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ABSTRACT

Motivation: Accurate alignment of large numbers of sequences
is demanding and the computational burden is further increased
by downstream analyses depending on these alignments. With the
abundance of sequence data, an integrative approach of adding new
sequences to existing alignments without their full re-computation
and maintaining the relative matching of existing sequences is an
attractive option. Another current challenge is the extension of
reference alignments with fragmented sequences, as those coming
from next-generation metagenomics, that contain relatively little
information. Widely used methods for alignment extension are based
on profile representation of reference sequences. These do not
incorporate and use phylogenetic information and are affected by
the composition of the reference alignment and the phylogenetic
positions of query sequences.
Results: We have developed a method for phylogeny-aware
alignment of partial-order sequence graphs and apply it here to the
extension of alignments with new data. Our new method, called
PAGAN, infers ancestral sequences for the reference alignment
and adds new sequences in their phylogenetic context, either
to predefined positions or by finding the best placement for
sequences of unknown origin. Unlike profile-based alternatives,
PAGAN considers the phylogenetic relatedness of the sequences
and is not affected by inclusion of more diverged sequences in
the reference set. Our analyses show that PAGAN outperforms
alternative methods for alignment extension and provides superior
accuracy for both DNA and protein data, the improvement being
especially large for fragmented sequences. Moreover, PAGAN-
generated alignments of noisy next-generation sequencing (NGS)
sequences are accurate enough for the use of RNA-seq data in
evolutionary analyses.
Availability: PAGAN is written in C++, licensed under the GPL and
its source code is available at http://code.google.com/p/pagan-msa.
Contact: ari.loytynoja@helsinki.fi
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Sequence alignment has numerous applications but its role is
especially central in evolutionary analyses of molecular sequences.
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These inferences are based on the identities and differences detected
between homologous characters and errors in these homology
statements, that is errors in the alignment of the sequences, are likely
to lead to errors in any downstream analyses. The generation of
high-quality alignments can be computationally laborious and the
solutions often require manual assessment or editing. When such
alignments need to be extended, e.g. after new sequences become
available, it may be preferable to keep the relative alignment of
existing sequences intact and have the new sequences aligned to
this reference alignment. Such addition of sequences should take
into account the evolutionary relationships of all the sequences and
be performed in the correct phylogenetic context.

Alignment extension has interesting applications in the analyses of
next-generation sequencing (NGS) data. Fast profile-based methods
have been used for the alignment of metagenomic sequence reads of
unknown origin against a set of reference sequences in phylogenetic
placement studies (Matsen et al., 2010; Stark et al., 2010). These
do not use all information available in the data, however, and
flatten the reference alignment into a consensus profile that only
models conserved regions shared by most sequences. On the
other hand, existing read placement methods based on phylogeny-
aware alignment (Berger et al., 2011) handle the query sequences
separately and delete sites inferred as insertions, limiting their use
to phylogenetic placement only. Accurate alignment of complete
NGS reads is of interest e.g. in analyses of RNA-seq data that
come nearly exclusively from the gene regions of the genomes.
With appropriate handling of short and noisy reads, RNA-seq data
allow for inexpensive large-scale comparative studies of protein-
coding genes, such as inferences of selection (Yang et al., 2000),
and extend the use of NGS methods to evolutionary analyses of
non-model organisms (e.g. http://www.onekp.com).

Popular progressive alignment programs (e.g. Katoh et al., 2002;
Larkin et al., 2007) indirectly exploit the connection between
alignment and phylogeny (Sankoff, 1975) as they divide the
computationally intractable multiple alignment problem into many
pairwise tasks. Yet, they ignore the phylogeny during the remainder
of the alignment process and produce alignments whose gap patterns
are not evolutionarily meaningful (Löytynoja and Goldman, 2008).
We showed earlier that phylogenetic information can be used to
distinguish insertions from deletions and these two very different
mutation events can then be treated correctly in the progressive
alignment (Löytynoja and Goldman, 2005). The phylogeny-aware
algorithm based on these ideas and implemented in the program
PRANK performs very well in evolutionary alignment comparisons
(Dessimoz and Gil, 2010; Fletcher and Yang, 2010; Jordan and
Goldman, 2012; Markova-Raina and Petrov, 2011).
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Fig. 1. (a) A progressive alignment of three sequence graphs consists of two
pairwise alignments. (b) The first alignment creates graph X to represent the
inferred ancestor of A and B. In X, the character state of vertex 5 is Y,
representing both pyrimidines, and has two incoming edges, from vertices
2 and 4, to indicate that the presence of vertices 3 and 4 is uncertain. (c)
The optimal alignment path for graphs X and C jumps from vertex 2 in
graph X to vertex 5 using the direct connecting edge; the edges flanking the
skipped-over fragment are recorded as unused (asterisks)

