
Copyedited by: TRJ MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[13:52 13/6/2012 Bioinformatics-bts191.tex] Page: 1797 1797–1799

BIOINFORMATICS APPLICATIONS NOTE Vol. 28 no. 13 2012, pages 1797–1799
doi:10.1093/bioinformatics/bts191

Genetics and population analysis Advance Access publication April 17, 2012

INRICH: interval-based enrichment analysis for
genome-wide association studies
Phil H. Lee1,2,3, Colm O’Dushlaine3, Brett Thomas1 and Shaun M. Purcell1,2,3,4,∗
1Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital,
MA 02114, 2Department of Psychiatry, Harvard Medical School, Boston, MA 02115, 3Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 and 4Center for Statistical Genetics, Mount
Sinai School of Medicine, New York, NY 10029, USA
Associate Editor: Jeffrey Barrett

ABSTRACT

Summary: Here we present INRICH (INterval enRICHment analysis),
a pathway-based genome-wide association analysis tool that tests
for enriched association signals of predefined gene-sets across
independent genomic intervals. INRICH has wide applicability, fast
running time and, most importantly, robustness to potential genomic
biases and confounding factors. Such factors, including varying
gene size and single-nucleotide polymorphism density, linkage
disequilibrium within and between genes and overlapping genes with
similar annotations, are often not accounted for by existing gene-set
enrichment methods. By using a genomic permutation procedure, we
generate experiment-wide empirical significance values, corrected
for the total number of sets tested, implicitly taking overlap of sets
into account. By simulation we confirm a properly controlled type I
error rate and reasonable power of INRICH under diverse parameter
settings. As a proof of principle, we describe the application of
INRICH on the NHGRI GWAS catalog.
Availability: A standalone C++ program, user manual and datasets
can be freely downloaded from: http://atgu.mgh.harvard.edu/inrich/.
Contact: shaun@atgu.mgh.harvard.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Multi-locus approaches (often known as pathway or gene-set
enrichment analysis methods) can be used to ask whether sets of
single-nucleotide polymorphisms (SNPs), often defined by groups of
functionally related genes, are in aggregate more highly associated
with a phenotype than expected by chance. Consideration of
the biological relationships among the ‘top hits’ in a genome-
wide association study (GWAS) can provide orthogonal evidence,
over and above the functionally agnostic analysis of the number,
statistical significance and/or variance explained of those hits. For
example, that a GWAS has three independent SNPs with P-values
around at 1×10−6 is in itself unremarkable. However, if the
associated regions independently map to three of a small set of
functionally related genes, this will be very unlikely to occur by
chance: consequently, we would likely wish to put more weight
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on these associations. As well as providing additional statistical
evidence to sub-threshold association results, another use of gene-
set analysis can be called in silico fine-mapping, or prioritizing
specific genes in loci that contain multiple genes with equivalent
association evidence. For example, of 10 associated genes within a
block of strong linkage disequilibrium (LD), we may find that only
one shows above-chance relatedness to genes that appear in other,
statistically independent association intervals. All other things being
equal, one would presumably consider that gene as more likely to
be causally related compared with the other nine. Furthermore, the
identity of the particular enriched gene-sets may offer insights into
disease mechanism and biology, although this will be contingent
on the gene-sets’ accuracy, comprehensiveness and relevance to the
phenotype’s underlying biology.

Over the past few years, several gene-set methods for GWAS have
been developed ((Holmans et al., 2009; Wang et al., 2007)). Still,
there clearly exist challenges and limitations to be addressed ((Hong
et al., 2009)). Desirable properties of a gene-set test include
the following: (i) robust, and so able to calculate experiment-
wide significance, with adjustment for common biases due to
gene size, LD within and between genes, etc.); (ii) flexible, with
application to (summary) data from different sources, such as
GWAS, from imputed data, copy number variant (CNV) studies,
targeted sequencing, from tables in manuscripts, etc.; and (iii)
computationally manageable, allowing genome-wide analysis in a
reasonable time on a single machine.

