor
The mechanism for the NO-dependent vasodilatory changes in the renal circulation during
rat gestation or relaxin administration in nonpregnant rats did not appear to be a
consequence of increases in endothelial NOS protein.64,65 Although a role for other renal
NOS isoforms cannot be excluded, the possibility was explored that NOS, presumably
endothelial NOS, might be activated by endothelin (ET), thereby mediating the NO-
dependent renal vasodilatory changes of pregnancy or by relaxin administration.66 This
hypothesis was based on previous investigations that established a role for the endothelial
ETB receptor in the maintenance of low renal vascular tone in the nonpregnant condition,
most likely by tonic stimulation of nitric oxide (reviewed by Conrad and Novak,8 Conrad et
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al,24 and Conrad25). It was postulated that during pregnancy, relaxin accentuates this
vasodilatory pathway in the renal circulation.66

Analogous to NOS inhibition, short-term, low-dose administration of the endothelial ETB-
receptor antagonist RES-701–1 inhibited renal vasodilation and hyperfiltration leading to a
convergence of GFR, RPF, and renal vascular resistance in chronically instrumented,
conscious midterm pregnant and virgin rats.66 Consistent with these in vivo studies, loss of
myogenic reactivity in small renal arteries from midterm rats was restored by introducing
RES-701–1 or the mixed ETA/B antagonist, SB209670, but not the ETA antagonist, BQ123,
into the bath.39 In additional investigations, the NO-cGMP signaling pathway was
implicated in transducing the vasodilatory action of endogenous ET via the ETB receptor in
the renal circulation during pregnancy.39,66 In complementary studies, a critical role for the
endothelial ETB receptor in mediating renal vasodilation, hyperfiltration, and inhibiting
small renal artery myogenic reactivity also was established for relaxin administration in
virgin female rats.33,38

Arterial Gelatinases
Given the essential, albeit perhaps paradoxic, role for endothelin (better known as a
vasoconstrictor) in the relaxin vasodilatory pathway, a logical hypothesis was that relaxin
up-regulates the endothelial ETB receptor. This idea needs further study because although
one group noted evidence in favor of the hypothesis, we failed to find any supportive
evidence.67,68 In view of this impasse, an alternative hypothesis was formulated, founded on
the confluence of several findings: first, the essential role of relaxin, the endothelial ETB
receptor, and NO in pregnancy-mediated renal vasodilation; second, the ability of relaxin to
up-regulate matrix metalloproteinase (MMP)-2 and -9 activities (also known as gelatinases
A and B, respectively), at least in several nonvascular cell types; and, third, the potential for
MMPs (such as −2 and −9) to process big ET at a gly-leu bond to ET1–32, the latter fully
capable of activating ET receptors.69–72 It was reasoned that relaxin might up-regulate
MMP-2 or -9 activity in the renal vasculature during pregnancy, thereby mediating renal
vasodilation, hyperfiltration, and inhibition of myogenic reactivity in an ET- and NO-
dependent manner. This alternative pathway for ET formation was particularly compelling
because phosphoramidon, which blocks the traditional endothelin-converting enzyme and
ET1–21 formation, failed to impact the renal vasodilatory responses of relaxin even though
the dose used completely inhibited the slow pressor response to big ET-1.70

To study this new hypothesis, a specific gelatinase inhibitor was used, cyclic
CTTHWGFTLC (cyclic CTT), which preferentially inhibits the activity of MMP-2 relative
to MMP-9.73 Because cyclic CTT is approximately 10 times more potent than
STTHWGFTLS (STT), the latter served as a control peptide.73 Short-term infusion of low-
dose cyclic CTT (but not of STT), which did not significantly increase blood pressure,
abrogated renal vasodilation and hyperfiltration induced by long-term administration of
relaxin in chronically instrumented animals.70 To corroborate these findings, a general
inhibitor was used, GM6001, that is structurally distinct from cyclic CTT.74 GM6001
inhibited relaxin-mediated renal vasodilation and hyperfiltration.70