Here, we outline a new general-purpose method for phylogeny-
aware alignment of sequence graphs and apply it to phylogenetic
extension of existing alignments. Our method, called PAGAN, is
based on the same principle as PRANK and uses evolutionary
information to distinguish insertions from deletions. In contrast
to the greedy insertion-calling of the original approach, sequence
graphs provide a flexible framework to model the phylogenetic
evidence from related sequences and allow building a robust
progressive aligner that tolerates errors in the guide phylogeny.
The idea of using graphs to represent a sequence alignment is
old (Kruskal and Sankoff, 1983) and has been revisited regularly
(Hein, 1989; Lee et al., 2002; Paten et al., 2008). Our approach
has similarities to earlier methods for global alignment of multiple
sequences, especially the tree alignment method (Hein, 1989) and
the sequence representation with partial-order graphs (Lee et al.,
2002), but differs from these in its emphasis on phylogenetic calling
of insertion and deletion events.

The key advantage of our graph representation of sequences
is the ability to describe uncertainty regarding the presence of
characters at certain sequence positions. This is beneficial during the
progressive alignment of sequences (Fig. 1) but it can also be used
to represent uncertainties in unaligned sequences or in the inferred
ancestral sequences. As our approach considers all sequences as
graphs that can be aligned against each other, it is easily extended to
the placement of new sequences into existing reference alignments.
Unlike most existing methods based on consensus sequence profiles,
our approach correctly considers the phylogenetic context as it
aligns new sequences against inferred ancestors. Moreover, it can
add multiple related sequences to specific positions in the tree and
thus correctly accounts for their relatedness and shared insertion and
deletion events (Fig. 2).

Fig. 2. PAGAN can add multiple new sequences, assumed to come from
the species shown in red, to the same target node in a progressive manner.
It reconstructs sequence graphs to represent the ancestral nodes and aligns the
new sequences against the ancestor of their sister clade, indicated by X. Each
alignment of a sequence, rn, creates a new parent node, pn, against which
the next sequence is aligned. After finishing the alignment, the sub-tree with
the new sequences is inserted back to the tree structure

We tested PAGAN in the extension of real reference alignments
with new protein and DNA sequences and found that it can
successfully handle data of great variety in length and evolutionary
divergence as well as different sizes of reference alignments. The
accuracy of alignment cannot be tested with real data so we
simulated datasets representing gene families of closely related
paralogues. We used PAGAN to extend both protein and DNA
reference alignments with new data and compared its performance
with that of alternative extension approaches. To test larger
problems, we used PAGAN and the best alternative method,
hmmalign (Eddy, 2011), for a re-analysis of metagenomic data of
Mirarab et al. (2012) consisting of reference alignments of 500
sequences and addition of 5000 sequence fragments. Finally, we
quantified the effects of different factors on alignment accuracy
and compared PAGAN and hmmalign under a simplified set-
up that allowed changing the different parameters independently.
Our results show that PAGAN produces exceptionally accurate
alignments and its phylogenetic approach can efficiently use the
evolutionary information available while remaining unimpaired by
more distantly related sequences in the reference alignment.

2 METHODS
In the following sections we first describe the main concepts of our new
method for phylogenetic alignment and placement of sequences using partial-
order graphs. We then outline how we apply this method, called PAGAN,
in the extension of DNA and protein alignments with new sequences and
compare its performance with existing methods. Finally, we dissect in more
detail the impact of the reference alignment and the query sequence on the
performance of the best performing methods.

2.1 Phylogeny-aware graph alignment algorithm
The conversion of a regular sequence to a graph is trivial (Supplementary
Fig. S1a) and two such graphs could be aligned with a standard dynamic-
programming algorithm. Partial-order graphs can represent more than a
sequence of characters, however, and allow modelling of e.g. evolutionary
units of multiple characters, non-linear dependencies among the characters
and uncertainties in the input data (Supplementary Figs S1 and S2).

The representation of sequences with graphs is especially attractive in
progressive alignment that attempts to backtrack the tree-like hierarchical
structure of relatedness among a set of sequences (Löytynoja and Goldman,
2009). Each alignment clusters two sister nodes, representing either single

1685

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts198/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts198/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts198/DC1


Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[16:07 19/6/2012 Bioinformatics-bts198.tex] Page: 1686 1684–1691

A.Löytynoja et al.

sequences or previous alignments, and defines a new node to represent this
pairwise solution. The challenge of progressive alignment is that insertions
cannot be distinguished from deletions at the time of aligning a pair of
sequences but failing to account for their different properties is likely to
cause alignment error (Löytynoja and Goldman, 2008).