Here, we describe the gene-set enrichment analysis tool INRICH
(INterval enRICHment analysis) that aims to satisfy the above
properties. INRICH takes a set of independent, nominally associated
genomic intervals and then tests for the enrichment of predefined
gene-sets. An ‘interval’ will typically correspond to a genomic
region of SNP association defined by LD from a genome-wide scan,
although intervals could also represent, e.g. deletion or duplication
events observed in cases, regions identified as homozygous-by-
descent, etc.

2 METHODS
We describe the method implemented in INRICH, focussing on the case
of SNP association from GWAS data. Specifically, analysis follows the
following three steps:

2.1 Interval data generation
INRICH takes disease-associated genomic intervals as input—for example,
all GWAS SNPs (and the other, local SNPs in LD) that are associated with
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a phenotype at P <1×10−4. Either PLINK ((Purcell et al., 2007)) LD-
clumping or tag SNP selection commands (or similar tools) can be used to
define such independent regions of association, which ensures that multiple,
adjacent SNPs that potentially tag the same causal variant are analyzed as
one independent association unit. Due to space limitation, we provide a
detailed instruction manual on the data generation and testing procedure at
our website (http://atgu.mgh.harvard.edu/inrich/).

2.2 Overlapping interval/gene merging
It is not uncommon for functionally related genes to show physical clustering,
and therefore yield an inflated false positive rates for such gene-sets if
dependent signals are assumed to be independent ((Holmans et al., 2009;
Hong et al., 2009)). To avoid this potential bias due to multi-counting
physically clustered genes belonging to the same set, we merge overlapping
genes belonging to the same gene-set. We also merge overlapping testing
intervals to ensure that testing units are statistically independent from each
other.

2.3 Set-based enrichment tests
The primary enrichment statistic E for each gene-set is the number of
intervals that overlap at least one ‘target’ gene (i.e. gene in the tested set),
which we refer to as the interval mode. An alternative test instead counts
the number of target genes that overlap at least one interval, which is useful
for analyzing structural variation data (e.g. CNVs) that typically span large
genomic regions and therefore are likely to disrupt multiple, non-overlapping
genes. We call this test setting as the target mode. We use a permutation
approach, described below, to calculate empirical significance P-values for
each gene-set.

Suppose that input data I includes k intervals, I ={i1,...,ik }, and target
gene-set T includes m genes, T ={t1,...,tm}.

(1) Null interval set R is generated by randomly assigning intervals to
genomic locations with the constraints that each null interval ri ∈R
approximately matches to the original interval Ii ∈ I (i=1,...,k) in
terms of the number of SNPs and overlapping genes; we also ensure
approximately similar SNP density per kilobase. Supplementary
Figure S1 illustrates the three matching criteria.

(2) Corresponding to the selected testing mode as described above, the
null enrichment statistic E is calculated as the number of overlapping
intervals (or genes) between target gene-set T and randomly matched
null set R.

(3) Steps (1) and (2) are repeated N times to generate a distribution of the
enrichment statistics for target gene-set T under the null hypothesis.

(4) The empirical P-value for T is the proportion of N replicates where
the enrichment statistic is as large as that of original interval set I .

(5) Multiple testing correction is achieved via a second, nested round of
permutation to assess the null distribution of the minimum empirical
P-value across all tested gene-sets.

This permutation procedure, therefore, respects the relationship between
gene size and the probability of chance overlap, namely that large genes
are more likely to be hit by chance. As previously reported, large genes are
not representative of all genes in terms of function ((Raychaudhuri et al.,
2010)).

INRICH also presents global enrichment statistics Gp that test for an
excess of enriched genes at nominal gene-set P =0.001, 0.01 and 0.05. This
test is based on the number of unique genes within an association interval that
are in at least one nominally enriched gene-set. The empirical significance of
GP is evaluated within the same permutation procedure as described above.

