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ABSTRACT

Motivation: Tandem mass spectrometry (MS/MS) has been routinely
used in proteomics studies. Post-translational modification (PTM)
identification is a challenging problem in tandem mass spectral
analysis.
Results: In this article, we define two scoring functions for
identifying peptides/proteins with PTMs from MS/MS spectra: match
scores and diagonal scores, as well as two spectral identification
problems based on the two scores. We propose several index-based
algorithms for the two problems. Both theoretical and experimental
analyses show that the index-based algorithms significantly improve
on speed when compared with existing algorithms.
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1 INTRODUCTION
Tandem mass spectrometry (MS/MS) has been routinely used in
proteomics studies. In an MS/MS experiment, digested peptides (in
bottom-up approaches) or intact proteins (in top-down approaches)
are measured by mass spectrometers to generate tandem mass
spectra, and the spectra are analyzed by software tools to identify
the peptides or proteins (Bafna and Edwards, 2001; Cao and
Nesvizhskii, 2008; Clauser et al., 1999; Eng et al., 1994; Geer et al.,
2004; Jeong et al., 2011; Mann and Wilm, 1994; Perkins et al., 1999).

In MS/MS spectral identification, query MS/MS spectra are
searched against either a protein database or a spectral library. When
the query spectrum is searched against a protein database, it is a
common procedure to select a set peptides/proteins whose molecular
masses are similar to the precursor mass of the spectrum (within
an error tolerance), then convert the peptides/proteins to theoretical
spectra which the query spectrum is actually compared with. In this
case, searching against a protein database can be treated as searching
against a theoretical spectral library. Given a query MS/MS spectrum
S and a set T of MS/MS spectra, the spectral identification problem
is to compute the similarity score between S and each spectrum in
T and report the best-scoring spectrum in T .

Post-translational modifications (PTMs) of proteins play a crucial
role in generating the heterogeneity in proteins and also help
in utilizing identical proteins for different cellular functions in
different cell types. Many studies in mass spectrometry involve PTM
identifications (Frank et al., 2005; Tanner et al., 2005). In the blind
mode of PTM identification, where PTMs are unknown, the main
task is to compute the similarity score between a spectrum from
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Fig. 1. Comparison between a spectrum S ={2,9,11,13} with a PTM and a
spectrum T ={2,6,8,10} without PTMs. Spectrum S has a PTM of 3 when
compared with spectrum T . The PTM is represented as three consecutive 0’s
in the shaded area in the vector representation of S. The second and third 1’s
in S are shifted by 3 to the right when compared with T . (a) There is only
one matched mass pair between S and T (the mass pair is connected by a
dotted line). (b) There are two matched mass pairs between S and T (δ=3)

a modified form of a peptide and another (theoretical) spectrum
from the unmodified form of the same peptide. We define match
scores and diagonal scores, which are two similarity scores between
a spectrum with PTMs and a spectrum without PTMs. Based on
the two scores, we define the match spectral identification (MSI)
problem and the diagonal spectral identification (DSI) problem for
identifying spectra with PTMs. We used diagonal scores as a filter
in top-down protein identification in (Liu et al., 2011) and found
that existing algorithms are time consuming for computing diagonal
scores when the spectral library is large. In the past several years,
high-accuracy spectra have become available due to the advance
of mass spectrometers, which makes it possible to use indexes to
speed up the computation of match scores and diagonal scores.
In this article, we propose several index-based algorithms for the
MSI and DSI problems, which significantly improve on speed when
compared with existing algorithms.

