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ABSTRACT

Motivation: Liquid chromatography–mass spectrometry-based
metabolomics has gained importance in the life sciences, yet it is
not supported by software tools for high throughput identification of
metabolites based on their fragmentation spectra. An algorithm (ISIS:
in silico identification software) and its implementation are presented
and show great promise in generating in silico spectra of lipids for
the purpose of structural identification. Instead of using chemical
reaction rate equations or rules-based fragmentation libraries, the
algorithm uses machine learning to find accurate bond cleavage rates
in a mass spectrometer employing collision-induced dissociation
tandem mass spectrometry.
Results: A preliminary test of the algorithm with 45 lipids from a
subset of lipid classes shows both high sensitivity and specificity.
Contact: lars.kangas@pnnl.gov
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The field of proteomics has enjoyed considerable success in part
due to software tools like SEQUEST (Eng et al., 1994) and Mascot
(Perkins et al., 1999), which enable highthroughput identifications of
detected peptides (and their corresponding proteins) based on their
fragmentation spectra generated by collision-induced dissociation
(CID) mass spectrometry. These tools have benefited from the close
link between DNA and protein sequences and the fact that the
polymeric structure of amino acid residues in proteolytic peptides
provides a convenient basis for interpreting peptide tandem mass
spectra. However, small molecules other than peptides have to be
considered as 2D or 3D structures of atoms or functional groups of
atoms. These differences require novel algorithms.

To date, the main approaches to predict in silico tandem mass
spectra are based on either chemical reaction equations, libraries
of fragmentation spectra/pathways, or bond cleavage probabilities
based upon bond strengths. None of these approaches (briefly
discussed below) have shown sufficient accuracy in generating in
silico spectra to enable automated and correct identifications of
non-peptide small molecules.

∗
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Chemical reactions involving unimolecular dissociation are
commonly studied using the Rice–Ramsperger–Kassel–Marcus
(RRKM) (Marcus, 1952) and quasiequilibrium theories (QET)
(Rosenstock et al., 1952). Chemical reaction time evolutions are
described in systems of differential equations as in a master equation
approach. These theories are invaluable to understanding chemical
reaction mechanisms and energies required for state transitions.
Yet, while quantum calculations like RRKM and QET explain the
dissociation of activated ions, they are insufficient in explaining the
activations of ions in inelastic collisions for molecules larger than
a few atoms (Sleno and Volmer, 2004). Predicting or identifying
fragment ions in tandem mass spectra is difficult for large molecules;
indeed, little is known regarding the rates at which ions gain internal
energy in activation methods and at which bonds dissociate. A few
small peptides such as leucine enkephalin and bradykinin have been
empirically studied as to their fragmentation behaviors; however,
these results cannot be translated to the fragmentation of non-peptide
small molecules (Drahos and Vékey, 1999; Gabelica et al., 2003;
Vékey, 1996). Hence, it remains difficult to explain many ions and
their intensities in fragmentation spectra or to generate accurate in
silico spectra knowing only the molecular compositions.

Tools such as Mass Frontier from Thermo Scientific (Highchem,
http://www.highchem.com/) and ACD/MS Fragmenter, (ACDLabs,
http://www.acdlabs.com/products/adh/ms/ms_frag/) generate frag-
ments using a large library of rules describing fragmentation
pathways. This can become unmanageable in that rules are not
necessarily exclusive—one rule can affect another rule. Sometimes
the correct rules are not available entirely or are not available with
sufficient specificity. Mass Frontier generates ‘bar code’ spectra
where all ions have the same intensity because bond cleavage rates
are not considered. Bar code spectra are not sufficient when many
molecules generate the same fragment ions. In these instances, only
the relative ion intensities will aid the correct identification.

Hill et al. (2005) and Wolf et al. (2010) chose a bond
disconnection approach to generate fragments from molecules. Hill
et al. have user-defined criteria for bond cleavages, while Wolf et al.
generate all possible topological fragments in their tool MetFrag and
then score these by measures such as bond dissociation energies
(BDEs). Unfortunately, BDEs vary significantly as molecules
increase in size beyond diatoms or a few atoms and where atoms
beyond the nearest atoms influence the outcome. For example, Bach
et al. showed that the O—O BDEs were predicted at 22.73 kcal/mol
for CH3C(CH2)O—OH and at 48.32 kcal/mol for CH3C(O)O—OH
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(Bach et al., 1996). It may be surmised that many BDEs are either
not available or sufficiently accurate.