The myogenic reactivity bioassay also was used. Small renal arteries from midterm pregnant
or relaxin-treated nonpregnant rats showed loss of myogenic reactivity that was restored by
cyclic CTT, but not STT; GM6001, but not dilute vehicle; tissue inhibitor of
metalloproteinases (TIMP-2), but not heat-inactivated TIMP-2; and MMP-2 neutralizing
antibody, but not control IgG antibody introduced into the bath or arterial lumen.70 In
contrast, phosphoramidon failed to restore myogenic reactivity.70 These in vitro results were
consistent with those observed in vivo, and taken together suggested a pivotal role for
gelatinase (likely MMP-2) in the renal vasodilatory responses to relaxin and pregnancy.
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Moreover, the in vitro studies implicated local arterial gelatinase activity, rather than
circulating enzyme.

Although these studies established a critical role for arterial MMP-2 in the renal vasodilatory
pathway of relaxin and pregnancy, they did not determine whether MMP-2 activity itself
was being regulated. To address this question, gelatinase activity, protein, and messenger
RNA were quantitated in small renal and mesenteric arteries, and aortae isolated from
midterm pregnant or relaxin-treated nonpregnant rats, and an approximately 40% increase in
both pro- and active MMP-2 activity, pro–MMP-2 protein, and messenger RNA was
shown.70,72 Interestingly, pro–MMP-9 activity was increased consistently in small renal
arteries from midterm pregnant rats too, but markedly less than MMP-2.70 The increase in
maternal systemic arterial gelatinase activity during pregnancy or relaxin administration has
been confirmed.75–77 Although there were no significant differences in arterial TIMP-1 or
TIMP-2 activities, there was considerable variability in the reverse zymography assay.72

MMP-2 was localized to both the endothelium and vascular smooth muscle of the small
renal arteries by immunohistochemistry,72 but further inquiry is needed to determine in
which of these compartment(s) it is up-regulated by either pregnancy or relaxin.

Unexpectedly, MMP-9 rather than MMP-2 activity was increased in small renal and
mesenteric arteries harvested from rats after short-term subcutaneous administration of
relaxin by osmotic pump for 4 to 6 hours.71 Consistent with this finding, isolated small renal
arteries showed loss of myogenic reactivity that was restored by a specific MMP-9– rather
than MMP-2–neutralizing antibody. MMP-9 was immunolocalized to the vascular smooth
muscle. It should be noted that MMP-9 also can hydrolyze big ET to ET1–32 at a gly-leu
bond.69 Of note, cyclic CTT failed to restore myogenic reactivity in this setting, suggesting
that, in this tissue and at the dosage used, the peptide specifically inhibits MMP-2. Finally,
similar to long-term administration of relaxin, the inhibition of myogenic reactivity in
arteries isolated only after 4 to 6 hours of administration also was mediated by the
endothelial ETB receptor and NO.71

Evidence was gathered showing arterial MMP-2 was in series with, and upstream of, the
endothelial ETB receptor and NO rather than as part of a separate and parallel vasodilatory
pathway. Inhibition of myogenic reactivity was not observed in small renal arteries isolated
from relaxin-treated or midterm pregnant ETB-receptor–deficient rats, corroborating the
studies using pharmacologic inhibitors of the ETB receptor.70,78 Nevertheless, arterial
MMP-2 activity was increased.70 This dissociation of increased arterial MMP-2 activity
from the functional end point of inhibited myogenic reactivity, the latter which was not
observed due to genetic disruption of the ETB receptor, strongly suggested that MMP-2 was
in series with, and upstream of, the endothelial ETB receptor and NO (Fig. 2).