A graph can describe this uncertainty regarding the type of mutation event
with edges that connect vertices, representing characters in a sequence, to
multiple preceding vertices; each edge is a hypothesis of the true structure of
the ancestral sequence (Fig. 1 and Supplementary Fig. S3). Our new method,
PAGAN, follows the ideas we implemented earlier in program PRANK
(Löytynoja and Goldman, 2005) and uses phylogenetic information to
distinguish insertions from deletions. However, instead of calling insertions
based on one outgroup alignment only, PAGAN assigns weights to the graph
edges—either skipping a deletion or connecting an insertion to the rest of
the graph—and adjusts them according to the evolutionary evidence.

The algorithm for the alignment of two graphs and reconstruction of a new
graph to represent this alignment is given in the Supplementary Material. The
algorithm differs from the standard algorithm (Gotoh, 1982) in two aspects:
it incorporates edge weights into the alignment cost; and, in the dynamic-
programming computation, it chooses a move to the current state (match
or two types of gaps) not only from the possible preceding states but also
from all preceding cells connected to the current cell by incoming edges. The
scoring function of PAGAN follows that of PRANK. Assuming that chr(xi)
gives the character associated to a vertex i of graph x, the score for matching
characters at vertices xi and yj is:

sco(xi,yj)= log

(
qz P(chr(xi),chr(yj); t )

q(chr(xi))q(chr(yj))

)
(1)

where q(a) is the frequency of a, qz = (q(chr(xi))+q(chr(yj)))/2, and
P(a,b;t) is the substitution probability between characters a and b given
the evolutionary distance t and the substitution model. A notable difference
to the standard score is the additional term qz , discussed in more detail in the
Supplementary Material. As a further simplification, PAGAN uses weighted
parsimony reconstruction of ancestral characters states and, for greater speed,
the number of alternative character states for amino acid and codon data is
limited to two (see Supplementary Material).

PAGAN can reconstruct ancestral sequences for an existing alignment and
then extend that by aligning new sequences against the extant or inferred
ancestral sequences. The reconstruction of ancestral sequence graphs for a
reference alignment is not different from the de novo alignment except that
the alignment solution is read from the input data. The addition of new
sequences should be performed in their correct phylogenetic context: while
PAGAN allows the user to define or constrain the possible phylogenetic
positions for sequences coming from a known origin, it can also search for
the optimal placement for unknown data. During the extension, PAGAN
takes the target nodes, represented by sequence graphs, out of the tree
structure and aligns the sequences assigned to each target using a progressive
algorithm (Fig. 2). With data from mixed sources, the sequences for each
target node can be aligned in a ranked order; on the other hand, the graph
representation of reconstructed sequences tolerates inconsistencies between
subsequent alignments and the algorithm can resolve conflicting gap patterns
among a set of diverged sequences. Once finished, the extended sub-tree is
put back to the alignment tree structure, the reference alignment is adjusted
for insertions in the new sequences, and the process moves to the next node.

In this article, we focus on the extension of existing alignments with new
sequences and phylogenetic placement of sequences. We test two approaches
to decide the location for the new sequences, either ‘guided’ or ‘free’. The
guided approach assumes that the approximate phylogenetic position of the
query sequences is known and only the correct paralogue, if multiple exist,
has to be resolved. The free approach is unsupervised and, in this study, is
based on the use of an external local aligner to find the target node. The
additional features implemented in PAGAN are explained in detail in the
Supplementary Material.

2.2 Comparison of methods for alignment extension
The test data for alignment extension were simulated using phylogenetic
trees based on the Ensembl/UCSC tree (http://tinyurl.com/ensembltree;
Fig. 3a). Three simulation trees representing different levels of evolutionary
divergence, called EnsTr1, EnsTr2 and EnsTr3, were created by multiplying
the branch lengths by 1.5, 2.0 and 2.5. The alignment simulator INDELible
(Fletcher and Yang, 2009) was used to generate codon sequences (see
Supplementary Material for details) and the resulting data were analyzed
both as DNA and protein. For EnsTr1, EnsTr2 and EnsTr3, respectively,
the alignments were in average 1489, 1800 and 2151 codons long; the
base/amino acid identity between human and Primate was 89–90, 86–87
and 84–85% and between mouse and Rodent it was 80, 75–76 and 70–73%.

The sequences for the hypothetical target species, Primate and Rodent,
were removed from the simulated alignments and the rest of the aligned
sequences were used as the reference alignment (RA). Of the sequences
for the target species, 50 fragments of the given length were sampled from
each and considered as the set of query sequences (QSs) to be aligned to
the RA. We used fragment lengths of 30, 60 and 120 bases/amino acids
as well as the original full-length sequences. To understand the impact of
fragmented information and sequencing error on the alignment accuracy,
we introduced NGS-like noise in the DNA fragment data (Massingham and
Goldman, 2012). Two of the methods need a reference tree (RT) for the
alignment extension: for those we used the true simulation tree and a tree
inferred with RAxML (Stamatakis, 2006) using Ornithorhynchus anatinus
(platypus) as the outgroup; the results were indistinguishable and the ones
with the estimated tree are shown. The details of the methods and options
used for the alignment are found in the Supplementary Material.