Thus, defining an accurate algorithm that identifies non-peptide
small molecules from CID tandem mass spectra is still an open
problem. In a proof-of-principle demonstration, the algorithm
presented here shows promise in generating accurate in silico CID
tandem mass spectra for identification of lipids, knowing only
the molecular structures. That is, the algorithm uses no chemical
reaction equations (in which parameters have to be estimated), no
fragmentation rules from observed pathways, and no bond cleavage
rates provided by bond strengths. Instead, the algorithm simulates
the fragmentation process in an ion trap mass spectrometer model
using a machine learning approach to overcome the difficulties
that result from unknown quantities and simplifying assumptions
in the CID process. Importantly, the algorithm uses a model of the
CID process in a linear ion trap mass spectrometer. We believe the
model is qualitatively accurate and do not claim that the algorithm
describes the actual physical quantities in the variables discussed.
The results from a first test using 45 lipids are presented. As a class of
non-peptide small molecule, lipids have been extensively studied,
providing relatively well-understood fragmentation pathways. As
such, they provide a good set for both initial development and testing
of the algorithm.

2 METHODS

2.1 Lipid standards
The 22 training and 45 test lipid standards were purchased from Avanti
Polar Lipids Inc. (Alabaster, AL). A detailed list of the training and
test lipid standards is provided in Tables 1 and 2, respectively. A
working standard of 1–10 pmol/µl was prepared for each lipid standard in
chloroform/methanol/300 mM aqueous ammonium acetate (30/65.5/3.5).

Table 1. Training lipid standards

Lipid subclass Species Mass

Phosphatidylcholine 14:0/16:0 705.53
18:0/18:0 789.63

Lysophosphatidylcholine 16:0/0:0 495.33
17:1/0:0 507.64

Phosphatidylethanolamine 17:0/17:0 720.02
18:0/18:0 747.58

Lysophosphatidylethanolamine 14:0/0:0 425.25
18:0/0:0 481.32

Phosphatidylserine 17:0/17:0 764.02
18:0/18:0 792.07

Lysophosphatidylserine 18:1/0:0 523.60
Ceramide d18:1/12:0 481.45
Sphingomyelin d18:1/12:0 646.51

d18:1/16:0 702.57
d18:1/24:1 812.68

Galactosyl(β) ceramide d18:1/8:0 587.44
d18:1/12:0 643.50

Lactosyl(β) ceramide d18:1/8:0 749.49
d18:1/12:0 805.56

Ceramide 1-phosphate d18:1/12:0 561.42
Sphinganine 17:0 287.28
Sphinganine 1-phosphate 17:0 367.25

2.2 Mass spectrometric analysis of lipids
Mass spectrometric analysis was performed using a linear ion trap (LTQ;
Thermo Scientific, San Jose, CA) operated in positive ion mode. Samples
were delivered to the mass spectrometer through a 100 cm capillary of
150 µm internal diameter and 360 µm outer diameter at a flow rate of
0.5 µl/min. The ion spray voltage, capillary voltage and capillary temperature
were set to 2.2 kV, 49 V and 200˚C, respectively. Full-scan spectra of each
lipid standard were first obtained to determine the m/z of the precursor ion.
The parameters for CID were set as follows: isolation width (m/z) of 3 u,
normalized collision energy of 30%, activation Q of 0.18 and activation time
of 30 ms.

Table 2. Testing lipid standards

Lipid subclass Species Mass

Phosphatidylcholine 14:0/14:0 677.50
16:1/16:1 729.53
16:0/16:0 733.56
17:0/17:0 761.59
18:3/18:3 777.53
18:2/18:2 781.56
18:1/18:1 785.59
20:4/20:4 829.56
20:1/20:1 841.66
23:0/23:0 929.78

Lysophosphatidylcholine 14:0/0:0 467.30
15:0/0:0 481.32
16:0/0:0 495.33
17:0/0:0 509.35
18:1/0:0 521.35
18:0/0:0 523.36

Phosphatidylethanolamine 12:0/12:0 579.39
15:0/15:0 663.48
16:1/16:1 687.48
16:0/18:1 717.53
18:0/18:1 745.56

Lysophosphatidylethanolamine 16:0/0:0 453.29
18:1/0:0 479.30

Phosphatidylserine 12:0/12:0 623.38
14:0/14:0 679.44
16:0/18:2 759.47
18:0/18:1 789.55
18:0/18:2 787.54

Lysophosphatidylserine 16:0/0:0 497.28
18:0/0:0 525.31

Ceramide d18:1/18:0 565.54
d18:1/24:0 649.64
d18:1/17:0 551.53
d18:1/20:0 593.57
d18:1/22:0 621.61

Sphingomyelin d18:1/17:0 716.58
d18:1/18:1 728.58

Galactosyl(β) ceramide d18:1/16:0 699.56
d18:1/24:1 809.67

Lactosyl(β) ceramide d18:1/16:0 861.62
d18:1/24:0 973.74

Ceramide 1-phosphate d18:1/8:0 505.35
d18:1/16:0 617.48
d18:1/18:1 643.49
d18:1/24:0 729.60
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2.3 Lipid database
This research used LIPID Metabolites and Pathways Strategy (LIPID MAPS)
structure database (LMSD) dated March 24, 2010 and available from
www.lipidmaps.org. The database contains molecular data for >22 000
lipids.