Emerging Role of Angiogenic Growth Factors
By using knockout mice, it was suggested in a preliminary report that the major relaxin
receptor, RXFP1, mediates the arterial responses to relaxin, and not the lower-affinity
receptor, RXFP279 (see Appendix for relaxin ligand and receptor nomenclature). Moreover,
RXFP1-receptor messenger RNA and protein expression in vascular smooth muscle greatly
exceeds that of endothelium (unpublished data). This last finding suggested the possibility
that other factors (eg, angiogenic growth factors) may be secreted by the vascular smooth
muscle upon RXFP1 activation, which then diffuse to the endothelium, where they stimulate
expression of gelatinase(s), activating the endothelial ETB receptor–NO vasodilatory
pathway. However, this hypothetical chain of events may be incorrect: it is possible that
endothelial RXFP1 is the receptor of physiological relevance to the relaxin vasodilatory
pathway, despite its vastly lower expression compared with vascular smooth muscle.
Nevertheless, given that relaxin has been shown to increase vascular endothelial growth
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factor (VEGF) expression at least in some nonvascular cell types and is angiogenic
(reviewed by Conrad and Novak8 and Jeyabalan et al9), whether VEGF or placental growth
factor (PGF) might be the factor(s) linking the vascular smooth muscle and endothelium was
considered. To date, functional approaches have been taken to test this hypothesis, and the
results showed that the VEGF-receptor tyrosine kinase inhibitor, SU5416, and specific
VEGF- and PGF-neutralizing antibodies each prevent the inhibition of myogenic reactivity
by relaxin in mouse and rat small renal arteries, and in human subcutaneous arteries.80

Moreover, SU5416 prevented relaxin-mediated decreases in renal vascular resistance, and
increases in RPF and GFR in chronically instrumented, conscious rats.81 Thus, emerging
evidence suggests that angiogenic growth factors may play a role in the relaxin vasodilatory
pathway, but the molecular details await elucidation.

RAPID RELAXATION RESPONSES
Recently, Fisher et al82 showed that relaxin also elicited a rapid relaxation response (ie,
within minutes), in isolated human arteries, and in an endothelium-dependent fashion.
Interestingly, this effect was observed in vessels obtained from gluteal biopsy specimens,
but not pulmonary tissues. In a preliminary report,83 the molecular underpinnings of this
rapid vasodilatory action of relaxin were studied. The phenomenon was observed in small
renal arteries from rats and mice, but not in mesenteric or coronary septal arteries. Rapid
relaxation to relaxin also was shown in isolated human subcutaneous arteries. Brief
incubation of cultured human endothelial, but not vascular smooth muscle, cells with relaxin
increased NO production within minutes as detected by the fluorescent probe, 4-amino-5-
methylamino-2′7′-difluorofluorescein. These rapid responses to relaxin in the isolated
arteries and cultured endothelial cells were abrogated by L-arginine analogs, PI3 kinase
inhibitors, and pertussis toxin, but not by the VEGF-receptor tyrosine kinase inhibitor,
SU5416. In support of these functional studies, there was increased phosphorylation of Akt
and endothelial NOS in cultured endothelial cells. These studies suggested that relaxin
rapidly dilates arteries from select arterial beds across a range of animal species. The
mechanism apparently involves Gαi/o protein coupling to PI3K, Akt, and endothelial NOS,
but not VEGF-receptor transactivation.

IMPLICATIONS OF RELAXIN BIOLOGY FOR PREECLAMPSIA
Currently, the relevance of relaxin biology to preeclampsia is largely speculative because its
role in the maternal adaptations of normal pregnancy is only now being unveiled.
Nevertheless, there are several intriguing implications of relaxin biology for preeclampsia
that are highlighted in relation to our current understanding of the etiology and
pathophysiology of the disease.