The accuracy of the resulting extended alignment was measured as the
proportion of true homologies recovered between the QS and the closest
human/mouse reference sequence. False homologies were not penalized and
correctness of insertions inferred were not measured. The reported values
are the mean accuracies over the 5000 aligned fragments (lengths 30, 60 and
120; 100 replicates, 50 fragments per sequence) or over the 100 full-length
sequences for each target species paralogue.

2.3 Extension of large alignments
We downloaded the simulated test data of Mirarab et al. (2012) and analyzed
the first ten replicates of the three different evolutionary scenarios. We
used true simulated reference alignments and reference trees with RAxML-
estimated branch lengths. We extended these alignments with the 5000 query
sequences using PAGAN’s experimental heuristics to quickly assign the
queries to target nodes. These heuristics perform Exonerate local alignments
(Slater and Birney, 2005) between the 5000 query sequences and 999 target
sequences, the latter including extant sequences from the reference alignment
and PAGAN-inferred ancestral sequences. The queries were assigned to
their best-scoring target nodes and those not producing significant hits
were discarded. We also aligned the same datasets with hmmalign from
the HMMER package (Eddy, 2011): for that, the model was based on the
full reference alignment and default options were used. More details can be
found in the Supplementary Material.

The accuracy of the resulting extended alignment was measured as above
except that each QS was compared with the closest reference sequence.

2.4 Impact of reference alignment
The impact of the RA composition on the accuracy of alignment extension
was tested using the two best-performing methods from the first set of tests
(see Section 3), PAGAN and hmmalign. The data were simulated using
ultrametric trees that differed in the following parameters: (i) position of
the QS; (ii) size of the ingroup; (iii) evolutionary divergence; and (iv) (for
hmmalign) size of the outgroup. The simulation trees consisted of three 32-
sequence sub-trees with one additional query sequence placed at different
positions within the central subgroup (Fig. 3b and c). We call these basic
topologies ‘close’, ‘intermediate’ and ‘distant’ and their ingroup (the central
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(a) (b) (c)

Fig. 3. (a) The phylogeny used for the first analysis is based on the Ensembl mammalian tree but includes two additional species, Primate and Rodent shown
in magenta and red, and has undergone two duplication events (blue squares). The target nodes provided for the PAGAN guided alignment are shown with
dots of matching colour. (b) The first tree topology for the second analysis has ‘large’ ingroup and ‘close’ QS. (c) The ingroup of two other topologies have
‘large’ ingroup but ‘intermediate’ and ‘distant’ QSs (top). Three additional sets of reference alignments with ‘small’ ingroup are created by reducing the central
sub-tree to two sequences (bottom). Full reference alignments are used with PAGAN; hmmalign analyses are performed with full sets of sequences (‘full’: 96
or 66 sequences) or just the central subgroup (‘clade’: 32 or 2 sequences). The target node for PAGAN is indicated with a red dot

subgroup most closely related to the query) ‘large’. To study the effect of
reduced phylogenetic information in the RA, further datasets were created
with the ingroup cut down to two maximally divergent sequences. These
three topologies are subsets of the full topologies but have ‘small’ ingroups.
As the profile hidden Markov models (HMMs) of HMMER are affected by
more distantly related reference sequences, we created six further sets of RA
by keeping only the ingroup (either 2 or 32) sequences. In distinction to the
‘full’ sets, these sets are called ‘clade’. To mimic analyses of RNA-seq data,
we again simulated protein-coding data and added NGS-like noise in the QS.

The simulation was repeated for tree depths of 0.30, 0.45 or 0.60
substitutions/codon with 50 replicates for each combination of tree topology
and branch length. The average length of trees estimated from the full 96-
sequence RA were (all lengths as substitutions/nucleotide site) 3.14, 4.70
and 6.25 for the three levels of evolutionary divergence and those of their
leaf branches were 0.016, 0.025 and 0.033, respectively. The length of the
branch leading to the query was (for ‘close’, ‘intermediate’ and ‘distant’)
0.020, 0.053 and 0.085 for the tree depth of 0.30; 0.029, 0.077 and 0.127 for
the tree depth of 0.45; and 0.036, 0.102 and 0.167 for the tree depth of 0.60.