3 THEORY
The algorithm in ISIS is based on Monte Carlo simulations, and, as
such, it is conceptually simple. The description that follows covers
the major components of the algorithm. Additional details regarding
the linear ion trap model and CID energy calculations are provided
as Supplementary data.

The algorithm has two phases. In the first phase, using machine-
learning, it learns to predict bond cleavage energies from which
cleavage rates can be calculated. A bond cleavage energy is defined
as the energy at the maximum reaction rate in a break-down diagram
(50% break down), specific to each bond.

In the second phase, the algorithm generates in silico tandem
mass spectra from molecular structures and uses these spectra
in identifications of lipids. Figure 1 shows the flowchart of
the algorithm. The three components above the dashed line are
associated with the machine-learning phase, and the dotted rectangle
around Molecules and Experimental Spectra signifies that these
are given in pairs to the algorithm during the learning phase.
The algorithm is, in essence, learning the mapping function from
molecular structures to spectra. The components below the dashed
line are those that are involved in generating in silico spectra both
in the training phase and from a trained algorithm.

The machine-learning phase proceeds as follows: based on
molecule/experimental spectrum pairs, the algorithm uses a model
of the linear ion trap and the artificial neural network (ANN) in
kinetic Monte Carlo (KMC) simulations to incrementally learn bond
cleavage energies in CID. For each molecule in a training set, a KMC

Fig. 1. Flowchart of the ISIS algorithm. The three components above the
dashed line are used in training only

simulation generates an in silico spectrum that is compared to an
experimental spectrum, and a measure of the correlation between
these two spectra is added to a cumulative fitness score. That fitness
score represents the goodness of one hypothetical solution to a
genetic algorithm (GA) that iteratively continues to optimize a best
hypothetical solution in a set of hypothetical solutions. The variables
that are optimized in each solution are the weights for the ANN that
predicts bond cleavage energies. Improved predictions increase the
fidelity of the in silico spectra.

In the applied phase, the best solution determined in the learning
phase from the training lipids is used to generate in silico tandem
mass spectra for novel lipids, i.e. a library is populated with in
silico spectra based on a large database of lipid molecular structures.
Finally, experimental tandem mass spectra of unknown lipids are
searched against the library of in silico spectra for matches, in order
to provide ranked lists of candidate identifications.

3.1 KMC simulation
A KMC algorithm (Bortz et al., 1991; Gillespie, 1976; Meng and
Weinberg, 1994; Young and Elcock, 1966) simulates the slow
heating of ions in a linear ion trap (Sleno and Volmer, 2004). Initially,
the model linear ion trap is loaded with a number of replicates of
the same ion with internal energies stochastically sampled from an
electrospray ionization model (all distributions in the algorithm are
assumed to be Gaussian instead of ‘Gaussian like’ or Boltzmann
(Drahos et al., 1999; Drahos and Vékey, 1999; Gabelica and De
Pauw, 2005; Naban-Maillet et al., 2005; Pak et al., 2008). The
iterations of the KMC proceed by selecting an event—a specific ion
to experience one collision with an inert gas atom in the linear ion
trap. After the collision, the ion is tested to see if one of its bonds will
cleave at the achieved internal energy of the ion. Typically, the ions
experience a large number of collisions before reaching energy levels
sufficient for fragmentation. The simulation stops when the KMC
has accumulated incremental time steps equivalent to the excitation
time set for the linear ion trap (30 ms). Next, all simulated intact
ions and fragment ions are added to an in silico spectrum.

The major KMC steps are as follows:

3.1.1 Step 1. Selecting a collision event In a slow heating
environment like a linear ion trap, both larger and faster ions moving
in an environment of inert (e.g. helium) atoms have higher rates of
collisions compared to smaller and slower ions. Thus, the rate is
not only an increasing function of each ion’s collision cross-section
and velocity but also of the number density of the collision gas (see
Supplementary data for details). The latter defines the number of
atoms per volume in the linear ion trap and is equal for all ions in
the trap.

The inverse of the product of collision cross-section, molecular
velocity, and the number density of the collision gas is the mean
free time, i.e. the time interval between collisions that provides the
collision sampling rate for each ion required by the KMC.

Suppose we have N distinct ions, each with a collision rate ri ,
where i ∈[1…N ]. (The mean time between collisions for an ion i is
1 / ri .) We define Rk , the cumulative sum of ri , as

Rk ≡
{

0, k =0∑k
i=1ri, 1≤k ≤N

. (1)

The total collision rate, then, is RN .
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Assuming a Poisson process, given a continuous random number
ζ0 (0≤ζ <1) we could generate a time to the next collision with
any ion as

�t =− lnζ0

RN
(2)

and use this to advance the KMC simulation ‘clock’.
The collision rate ri determines the relative collision probability

for species i, so we could use another continuous random number
ζ1 to determine the colliding ion by solving

Rk−1

RN
≤ζ <

Rk

RN
(3)

An efficient way to do this is to precompute bounds and do a binary
search on ζ1.