PATHOPHYSIOLOGY OF PREECLAMPSIA: STAGE I
Briefly, preeclampsia can be considered a three-stage disease (Fig. 3). Stage I occurs in early
pregnancy and especially involves impaired trophoblast invasion of uterine spiral arteries.
Consequently, these arteries fail to be remodeled adequately from small-caliber, high-
resistance to large-caliber, low-resistance vessels, thus impeding uteroplacental blood
flow.84 Failure of spiral arteries to convert to conduit-size vessels also may confer higher
blood flow velocities entering the intervillous space, further damaging placental villi by
mechanical forces.85 The structural remodeling of spiral arteries in normal pregnancy,
owing primarily to their interaction with invading trophoblasts, occurs by apoptosis of spiral
artery smooth muscle and endothelial cells, as well as dissolution of extracellular matrix
components such as collagen, and the deposition of fibrinoid material in the vascular
wall.84,86–89 However, precursor changes occur in spiral arteries of the endometrium and
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inner myometrium during decidualization, which may be permissive for the subsequent
wave of trophoblast invasion (see later).

Trophoblast Invasion
The underlying cause(s) of successful and failed trophoblast invasion in stage I is an active
area of investigation.90 The possible hormones, growth factors, chemokines, and cytokines
involved are discussed elsewhere,91 but no reports of the influence of relaxin on trophoblast
invasion could be located in PubMed through March 2010. Nevertheless, trophoblasts likely
express H1 and H2 relaxins, as well as the RXFP1 receptor.1 They also express VEGF and
PGF, as well as the cognate receptors.92 Invading trophoblasts express gelatinase activity
facilitating migration and invasion of the uterus.93,94 Analogous to endothelial cell
migration,95 there are data, albeit more limited, suggesting that the ETB-receptor–
endothelial NOS system promotes trophoblast migration and invasion.96–98 Thus, all of the
signaling components in the relaxin vasodilatory pathway described in the Sustained
Vasodilatory Responses section may be present in invading trophoblasts. It is tempting to
consider that relaxin may harness partor all of this molecular pathway to promote
trophoblast invasion. Thus, deficient relaxin signaling may contribute to defective
trophoblast invasion, a hypothesis that remains to be tested.

Decidualization
The impairment of trophoblast invasion in preeclampsia is logically caused by intrinsic
defect(s) within the invading trophoblasts themselves, in the maternal endometrium, and
inner-third of the myometrium, particularly the spiral arteries in which they invade, or both.
Thus, abnormalities of maturation in the endometrium, inner-myometrium, and spiral
arteries therein, before and after conception (called predecidualization and decidualization,
respectively), may be etiologic.99 Decidual changes in the endometrial and inner-myometrial
spiral arteries normally include “intimal swelling, an edematous media, and separation of the
musculoelastic layers.”84 Alternatively, the optimal complement of uterine immune cells
and associated cytokines, and their interaction with resident cells of the endometrium and
inner-myometrium, as well as invading trophoblasts, may be perturbed. Indeed, global gene
expression profiling of chorionic villous and decidual tissue obtained at 10 to 12 weeks’
gestation from women who developed preeclampsia 6 months later prominently featured
abnormal expression of genes related to decidualization and immune function.100 By
extrapolation, it is not inconceivable that in some women the antecedents of preeclampsia
may lie with defective predecidualization in the secretory phase of the menstrual cycle.84,100

Because the secretory phase of the menstrual cycle and early pregnancy are primarily under
the endocrine control of the corpus luteum (eg, progesterone and relaxin), the etiology of
preeclampsia may reside with abnormal ovarian function or end-organ resistance to ovarian
hormones in some women who develop the disease.

In this regard, relaxin’s contribution to the process of decidualization is especially well
characterized in vitro.101,102 The role of relaxin in modifying endometrial structure and
function in vivo was elegantly shown by Goldsmith et al101,103 in a nonhuman primate
model. They showed that circulating relaxin markedly stimulated endometrial angiogenesis
and increased endometrial lymphocyte numbers, consistent with the changes observed in
early human pregnancy. This finding, enhanced endometrial angiogenesis in response to
relaxin, is consistent with the earlier work of Hisaw et al104 (see Introduction), and with the
menometrorrhagia noted in many patients participating in a clinical trial designed to test the
efficacy of relaxin in treating scleroderma. Such angiogenic attributes of relaxin also have
been established in other organs and pathologic settings.8,9
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Circulating Relaxin
One possibility is that circulating relaxin may be decreased during stage I in women
destined to develop preeclampsia. Consistent with this hypothesis is a preliminary report in
which spontaneously conceiving women with first-trimesterserum relaxin levels that were
approximately half of normal levels in the first trimester have an adjusted odds ratio of 7.5
for developing preeclampsia.105 This study raised the possibility that these women may
experience defective decidualization and trophoblast invasion or fail to adequately
vasodilate in early pregnancy owing to low levels of circulating relaxin, thereby
predisposing them to develop preeclampsia.