To mimic common practice used in metagenomic studies, the short-read
simulator simNGS (Massingham and Goldman, 2012) was used to create
NGS data with target fragment length of 181 bases (fragments under 130
bases excluded), 5× coverage and 125-base pair-end reads. This gave 74–
76 reads for each RA with realistic noise in base call accuracy. To assess
the effect of alignment error in the RA, the sequences were re-aligned with
PAGAN and MAFFT (Katoh et al., 2002). The details of the data simulation
and alignment are given in the Supplementary Material.

3 RESULTS

3.1 Phylogeny-aware graph alignment algorithm
PAGAN is capable of inferring de novo multiple alignments of DNA,
protein and codon sequences when a guide tree is provided and, in
the future, is meant to replace our earlier method PRANK. In this
study, we focus on a novel feature of the method and a task that has no

satisfactory existing solution, the extension of multiple alignments
with new data in a phylogeny-aware manner.

We tested our new method in the extension of EnsemblCompara
GeneTrees alignments with new sequences, focusing on plausible
use cases such as update of an alignment repository after inclusion of
new species (Supplementary Fig. S4) and analysis of RNA-seq data
from a non-model organism (Supplementary Figs S5 and S6). The
resulting alignments and the assembled sequence contigs are highly
similar to the original ones but, as the original data may also contain
errors, the analyses do not allow assessment of the true accuracy of
the method. To further understand and illustrate the performance of
the method we tested it with simulated data.

3.2 Comparison of methods for alignment extension
We compared methods for alignment extension using simulated data
representing a mammalian gene family (Fig. 3a). The codon data,
analyzed both as DNA and protein, were simulated under purifying
selection [model M0 with ω=0.15 (Yang et al., 2000)] and many
substitutions were synonymous on the protein level: despite the
three-times greater number of sites for DNA, the sequence identity of
DNA and protein sequences were similar, 84–90% between human
and Primate and 70–80% between mouse and Rodent over the three
levels of evolutionary divergence. Each reference alignment (RA),
consisting of 67 sequences, was extended with 250 fragments of
30, 60 or 120 bases/amino acids (50 fragments per query sequence)
or with five full-length sequences, and the accuracy of homology
inference was measured.

We tested five alignment methods for both data types and two
additional methods that only support DNA or protein data. The
methods tested for both were PAGAN/guided, PAGAN/free (v.0.33),
hmmalign (from the HMMER package, v.3.0; Eddy, 2011), MAFFT
(v.6.860b; Katoh et al., 2002) and ClustalW (v.2.1; Larkin et al.,
2007); for DNA we also used PaPaRa (RAxML v.7.2.6; Berger and
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(a) (b) (c)

Fig. 4. The accuracy of alignment of DNA (top row) and protein (bottom row) QSs against the corresponding reference alignment using different alignment
methods. The x-axis indicates the length of the fragments aligned and the sub-panels show two of the five query species analyzed. Columns (a)–(c) correspond
to trees with branch lengths multiplied by 1.5, 2.0 and 2.5, respectively. The accuracy is measured as the correctness of the site-wise homology inference with
respect to the closest human/mouse reference sequence

Stamatakis, 2011) and for protein ClustalO (v.1.0.3; Sievers et al.,
2011). All methods were provided with the true simulated RA and
the QSs while PAGAN/free and PaPaRa were additionally given
an inferred and PAGAN/guided the true RT. For PAGAN/guided,
the species of origin (but not the correct paralogous copy) for the
QSs were provided, giving two or three target nodes for the query
sequences (Fig. 3a).

PAGAN and hmmalign were consistently the two most accurate
methods for the extension of alignments with new DNA and protein
sequences (Fig. 4). The two modes of running PAGAN, the ‘guided’
approach with pre-defined locations to place the sequences and
the ‘free’ approach using heuristic local alignment to find the best
location, had slightly different performance on different datasets.
PAGAN/guided did better on the alignment of very short fragments
that contain little information to infer their correct placement.
Despite the prior information, also the guided approach was affected
by multiple target nodes and a proportion of shorter sequences were
misplaced (Supplementary Fig. S7).

PAGAN/free slightly outperformed the guided approach in the
alignment of longer fragments (Supplementary Fig. S8) and it did
this despite a high fraction of the new sequences being placed
to incorrect nodes (Supplementary Fig. S7). An explanation of
this considers the long branches around the query sequence in
our simulation tree: it is often advantageous to use outgroup
information to resolve the mutation events that have taken place
in the descendants of the true target node and place the sequence
at a deeper location. On the other hand, the placement algorithm
visits the tip nodes first and, if no mutations have occurred in the
descendants, the greedy approach places the sequences to nodes
visited earlier: up to 7% of short fragments from Primate_1 are
placed at the node visited very first (Supplementary Fig. S7).