3.1.2 Step 2. Performing a collision The linear ion trap employs
a low energy collision activation or slow heating method. Each
collision between an ion and an inert atom provides at the most a few
hundredths of 1 eV, while the critical energy needed for dissociation
can be several eV (Sleno and Volmer, 2004) or ∼0.007 eV per degree
of freedom for a molecule (Vékey, 1996).

The ions in a dipole-excited ion trap oscillate at high velocities
in an oscillating electric field of a few hundred kHz. The kinetic
energy of the ion as a function of its mass and velocity is, in the
collision with an inert atom, calculated into a center of mass frame
kinetic energy. This is the maximum ion collision energy that can
be converted from kinetic energy to internal energy for the ion.

The normalized collision energy schedule, Eschedule (Volt peak-
to-peak) in the ion trap is an m/z adjusted collision energy following
an estimated linear regression line (Gabelica et al., 2003; Lopez
et al.,1999; Thermo Product Support Bulletin, PBS 104),

Eschedule =0.002m/z+0.4 (4)

for a 30% collision energy (maximum 5 V peak-to-peak in an
oscillating electric field). Adjusted for a user specified collision
energy percent (Coll) it is

E =Coll/30Eschedule. (5)

The relative velocity v between an ion and a target atom is

v=
√

2E

m
, (6)

where m is the mass. (The target is assumed stationary.)
In the dipole excited oscillating electric field in the ion trap, the

instant velocity magnitude vinst is sinusoidal:

vinst =|cosπ |v (7)

where ζ is a uniformly sampled random number in [0, 1].
The instant laboratory frame kinetic energy of the ion Elab is then

Elab = 1

2
mv2

inst. (8)

The energy of interest is the center-of-mass energy, Ecom that is the
maximum collision energy available as internal energy to the ion
(Shukla and Futrell, 2000; Sleno and Volmer, 2004),

Ecom = mtarget

mtarget +mion
Elab. (9)

Fig. 2. Fractions of bonds cleaving at increasing internal energies

The KMC simulation continues with a dissociation test to see if the
ion has reached sufficient internal energy to cleave a bond.

3.1.3 Step 3. Calculating the cleavage probability after a collision
The internal energy of an ion is thermal-like from both the heating
in the ESI and the CID (McLuckey and Goeringer, 1997; Naban-
Maillet et al., 2005; Pak et al., 2008). While at low energies the
distribution is Poisson, after additional heating in the CID, the
distribution tends toward Gaussian with variance a function of
energy and degrees of freedom as proposed by Drahos and Vékey
(1999).

The ion selected in Step 2 is tested for bond dissociation by an
ANN that first assigns a mean cleavage energy to each bond. Next,
probabilities of internal energies are assigned to each ion. Figure 2
shows the integration of the Gaussian probability densities Qk (T )
for four hypothetical bonds k ∈ [1, 2, 3, 4]. We further define Qk (T )
as fractions

Qk (T )=
∫ ∞

E0,k

P
(
E,T

)
dE (10)

where E0,k are specific internal energy levels above which we
quantify the probabilities of the individual bonds k to cleave from
the probability density function P(E,T ) of the ion internal energies
E at temperature T .

We treat the Qk (T ) fractions as probabilities in what follows. Note
that each bond cleavage is assumed an independent event and the
bond dissociation test allows either no bond cleavage or exactly one
bond to cleave in the calculations below.

The cumulative probability QC of one and only one of B bonds
cleaving at temperature T is

QC (T )=
B∑

k=1

Sk (T ), (11)

where Sk (T ) is the contingent probability of bond k breaking:

Sk (T )=Qk (T )
∏
j �=k

(1−Qj(T )). (12)

Allowing only one bond to break or no bond to break, the relative
cumulative probability Q̃C f one and only one of B bonds cleaving
is

Q̃C
(
T

)= QC
(
T

)
QC

(
T

)+SNC
(
T

) , (13)
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Fig. 3. Hypothetical cumulative probabilities for a lipid with four bonds.
S̃NC (T ) s the contingent probability of no bond cleaving

where the probability of no cleavage is

SNC (T )=
B∏

j=1

(1−Qj(T )) (14)

and the relative contingent probability S̃k (T ) f bond k breaking is

S̃k
(
T

)= Sk
(
T

)
QC

(
T

)+SNC
(
T

) . (15)

Observe that we continue to use tildes with relative probabilities
when allowing only one bond break or no bond break. Figure 3
shows the cumulative probability for a hypothetical lipid with four
bonds with their relative contingent probabilities S̃k (T ) where k
range from 1 to 4.