Infertile women made pregnant by egg donation, in vitro fertilization, and embryo transfer
are completely devoid of circulating relaxin throughout pregnancy.1 Surprisingly, their
cardiovascular and renal adaptations to pregnancy appear not to have been studied with the
exception of one limited study, in which markedly blunted increases in GFR (and decreases
in plasma osmolality) were observed in the first trimester.45 Perhaps not coincidentally,
there is growing evidence suggesting that these women may be at increased risk for
hypertensive disorders of pregnancy including preeclampsia, as well as having small for
gestational age babies.106

PATHOPHYSIOLOGY OF PREECLAMPSIA: STAGE II
Stage II, a consequence of stage I, entails inadequate uteroplacental perfusion leading to
placental ischemia-hypoxia.107 As well, the persistence of uterine spiral artery smooth
muscle should render these blood vessels susceptible to local and circulating
vasoconstrictors resulting in vasospasm and hypoxia-reperfusion injury to the placenta.
Another major consequence of the disturbed uteroplacental blood flow is up-regulation of
placental hypoxia inducible transcription factors (HIF-1α and -2α) via hypoxia, although
reactive oxygen species, various cytokines, and growth factors also can increase HIF-
α.108–110 Placental villi also undergo apoptosis and necrosis.111,112

Whether relaxin increases uterine blood flow is not clear and requires more study. However,
reports that support the hypothesis113 raise the possibility that relaxin deficiency during
pregnancy may result in reduced uterine blood flow, and relaxin administration could
prevent or treat preeclampsia by enhancing perfusion. In contrast are reports of a direct
relationship between serum relaxin levels and the uterine artery Doppler resistance
index,114,115 results suggesting relaxin is associated with increased, not reduced, uterine
vascular resistance.

It may be that circulating or locally expressed relaxin counteracts placental HIF-1α and -2α
independent of an increase in uterine blood flow. If so, relaxin may serve to dampen the
production and release of the HIF-α regulated gene products that circulate and damage the
maternal endothelium in preeclampsia. The hypothesis remains to be explored.

In other cell types, relaxin has been found to be anti-apoptotic,116 but such action on
trophoblast or other placental cells has not been investigated. Accelerated trophoblast
apoptosis is deleterious in preeclampsia,111,112,117 and relaxin conceivably might oppose
this process.

PATHOPHYSIOLOGY OF PREECLAMPSIA: STAGE III
Stage III begins when factors from the damaged placenta enter the maternal circulation,
cause endothelial activation and injury, and produce disease manifestations including
hypertension, proteinuria, and glomerular endotheliosis. Identification of these factors has
been hotly pursued for years, and are likely to be a multitude of injurious agents, the
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complement of which may vary from patient to patient, and with no one factor alone being
responsible. Currently, the leading candidates include inflammatory cytokines, agonistic
angiotensin type I receptor autoantibodies, syncytiotrophoblast microparticles, soluble
endoglin, and soluble fms-like tyrosine kinase-1 (sFlt-1 or soluble VEGF receptor 1), the
latter thought to act by binding and sequestering VEGF and PGF.112,118–120 Levels of some
of these factors increase in the maternal circulation before clinical onset, suggesting they
cause rather than result from the disease.