The performance of other methods shows that classical global
alignment methods, MAFFT, ClustalW and ClustalO, struggle in the
alignment of short sequence fragments (Fig. 4). MAFFT performed
relatively well with full length sequences whereas the accuracy of
two Clustal variants was unacceptably low. In contrast to these,
hmmalign aligned short fragments nearly as well as full length

sequences and was consistently one of the best performing methods.
Hmmalign’s excellent results should be taken with a grain of salt,
however, as our accuracy score is based on sites shared by the query
and reference only. By ignoring sites inserted since the species split,
this score is overly lenient with profile-based methods that leave
many insertions unaligned.

The performance of PaPaRa, based on a variant of phylogeny-
aware algorithm, was good in the alignment of closely related DNA
sequences but as it does not produce real multiple alignments—it
deletes sites in the query sequences that are inferred as insertions—
the method is only meaningful for its original task, phylogenetic
placement of sequences. On the other hand, results for PaPaRa
are based on reconstructed full-length query sequences (see the
Supplementary Material for details) and in phylogenetic placement
analyses its error may be smaller than reported.

We repeated the PAGAN and hmmalign analyses of DNA
fragment data after adding NGS-like errors. The added noise had
only a small negative impact on their accuracy (Supplementary
Fig. S9).

The run times and peak memory usage of different methods were
compared on a workstation with 2.40 GHz Intel Xeon CPUs. Two
of the methods, MAFFT and hmmalign, are exceptionally fast and
perform an alignment in seconds (Table 1). In contrast, PAGAN/free
and PaPaRa needed 3.3 and 4.7 min for the most time-consuming
alignment. These are the first versions of each software, however:
the authors of PaPaRa have reported forthcoming speed-ups for their
method and we are also working to accelerate ours. Of the methods
tested, ClustalO is the most memory hungry but even that can easily
be used on a standard personal computer. The memory usage of
PAGAN is dominated by the dynamic programming matrix and, due
to a more complex data structure needed for the graph representation,
the requirements are, for example, somewhat higher than that of
MAFFT with a comparable alignment strategy.

3.3 Extension of large alignments
Our graph alignment algorithm is not yet well-optimized for speed
and the first version of PAGAN is mainly targeted at small and
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Table 1. Execution time and peak memory usage for the extension of EnsTr2
reference alignment with 250 sequence fragments

Method DNA fragments Protein fragments

60 nt 120 nt 60 aa 120 aa

T
im

e
(s

)

MAFFT 1.9 1.0 0.4 0.3
hmmalign 2.2 4.4 1.9 4.6
ClustalO – – 16.5 26.3
ClustalW 75.8 143 27.0 48.7
PAGAN/guided 73.6 137 26.2 46.0
PAGAN/free 186 200 47.2 57.9
PaPaRa 144 284 – –

M
em

or
y

(M
b)

MAFFT 103 103 103 103
hmmalign 198 198 198 198
ClustalO – – 569 518
ClustalW 31 31 16 16
PAGAN/guided 298 334 133 155
PAGAN/free 356 413 153 175

(+104 for placement) (+104 for placement)
PaPaRa 84 85 – –

nt, nucleotide; aa, amino acids.

medium-sized alignment tasks. An obvious application for the
method is in metagenomic studies, however, so we performed
a preliminary analysis to see how the method scales to larger
tasks.

We analyzed the simulated test data of Mirarab et al. (2012)
that consist of 500 reference sequences related by a phylogeny and
5000 query sequence fragments, a mixture of short and long ones,
from related species. The alignment of 5000 query sequences to
999 possible target nodes (extant plus inferred ancestral sequences)
with the graph alignment algorithm is too slow and we used an
experimental acceleration for the placement step. These heuristics
worked well for the easy case [M4 dataset from Mirarab et al.
(2012)] and PAGAN aligned 97.9% of query sequences with an
accuracy of 98.5% (Fig. 5). In the alignment of moderate (M3)
and hard (M2) problems, the heuristics were less successful: the
accuracy was high, 94.0 and 93.5%, respectively, but only 50 and
38% of query sequences were actually included in the resulting
alignments.

The method of Mirarab et al. (2012) divides the alignment
extension problem into smaller sub-problems and performs
alignments within each subgroup using hmmalign. That does
not produce full multiple alignments of all sequences and the
results cannot be meaningfully compared with those produced with
PAGAN. We therefore used hmmalign only and aligned the query
fragments to a model constructed from the full reference alignment.
Hmmalign does not discard any query sequences but for the more
challenging datasets, the alignments it produces were clearly less
accurate. Importantly, the lower accuracy of hmmalign compared
with PAGAN is not only explained by the latter discarding the
difficult queries: also for the subset of sequences aligned by both
methods the alignments from hmmalign were less accurate (Fig. 5).