Assuming multiple cleavages do not occur, the contingent
probability of no cleavage, S̃NC (T ) occurring at temperature T is

S̃NC (T )=1−Q̃C (T ). (16)

This contingent probability S̃NC (T )s shown in the figure as the
vertical extent above the bonds. An event, a specific bond cleaving
or a ‘no cleavage’ is selected by a random number in the range (0–1).

The ion selected for a collision has at this time reached the
end of this KMC iteration. If a bond cleaves and produces two
separate fragments, a singly-charged ion and a neutral molecule,
both fragments would replace the molecule that was fragmented in
the ion trap. A charge prediction model, explained later, labels each
fragment as either an ion or a neutral.

The fragment ions lose their velocities as their m/zs no longer
resonate with the dipole excitation frequency in the trap. This
removes them from the collision selection, excluding them from
additional collisions in subsequent KMC iterations. Further, a
cooling schedule is applied to fragments in the ion trap (Zhang,
2004), meaning that the internal energies of fragments decrease due
to a lack of collisional heating.

Note that the specifics for a molecule before a fragmentation are
recomputed for each new fragment ion, since the internal energy
of a molecule before fragmentation is proportionally distributed to
the fragments according to their degrees of freedom. The algorithm
also predicts a new bond cleavage energy for each bond in the
fragment(s); there is no assumption that a bond in the precursor

Fig. 4. Predicted bond cleavage energies for a lipid (lysophosphatidylcholine
18:0, [M+H]+ 524.5 m/z) and the resulting in silico spectrum compared to
the observed spectrum. The two ions, 184 and 506 Da, in the molecule are
shown as both observed ions and in silico generated ions in the spectrum.
The spectra are normalized to 100% total peak intensities

molecule before fragmentation has the same cleavage energy as that
‘same’ bond in one of the fragments.

Figure 4 shows predicted bond cleavage energies as
unit normalized values corresponding to 0 to 20 eV for
lysophosphatidylcholine 18:0, [M+H]+ 524.5 m/z (we make
no claim for the cleavage energies to be quantitatively accurate).
The molecule shows that the hydroxyl bond for a water loss has
the lowest energy, 0.182 (3.64 eV) and the head group loss has the
second lowest energy, 0.241 (4.82 eV), that in turn generate the two
significant ions at 506 and 184 m/z, respectively. Observe that the
water loss occurs by cleaving off the hydroxyl and an additional
hydrogen (not shown) in an E1/E2 elimination that has not yet been
implemented.

Although the predicted energies give the correct ions as shown
in the figure, inconsistencies can be observed in the labeled bonds;
for example, one C−−C bond in the fatty acyl has an incorrectly
low predicted value of 0.338. With the addition of more training
exemplars and more training of the algorithm, the values should
approach correct cleavage energies.

3.2 Molecule vector encoding
The algorithm represents molecules as undirected graphs of atoms
and bonds stored in adjacency matrices (Faulon et al., 2005). These
are processed to tree structures, from which vectors can be encoded
for machine learning (Schietgat et al., 2008).

To make a vector from an adjacency matrix of a molecule,
one atom is selected as a root vertex and the remaining atoms
and bonds are processed in a breadth-first search up to tree depth
eight (a neighborhood size), with atoms being vertices and bonds
being edges. The path through the tree from the root to a given
atom, considering every atom and bond in the path, is calculated
to a vector index, i.e. the offset to an element in a vector. The
vector element at that index is incremented by one (all elements
are initially 0). A vector element is incremented once for each atom
in the neighborhood (details of index calculations are provided in
the Supplementary data).
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Table 3. Artificial neural network input elements

Input No. of inputs

Left tree encoding 627
Right tree encoding 627
Bond order 1
Cycle length 1
Left tree mass 1
Right tree mass 1
Left tree degrees of freedom 1
Right tree degrees of freedom 1

Total: 1260

3.3 Bond cleavage energy prediction
A feedforward ANN was configured to take pairs of the encoding
vectors described above, i.e. rooting each of the two atoms defining
a bond, and predict one bond cleavage energy at a time. The ANN
is iterated over all bonds in a molecule to find each bond cleavage
energy.

Table 3 shows two 627-element vectors encoding the left and
right tree from the two atoms defining a bond. These vectors consist
of the packed indices from the above encoding algorithm. ‘Packed’
indicates that all vector elements that do not have indices occurring
in any of the lipids in the training set are removed (without packing,
the vectors would have ∼3.7 × 109 elements).

Six additional metrics were input to the ANN as shown in Table 3.
The cycle length is that of the shortest path around; for example, a
ring, if the bond in focus is in a cycle. The cycle length is 0 if
breaking the bond in focus results in two separate fragments. The
ANN has eight hidden nodes and one output.

Typically, ANN weights are trained with the back-propagation
algorithm, but as was shown in Figure 1, a GA (Goldberg, 1989;
Holland, 1975), together with the KMC simulations, trained the
ANN (true bond cleavage energies are unknown—backpropagation
requires target values for training).