Susceptibility to these circulating factors may vary among gravidas, thereby necessitating a
little or a lot of placental pathology, respectively, to precipitate clinical disease (Fig. 3), and
this may explain why women with pre-existing endothelial dysfunction (eg, renal disease,
chronic hypertension, or diabetes mellitus) may be predisposed to preeclampsia. In these
women, pre-existing endothelial dysfunction also may affect the uterine vasculature,
contributing to impaired trophoblast invasion in stage I and exacerbating stage II. It also
should be noted that circulating deleterious factors in preeclampsia may derive from other
sources besides, or in addition to, the placenta.120–122

Evidence for the pathologic role of increased sFlt1 levels in preeclampsia represents an
important breakthrough in our understanding of disease pathophysiology (detailed in the
article by Maynard et al in this issue). Placental HIF-α proteins and HIF-α regulated genes
including membrane-bound Flt1 and sFlt1 are increased in preeclampsia.108,110,119,123 Thus,
sFlt1 is likely to be an important (but certainly not the only) factor emanating from the
placenta that contributes to endothelial dysfunction in preeclampsia. The additional findings
that sFlt1 is not increased in the maternal circulation during the first half of pregnancy in
women destined to develop preeclampsia,124,125 and the lack of evidence for up-regulation
of hypoxia or oxidative stress regulated genes including Flt1 in chorionic villous and
decidual tissues at 10 to 12 weeks of gestation, suggest that these may be later events in the
disease.100

Circulating Relaxin
Given that relaxin contributes to the vasodilatory phenomena of normal pregnancy, an
obvious consideration is whether circulating levels are decreased during the clinical
manifestations of preeclampsia. However, serum immunoreactive H2 relaxin was reported
to be similar in women with preeclampsia and normal pregnancy at comparable gestational
ages.126 One caveat to this study is that strict definition of preeclampsia was not used,
insofar as women both with and without proteinuria were included. In addition,
immunoreactivity may not equate to bioactivity, which could be compromised (eg, by
increased circulating levels of a putative soluble RXFP1 receptor).127,128 Alternatively, and
by analogy to other ligand-receptor systems, fewer RXFP1 receptors or increased expression
of truncated RXFP1 receptors on blood vessels could undermine relaxin signaling in
arteries, thereby leading to relative vasoconstriction.3,127,128

Maternal Adaptations in Preeclampsia
These are diametrically opposed to normal pregnancy, at least during disease. That is,
relative to normal pregnancy, there is systemic and renal vasoconstriction leading to reduced
organ perfusion (reviewed by Jeyabalan and Conrad14). On the one hand, this may be part
and parcel of the generalized “endothelial dysfunction” that contributes to the pathogenesis
of preeclampsia. Similar to other cardiovascular diseases associated with endothelial
dysfunction, disruption of the caveolar microenvironment could contribute to the endothelial
abnormalities of preeclampsia.129 Endothelial and caveolar homeostasis may be perturbed
by any number of circulating factors in the disease including syncytiotrophoblast
microparticles, oxidized low-density lipoprotein, tumor necrosis factor-α, agonist

Conrad Page 12

Semin Nephrol. Author manuscript; available in PMC 2012 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



angiotensin type I receptor autoantibodies, sFlt1, and soluble endoglin. Insofar as the relaxin
signaling pathway may wholly or partly reside in endothelial cell caveolae (see the study by
Jeyabalan70), disruption of this caveolar microenvironment conceivably could compromise
relaxin vasodilation. For example, oxidized low-density lipoprotein modifies the lipid milieu
of caveolae by depleting cholesterol that, in turn, compromises endothelial NOS
activation.129

On the other hand, interference with specific mechanisms of the relaxin vasodilatory
pathway, independent of general disruption of the caveolar microenvironment, also may
predispose or contribute to preeclampsia. For example, one possibility is that increased
circulating levels of sFlt1 neutralize the activities of VEGF and PGF in the arterial wall,
which, as described earlier, are crucial for the sustained vasodilatory action of relaxin.
Another possibility is that excessive production of arterial MMP-2 or -9 or circulating
enzymes130 leads to excessive formation of ET1–32, which “spills over,” interacting with
ETA and ETB receptors on vascular smooth muscle that are vasoconstricting, thus
overwhelming relaxin-induced vasodilation.