Hmmalign is fast and, on our test system, it builds a model for
a M4 dataset and aligns the queries to that in 12.5 s with the peak
memory usage of 84 Mb. PAGAN reconstructs graphs for all internal
and extant nodes (totalling 10 999 for a full alignment) and needs
627 s and 2070 Mb for the analysis of the same data.

Fig. 5. The accuracy of PAGAN and hmmalign in the extension of reference
alignments of 500 DNA sequences with 5000 query fragments. For the easy
set (M4 dataset from Mirarab et al., 2012; open symbols), both methods
align >96% sites correctly; for the moderate (M3; crossed) and hard (M2;
solid) sets, the accuracy of PAGAN is high (circles) but the fast heuristics
fails to place half of the queries. Hmmalign aligns all the queries but its
accuracy for M2 and M3 is low (squares). For the fragments aligned by both
methods, the alignments by hmmalign are less accurate (diamonds)

3.4 Impact of reference alignment
As shown by the previous analysis, PAGAN has the potential to
scale up to large alignment extension tasks while its approach for
modelling of insertions/deletions and uncertainty is especially well-
suited for analyses of short and noisy NGS data. Hmmalign has been
used for the extension of reference alignments with new sequences
in metagenomic analyses (Matsen et al., 2010; Stark et al., 2010) and
recently Mirarab et al. (2012) developed an approach that applies
hmmalign on subsets of the reference alignment. The latter mainly
focused on computation time, however, and did not systematically
study the strategies for choosing the optimal RA for alignment
extension analyses, nor its effect on homology inference.

To understand the factors affecting alignment extension with
phylogenetic and profile-based methods, we tested PAGAN and
hmmalign with idealized data mimicking an RNA-seq study (see
Section 2 Fig. 3b, c). Our set-up lets us assess the effects of (i)
phylogenetic position of the query species; (ii) the number of closely
related reference species; (iii) the evolutionary divergence of the
reference; and (iv) the inclusion of more-distantly related reference
species. To assess the impact of sequence divergence on the ancestor
reconstruction, we constrained the placement of the QS with the
guide phylogeny. Incorrect topologies, or correct topologies but
with incorrect root position, could cause alignment/placement errors.
A full investigation of this, beyond typical use cases with known
reference trees or inferred trees as studied here, is beyond the scope
of this article but will be considered in future work.

Although the magnitude of difference and the relative
performance of alternative approaches varies, the phylogenetic
approach of PAGAN with full data (ingroup ‘large’) consistently
produces the most accurate alignments (Table 2). With ‘close’ sets,
the removal of sequences does not affect PAGAN’s reconstruction
of the target ancestor and its performance on full and reduced
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Table 2. The accuracy of extending reference alignments with new
sequences

PAGAN hmmalign/full hmmalign/clade

Simulation Ingroup Ingroup Ingroup
Depth Query Large Small Large Small Large Small

Close 0.977 0.977 0.935 0.928 0.946 0.967

0.
30

Interm. 0.969 0.969 0.938 0.930 0.947 0.945
Distant 0.959 0.957 0.937 0.932 0.936 0.922

0.
45

Close 0.978 0.978 0.917 0.902 0.933 0.967
Interm. 0.965 0.964 0.926 0.910 0.937 0.937
Distant 0.955 0.944 0.929 0.922 0.923 0.898

0.
60

Close 0.978 0.976 0.887 0.859 0.909 0.958
Interm. 0.955 0.951 0.898 0.868 0.915 0.910
Distant 0.928 0.905 0.894 0.878 0.890 0.846

RA (ingroup ‘large’ versus ‘small’) is nearly identical. When the
query sequence branches out deeper in the tree (‘intermediate’
and ‘distant’), PAGAN shows the benefit from the phylogenetic
information provided by denser sequence sampling: the alignments
on the full RA are more accurate than those on the reduced ones, the
difference growing with the increasing evolutionary divergence.

Similarly, it is understandable that hmmalign’s best performance
is in the alignment of reads from a closely related query sequence
against a profile based only on the two sequences from the sister sub-
tree (‘clade’, ‘small’); the information from more distant subgroups
only brings noise and the noise-to-signal ratio is at its worst when
the central subgroup is represented by two sequences only (‘full’,
‘small’). The position of the query sequence is crucial, however,
and the approach giving the best result for the closely related query
sequence gives clearly the least correct alignments when the query
sequence is deep and has a long history of its own. Although the
profiles built from the full RA (‘full’, ‘large’) give marginally better
results in the alignment of the most difficult cases (Table 2, bottom
row), the inclusion of large numbers of sequences in the profile
is generally not the best policy. Crucially, this conflicts with the
requirements of real-life studies such as phylogenetic placement
where the RA should be maximally representative.