The GA trained the ANN with 22 lipids, optimizing the ANN
weights to better predict the bond cleavage energies that produce
ions and their corresponding intensities in the in silico spectra.
The GA was configured with 10 individuals (chromosomes), each
a set of ANN weights, i.e. each set of weights is a hypothetical
ANN solution. The GA optimized the individuals iteratively with
the objective to have the in silico spectral ions match those in
the experimental spectra using a Pearson R2 correlation. Observe
that because the ANN predicts cleavage rates, each ANN solution
produces a different set of ions and ion intensities. The training
algorithm was stopped after 4 months (3 GHz PC) with an R2 of
0.97 against the 22 lipids in the training set.

The configuration of the ANN relative to the number of training
samples (all the bonds of all the lipids) suggests that the ANN
will overfit the training lipids and will not generalize well to novel
molecules. An ANN exhibits overfitting when new inputs not seen
in a training set produce unexpected outputs. This is significantly
reduced in the encoding vectors by the element values being discrete
(the number of atoms/paths sharing the same indices) and the
encoding vectors being packed to only those indices computed
from the training set. When novel molecules are encoded, indices
that were not in the training molecules are discarded. The novel

molecules will thus only be encoded in inputs to the ANN for which
the ANN was trained. The Supplementary data further discusses why
overfitting may not be the case.

Note that the KMC uses a model of the linear ion trap, and one
KMC simulation is performed with each lipid loaded into the trap
in many replicates. The more replicates simulated, the slower the
training. The training was started with 10 replicates and finished
with 100 replicates, which appeared to give a reasonable spectral
intensity resolution of the in silico ions.

3.4 Charge prediction
A second ANN is in the algorithm to predict which fragment carries
the charge when a molecule fragments. This ANN uses the same
input vectors as the ANN predicting bond cleavage energies and
was trained offline using the backpropagation algorithm (Parker,
1982; LeCun, 1985; Rumelhart et al., 1986; Werbos, 1974; 1994).
This ANN was trained to predict on which sides of a bond the ions
and neutrals would appear for all possible first fragmentations of
the intact precursor lipids. The labels, charged or uncharged, for the
training vectors were found by comparing the fragment masses to
the experimental spectra. The fragment sides with matching ions on
the spectra were labeled charged and those without, uncharged. The
charge prediction ANN was applied to the fragments when these
were taken from the ion trap and placed on the spectra. The KMC
simulations were thus performed with both ion and neutral fragments
(the description of this ANN is kept short as it will be removed
from ISIS; current work is focused on predicting charges from the
covalent bonds in the molecule fragments).

3.5 In silico spectral library
To test ISIS, the contents of the LIPID MAPS database was used,
and, to ensure correct hits were possible, the 45 test lipids (Table 2)
were added to this database. Also, from the >22 k lipids in LIPID
MAPS, only those lipids with atoms in {C,H,O,N,S,P} and with
masses ≤1100 Da were used (1100 Da is the upper bound of the
lipids of interest in our research). These 18 399 filtered lipids were
processed, with 300 replicates of each, by ISIS to produce in silico
spectra for a spectral library, the contents of which will be compared
to the experimental spectra of the 45 test lipids. The collision energy
in ISIS was set at 30% for all lipids.

Generating in silico spectra requires computationally expensive
MC simulations, about one minute per spectrum. We partition
spectra onto multiple threads in this task.

4 RESULTS
A rank test was performed with 45 lipids not included in the training
set but which were selected from the same lipid classes/subclasses
as those in the training set. The test of each lipid proceeded by
first finding the subset of lipids in the in silico spectral library
that matched the experimental mass of the precursor ion within
±500 ppm. Next, the in silico spectra for these subset lipids were
compared to the experimental test spectrum and Pearson R2 scores
were generated. The subset lipids were sorted in descending order
based on these scores.

Table 4 shows the results from screening the spectral library with
test lipid PS (18:0/18:1) observed at m/z 790.5 ([M+H]+). The rank
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Table 4. Rank list for test lipid PS (18:0/18:1)