POTENTIAL THERAPEUTIC ROLE OF RELAXIN IN PREECLAMPSIA
As reviewed earlier, increased circulating sFlt1 or soluble VEGF-receptor 1 was identified
as an important mediator of endothelial dysfunction in preeclampsia.119 This soluble
receptor sequesters the essential angiogenic growth factors, VEGF and PGF, and prevents
their activity in endothelial cells. Furthermore, VEGF and PGF are emerging as essential
mediators in relaxin-induced vasodilation.81,131 Thus, convergence of these observations
provides mechanistic support for the therapeutic application of relaxin in preeclampsia, in
addition to the more obvious salutary effects the hormone may be expected to have on blood
flow and organ perfusion. That is, by locally up-regulating arterial VEGF and PGF activity,
relaxin administration could neutralize the deleterious effects of circulating sFlt1, thus
improving the pro-angiogenic/anti-angiogenic balance, leading to improved endothelial
function, increased NO, systemic and uterine vasodilation, as well as attenuation of disease
manifestations.

In light of the serious ramifications of preeclampsia on maternal and perinatal health
(particularly in geographic regions with poor antenatal care); the possibility it may
predispose to remote cardiovascular disease; the lack of a cure for preeclampsia other than
delivery; the emerging role of relaxin in cardiovascular adaptations to normal pregnancy;
and growing evidence for relaxin’s efficacy in cardiovascular disease in the nonpregnant
population, preclinical studies of the hormone in preeclampsia animal models would seem
warranted.
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APPENDIX

Relaxin Ligand and Receptor Nomenclature [132]
Human beings have three relaxin genes designated relaxin-1, -2, and -3. Rats and mice each
have two relaxin genes designated relaxin-1 and -3. Human relaxin-2, as well as rat and
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mouse relaxin-1 gene products, are true orthologs insofar as they are secreted by the corpus
luteum during pregnancy and circulate. Human beings, rats, and mice have one receptor, the
so-called leucine rich repeat-containing G-protein–coupled receptor (recently renamed
relaxin/insulin-like family peptide 1 receptor [RXFP1]) that binds relaxin. Although human
relaxin-2 also may bind to the Lgr8 receptor (RFXP2), albeit with reduced affinity,132,133

the preferred ligand for Lgr8 is Insl-3. Recently, two new receptors have been described for
relaxin-3: GPCR135 and 142134 (although GPCR142 is a pseudogene in rats).
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Figure 1.
Serum concentrations of relaxin in the luteal phase of the menstrual cycle and during
pregnancy in human beings. Figure 1 is based on data from Szlachter et al, 126 Stewart et
al,135 and O’Byrne et al.136
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Figure 2.
Working model for the sustained vasodilatory responses of relaxin. Inhibitors of relaxin
vasodilation are shown in the boxes. GM6001, general MMP inhibitor; RES-701–1, specific
ETB receptor antagonist; SB209670, mixed ETA and ETB receptor antagonist; L-NAME,
nitro-L-arginine methyl ester; L-NMMA, NG-monomethyl-L-arginine. Note that
phosphoramidon (an inhibitor of the classic ET-converting enzyme), STT (control peptide
for cyclic CTT), heat-inactivated TIMP-2, BQ-123 (a specific ETA-receptor antagonist), D-
NAME, and IgGs (control antibodies for MMP neutralizing antibodies) did not affect the
slow vasodilatory responses of relaxin. Not depicted in this schema are the roles of the Lgr7
(RXFP1) receptor, and VEGFs and PGFs in mediating the vasodilatory actions of relaxin as
published in preliminary reports. See text for further details.
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Figure 3.
Three-stage model of preeclampsia. See text for details.
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