As expected, decreasing similarity between the query and the RA
makes the alignment more difficult (Table 2, depths 0.45 and 0.60).
Although both methods lose accuracy, PAGAN is more consistent
in its performance and the improvement over hmmalign grows with
evolutionary divergence. As a demonstration of its efficient use of
phylogenetic information, the relative improvement of PAGAN with
the full RA over any other approach is greatest on the analyses
of most diverged datasets (Table 2, bottom row). The correct use
of phylogenetic information is important for real-life analyses: de
novo alignment of distantly related sequences is error-prone and
good aligners produce much better reference alignments if long
evolutionary branches are cut shorter by additional sequences.

To understand the effects of alignment error on the different
approaches, we re-aligned the reference sequences using MAFFT
and PAGAN. The relative performance of the methods does not
change with noisier RA (Supplementary Table S1). With PAGAN,
the extension of densely sampled alignments (ingroup ‘large’) is
more accurate than that of sparsely sampled ones (ingroup ‘small’),
the effect further growing with the evolutionary divergence of the

QS and the reference sequences. The results for hmmalign using the
different sized re-aligned RA mirror those from the true simulated
RA. Regardless of the placement method used, the RAs generated
with PAGAN give a better starting point for the alignment of NGS
reads than those generated with MAFFT.

4 DISCUSSION
We have generalized the concepts of our phylogeny-aware alignment
algorithm and developed a method for phylogenetic alignment of
partial-order sequence graphs. In this article, we focus on one
specific application for the new method that has no satisfactory
previous solution, the phylogeny-aware extension of existing
alignments with new data.

Re-computation of alignments for largely the same sets of
sequences is wasteful and may occasionally introduce errors
that require manual verification and corrections. Extension of
existing alignments with new sequences avoids these problems and
guarantees that the relative alignment of reference sequences is not
changed. The new sequences should also be accurately aligned,
however, and we strongly believe that this is best achieved by
aligning them in their phylogenetic context, against the targets
resembling them most. This is true for all sequences but its
importance is even more pronounced in the alignment of short
sequence fragments containing little information.

We performed comprehensive simulation studies to compare the
performance of our new method, PAGAN, to that of alternative
methods for alignment extension and to test how the different
approaches utilize the information available in related sequences.
We focused on the accuracy of inferred evolutionary homology with
the aim of using the resulting alignments for evolutionary studies.
Our analyses show that PAGAN’s phylogenetic approach clearly
outperforms most alternative methods, the improvement being
especially striking in the alignment of short sequence fragments.
We were impressed by the good performance of hmmalign but also
noticed that its performance is highly dependent on the reference
alignment used for the construction of the profile HMM.

With a carefully chosen reference alignment, hmmalign’s
accuracy was in some cases comparable to that of PAGAN. In real-
life analyses, one cannot typically maximize both the sensitivity
of the profile HMM and the breath of sequences included, and the
widely used practice of including all the diversity available heavily
penalizes hmmalign’s performance. In contrast, PAGAN is a truly
phylogenetic method and, while it efficiently uses the information
from closely related sequences, it is not affected by the inclusion of
more distantly related ones in the reference set.

We tested PAGAN in the extension of large alignments and found
the initial results very promising. We believe that improvements
in the assignment of queries to target nodes and speed-ups in the
algorithm will make PAGAN also a competitive method for large-
scale metagenomic analyses. Unlike alternative methods for the
task, PAGAN aligns also insertion sites and includes full-length
sequences in the resulting multiple alignment. The latter may not
be crucial in phylogenetic placement of query fragments relative to
the reference sequences but it will provide additional information to
resolve the relations between the newly added sequences and will
allow connecting related fragments to longer contigs.

Alignment extension and phylogenetic placement has interesting
applications in the analyses of increasingly abundant sequencing
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data produced by NGS technologies and we have implemented
extensive support for such data. Falling costs per base will allow
the sequencing of full genomes for many new non-model species
and transcriptomes for even more species. We believe that there
remains a need for comparative methods like ours, e.g. in the
integration of transcriptome datasets into large reference alignments
of closely related species, including the precise differentiation of
close paralogues. We also envision extending our approach to the
alignment of graphs produced by the de novo assemblers and using
phylogenetic information to disambiguate these graphs into the
correct separate sequences.

In addition to their alignment, we want to emphasize the
advantages of graphs in the representation of the input sequence
data. Graphs have direct applications in the modelling of NGS
data from specific sequencing platforms but they can also be used
to represent other features, such as repeat structures, that affect
sequences’ evolution and thus have an impact on their alignment.
The evolutionary process varies across sequence sites and many
features related to this may one day be inferred by sophisticated
alignment methods from the input sequences along with their
alignment. It seems easier, however, to start with separate tools for
the annotation of sequences, such as detection of low-complexity
repeat sequences, and pass this information to a generic alignment
method. We believe that partial-order graphs are ideal for carrying
that information.
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