R2 Molecule Mass Configuration Formula TruePos

0.996 LMGP03010025 789.552 PS(18:0/18:1(9Z)) C42H80NO10P Y
0.994 LMGP03010019 789.552 PS(18:1(9Z)/18:0)[U] C42H80NO10P Y
0.993 LMGP03010034 789.552 PS(18:1(9Z)/18:0) C42H80NO10P Y
0.993 LMGP03010012 789.552 PS(18:0/18:1(9Z))[U] C42H80NO10P Y
0.170 LMGP01011144 789.625 PC(24:0/12:0)[U] C44H88NO8P N
0.119 LMGP01010616 789.625 PC(16:0/20:0) C44H88NO8P N
0.087 LMGP01010468 789.625 PC(13:0/23:0) C44H88NO8P N
0.084 LMGP01010549 789.625 PC(15:0/21:0) C44H88NO8P N
0.081 LMGP01010511 789.625 PC(14:0/22:0) C44H88NO8P N
0.080 LMGP01010617 789.625 PC(16:0/20:0)[U] C44H88NO8P N
0.068 LMGP01010422 789.625 PC(11:0/25:0) C44H88NO8P N
0.061 LMGP01011085 789.625 PC(22:0/14:0) C44H88NO8P N
0.054 LMGP01010449 789.625 PC(12:0/24:0) C44H88NO8P N
0.053 LMGP01010748 789.625 PC(18:0/18:0)[U] C44H88NO8P N
0.053 LMGP01010974 789.625 PC(19:0/17:0)[U] C44H88NO8P N
0.044 LMGP01010402 789.625 PC(10:0/26:0)[U] C44H88NO8P N
0.043 LMGP01010713 789.625 PC(17:0/19:0)[U] C44H88NO8P N
0.042 LMGP01010747 789.625 PC(18:0/18:0)[S] C44H88NO8P N
0.039 LMGP01011066 789.625 PC(21:0/15:0)[U] C44H88NO8P N
0.036 LMGP01010450 789.625 PC(12:0/24:0)[U] C44H88NO8P N
0.034 LMGP01011002 789.625 PC(20:0/16:0) C44H88NO8P N
0.033 LMGP01011168 789.625 PC(25:0/11:0)[U] C44H88NO8P N
0.025 LMGP01011125 789.625 PC(23:0/13:0)[U] C44H88NO8P N
0.016 LMGP01010006 789.625 PC(18:0/18:0) C44H88NO8P N
0.008 LMGP01020059 789.661 PC(O-16:0/21:0)[U] C45H92NO7P N
0.007 LMGP01020080 789.661 PC(O-17:0/20:0) C45H92NO7P N
0.000 LMGP02010071 789.625 PE(19:0/20:0)[U] C44H88NO8P N
0.000 LMGP02010070 789.625 PE(18:0/21:0)[U] C44H88NO8P N
0.000 LMGP02010256 789.625 PE(16:0/23:0)[U] C44H88NO8P N
0.000 LMGP02010214 789.625 PE(22:0/17:0)[U] C44H88NO8P N
0.000 LMGP02020017 789.661 PE(O-18:0/22:0) C45H92NO7P N
0.000 LMGP02010209 789.625 PE(21:0/18:0)[U] C44H88NO8P N
0.000 LMGP02020016 789.661 PE(O-18:0/22:0)[U] C45H92NO7P N
0.000 LMGP02010255 789.625 PE(17:0/22:0)[U] C44H88NO8P N

list shows that the first four hits, true positives, have high R2s, 0.993–
0.996. Starting with the fifth hit, the R2s fall rapidly, 0.117–0.000,
and corresponds to false positives.

The 45 test lipids within ±500 ppm resulted in a total of 808
candidates against the in silico spectral library (a candidate is a hit
against one molecule in the database that has a mass within a mass
margin of the observed precursor mass).

Figure 5 shows the distributions of the true and the false positive
R2 scores for these hits. Clearly, most true positives have high scores
and false positive have low scores. Observe that hits were counted
as true positives if they only varied in chirality, locations of double
bonds in the fatty acids, or by the distribution of the correct total
number of carbons over two fatty acids—information that cannot be
determined by simple CID MS/MS analyses in positive mode.

The test ranked 40 of the 45 test lipids at the top position and five
at the second position. These five test lipids were ester lipids which
each had one ether lipid from the same class ranked above it. For
example, the ester test lipid PC (18:0/0:0), mass 523.3638 Da, ranked
second after a false positive identification of ether PC (O-19:0/0:0),
mass 523.4002 Da. These two masses differ by 70 ppm, which is

below the mass resolving power of the linear ion trap. The confusion
between ester and ether lipids is a result of the training set not having
ether lipids.

Examining the experimental spectra of LPC and PC ester and
ether lipids, it appears that the algorithm should learn to separate
these subclasses by the relative intensities of the 184-Da ion from
the head group (discussed in the Supplementary data). Incorporating
the five new ether lipids into the training required the vector lengths
to increase from 627 to 738 observed indices—a significant increase.
This means that, having only used the 627 indices when the ether
lipid in silico spectra were generated for the library, many of the
atom types and bond orders did not contribute to predict correct ion
intensities.