3 DATA ANALYSIS AND SUMMARY
We first conducted a simulation study to assess the Type I error rates of
INRICH using two GWAS datasets: HapMap III (CEU + TSI; n = 200), and

schizophrenia case/control study (n = 1468; (Lieberman et al., 2005). Tested
parameter settings include different enrichment statistics (i.e. ‘interval’ or
‘target’ mode), LD-clumping r2 measures (r2 =0.2), as well as significant
P-value thresholds to define associated regions (1×10−3 and 5×10−3).
Under each setting, we repeated the following procedures 200 times, and
calculated the average type I error rate: (i) Generate random phenotype labels
for subjects; (ii) Apply standard χ2 association analysis on individual SNPs;
and (iii) Run INRICH on the association results using the KEGG gene-
sets ((Kanehisa et al., 2010)). We also conducted the same simulation study
using two commonly used gene-set enrichment approaches: GenGen ((Wang
et al., 2007); i.e. GSEA tool specifically designed for GWAS) and the
hypergeometric test. Compared with these methods, the average type I error
rates of INRICH did not exceed the nominal 5% level. In contrast, under
some conditions, the hypergeometric test yielded a type I error rate as
high as 100%. We also considered the power under conditions where the
hypergeometric test is valid, and confirmed that INRICH gives a comparably
good power to the hypergeometric test (see Supplementary Table S3 for
details). Phenotype-permutation-based gene-set enrichment methods (such
as GenGen) provide statistically rigorous tests, but are computationally
very demanding (particularly if based on imputed datasets, or complex
family-based association tests, etc.). In contrast, other gene-set enrichment
methods based on summary data alone (such as the hypergeometric test)
are not computationally intensive, but can be very anti-conservative, as our
simulations show, due to unwarranted assumptions of independence. We
argue that INRICH is well-placed between these two poles, providing an
efficient yet robust middle-ground.

As a proof of concept to demonstrate the performance of INRICH under
the alternative hypothesis, we applied INRICH to the summary association
data from the NHGRI (National Human Genome Research Institute) GWAS
catalog ((Hindorff et al., 2009)). First, we downloaded a list of 4689 SNPs
that are associated with 411 complex diseases/traits at a P-value <1×10−5

(download date: March 4, 2011). This analysis focused on 236 diseases/traits
that have at least five-associated SNPs. For each phenotype, LD-independent
intervals were generated around the associated SNPs using PLINK, and
enrichment test was conducted using 3182 Gene Ontology (GO) terms (gene-
set size between 5 and 200 genes; (The Gene Ontology Consortium, 2000))
and 106 replicates in the first round of permutation and 104 in the second.
We excluded all genes and intervals mapping to the broad MHC region
(chr6: 25–35 Mb): in practice because this region contains so many genes,
it is unlikely to improve the power of gene-set enrichment analysis in most
cases. After multiple testing correction, 47 disorders were predicted with at
least one significantly enriched GO term at α=5%. Many of the associations
were consistent with known pathology of examined complex diseases/traits.
For example, Type II diabetes-associated intervals were most significantly
enriched for genes involved in glucose homeostasis (corrected P=0.001)
and Crohn’s disease-associated intervals enriched for regulation of activated
T cell proliferation (corrected P=0.003).

In summary, we have implemented a new gene-set enrichment method
in the INRICH package, based on a constrained reshuffling of associated
intervals, to test whether more genes from particular sets are contained
in those intervals than expected by chance. Importantly, we preserve the
properties of the original data while reshuffling, in terms of the number, SNP
density and gene-density. We have shown appropriate type I error rates, even
when correcting for hundreds of partially overlapping gene-sets. Preliminary
application to the NHGRI GWAS catalogue indicates good power to detect
true signals. INRICH was recently applied to a large GWAS of bipolar
disorder, implicating calcium ion channel genes as enriched ((Psychiatric
GWAS Consortium Bipolar Disorder Working Group, 2011)). Practically,
INRICH is fast, applicable without individual genotype data and freely
available either as a command-line tool or with a GUI.
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