The results presented were from direct injected lipid standards
that were identified against a relatively small database. In studies
of biological samples using a large database, ISIS will encounter
similar issues as, for example, SEQUEST applied in proteomics, i.e.
the fraction of ambiguous identifications is large, multiple species
in one spectrum occur frequently, and only a small fraction of the
ions are actually recognized as peptides.
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Fig. 5. Distributions of true and false positives

Table 5. Top ranks of correct identifications of 45 test lipids for ISIS and
MetFrag

ISIS MetFrag
Rank Count Rank Count

1 40 1 21
2 5 2 8
N/A N/A 3 10
N/A N/A 4 6

Producing a rank list of candidates consists of comparing the
observed mass of the unknown species against the masses of the
molecules in the LipidMaps database. The in silico spectra of those
molecules with a mass within a specified mass margin are compared
to the observed spectrum and squared Pearson coefficients are
computed between the pairs. Each rank list is sorted and written
to a file.

The preliminary test results presented covers a subset of lipid
classes that ISIS has been trained to recognize. This subset includes
most glycerophospholipid classes that are of interest to many in
lipid research. In the future, we will extend ISIS to identify other
lipid/metabolite classes.

Our test only searched a lipid database as would be expected in
lipidomics research of biological samples where the lipids have been
extracted by the method developed by Folch, et al. or a variation
thereof (Folch et al., 1957; Bligh and Dyer, 1959; Cequier-Saìnchez
et al., 2008; Matyash et al., 2008).

4.1 Comparison: ISIS to MetFrag
We compared the performance of ISIS in ranking candidate spectra
to that of MetFrag (Wolf, 2010; Hildebrandt, 2011). Using the 45 test
lipids in Table 2, ISIS ranked 40 of the correct candidates at the top
and the remaining 5 in second positions. Table 5 shows that MetFrag
ranked only 21 lipids at the top and 8 at the second position. The
remaining 16 lipids ranked in the third and fourth positions. ISIS
thus performed significantly better at ranking the candidate spectra
as correct identifications.

The MetFrag application used approximately one hour per
identification; each observed spectrum was compared against an
average of eight candidate spectra. In a speed test, ISIS identified
3400 observed spectra per minute; each compared to an average of
35 candidate spectra. We provide the ISIS and MetFrag scores for
all candidates and statistical measures for both algorithms in the
Supplementary data.

This comparison only covered lipid classes for which ISIS was
trained. A future comparison with other metabolites may yield
different results.

5 CONCLUSIONS
ISIS was developed to generate in silico spectra of lipids for
highthroughput identifications in LC-MS-based non-peptide small
molecule studies. In the first test with lipids, the software appears
to have significant sensitivity and specificity. Although the test
was small with only a subset of lipid classes, ISIS is expected
to do well with other lipid classes and other metabolites as these
are incorporated into the algorithm. The current training set has
increased from 22 to 97 lipids that include more lipid classes, and as
more training exemplars are added, the algorithm is also expected
to generalize better to new (untrained) metabolite classes.

Currently, the software only ranks database hits. An approach
to improve the rank scores is to generate in silico spectra in both
positive and negative MS modes. While some lipids only yield good
spectra in one mode, many produce quality fragment ions in both
modes for better rank scores. The algorithm has the capacity and
versatility to be trained with either positive or negative mode spectra.

Also, to reduce the number of candidates for true positives, the
rank lists can be shortened by using hybrid mass spectrometers
like LTQ-Orbitrap or quadrupole-time-of-flight which have higher
resolving powers and would allow narrower mass margins
when screening in silico databases. Indeed, we have started the
identification of experimental lipids using an LTQ-Orbitrap.

Two important additions to the ISIS algorithm are currently in
development. The first is modeling any rearrangement of atoms and
bonds from bond cleavages. The second is to enable the algorithm
to process different adducts—it now only accepts hydrogen adducts.

Note that modeling rearrangements provides individual atom
charges that in turn provide the means to calculate fragment charges.
Consequently, the ANN described to predict fragment charges may
not be needed in the algorithm.

The algorithm presented here models a linear ion trap, a tandem
in time instrument that typically generates ions from only primary
fragmentations. However, the algorithm allows also secondary
fragmentations. As we adopt the software to, for example, a tandem
in space instrument like a triple quadrupole, only a small amount of
program code will need to be changed (we still need to research the
new instrument to design a model).

Finally, a possible correction to the described algorithm is being
investigated. A KMC simulation was described as first selecting one
ion for a collision with an inert atom, and then testing that ion for a
bond cleavage. Secondary fragmentations (rare in an ion trap) or two
bonds cleaving simultaneously may be better modeled by uniformly
sampling the ions for the bond cleavage tests from all ions in the ion
trap. Thus, the ion selected for a collision and the ion selected for a
bond cleavage test should possibly be modeled as two independent
events.
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Despite possible corrections to details in the algorithm, as a
concept, ISIS shows promise for a robust algorithm to identify small
molecules such as lipids using tandem mass spectrometers.

5.1 ISIS share site
The ISIS application (see MetISIS) and data are available for
download to all users on-line at the Pacific Northwest National
Laboratory Biological MS Data and Software Distribution Center,
hosted at http://omics.pnl.gov/ and described in (Auberry, 2010).
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