2 METHODS
An MS/MS spectrum generated from a peptide consists of a precursor
mass and a list of peaks. The precursor mass corresponds to the molecular
mass of the peptide. Each peak, represented as (m/z, intensity), is
related to a fragment ion of the peptide with a mass-to-charge ratio
(m/z) and abundance (intensity) in the sample. In preprocessing of
MS/MS spectra, m/z values are converted to masses of fragment ions
(by decharging). In addition, the fragment masses are converted into a
prefix residue mass (PRM) spectrum (Tanner et al., 2005) that represents
various peptide prefixes supported by the masses. Only top t PRMs
in each 100 Dalton (Da) interval are kept (t =10 in the experiments).
Precursor mass and PRMs are fractional numbers in PRM spectra. To
further simplify spectral analysis, precursor mass and PRMs are multiplied
by a scale factor and are rounded to integers (Kim et al., 2008).
We emphasize that the scale factor in discretization, determined by
the resolution of spectra, is important in the time complexity analysis
of the following algorithms. While, for the sake of simplicity, we
ignore intensities of the peaks, intensities can be easily incorporated
into the index-based algorithms. In the following discussion, we only
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Fig. 2. Comparison between a spectrum S ={2,9,11,15} with two PTMs and
a spectrum T ={2,6,8,10} without PTMs. (a) Spectrum S has two PTMs of
3 and 2 when compared with spectrum T . The PTMs are shown in shaded
areas in the vector representation of S. (b) S and T (3) have the best mass
counting score of 2 among all T (d)

consider PRM spectra in which masses are integers and intensities are
ignored.

A PRM spectrum is represented as either a mass list or a vector. In the mass
list representation, a spectrum is represented as a mass list {a1,a2,...,an},
where an is the precursor mass of the spectrum. In the vector representation,
the spectrum is represented as a 0−1 vector s1s2 ...sN , where N =an. If there
is a mass i in the spectrum, si =1; otherwise, si =0. For example, a spectrum
{2,6,8,10} is represented as a vector 0100010100.

For a pair of PRM spectra S ={a1,a2,...,an} and T ={b1,b2,...,bm}, a
mass pair (ai,bj) is a matched mass pair if ai =bj , ai �=an and bj �=bm. The
number of matched mass pairs of S and T is called the mass counting score of
S and T , denoted by C(S,T ). Let T (d) be the spectrum generated by shifting
each mass in T by d, that is T (d)={b1 +d,b2 +d,...,bm +d} (Fig. 1b).

Match scores In PTM identification, a spectrum S from a peptide with a
PTM is compared with another spectrum T from the unmodified form of the
same peptide. The difference between S and T is an insertion or deletion
of several consecutive elements (the mass value of the PTM) in their vector
representations (Fig. 1a). As a result, the ‘1’s left to the PTM in S are matched
the ‘1’s in T , but the ‘1’s right to the PTM in S are shifted when compared
with the ‘1’s in T . The shift value is the same to the difference between the
precursor masses of S and T , denoted by δ=an −bm. The shifted ‘1’s in S
are matched to ‘1’s in the vector representation of T (δ) (Fig. 1b). All ‘1’s in
S are matched to ‘1’s in either T or T (δ) even if S has a PTM. Based on the
observation, the match score of S and T is defined as C(S,T )+C(S,T (δ)).
The spectral identification problem using match scores as the scoring function
is called the match spectral identification problem.

Diagonal scores When S has a PTM near the left end and another PTM
near the right end of its vector representation (Fig. 2a), the ‘1’s between
the two PTMs in S may not be matched to the ‘1’s in T or T (δ), and the
match score of S and T may fail to identify the PTMs. In this case, we
consider all possible shift values of T . When the shift value equals to the
mass value of the left PTM, the ‘1’s between the two PTMs in S are matched
to the ‘1’s in the shifted T (Fig. 2b). The diagonal score of S and T is the
maximum mass counting score of S and T among all shift values, denoted
by D(S,T )=maxd C(S,T (d)). In difference from computing the convolution
of S and T , computing D(S,T ) reports only the maximum counting score
of S and T . The spectral identification problem using diagonal scores as the
scoring function is called the diagonal spectral identification problem.

Let S ={a1,a2,...,an} be the query spectrum and T ={T1,T2,...,Tk} the
spectral library in the MSI and DSI problems. To solve the MSI and DSI
problems, most algorithms have two steps: (1) compute the match/diagonal
scores between S and each spectrum in T and (2) report the best-scoring
spectrum in T . Since the first step has higher time complexity than the
second step, we report only the time complexity of the first step in the
following analysis.

2.1 Match spectral identification
In the MSI problem, both C(S,Ti) and C(S,Ti(δ)) should be computed for
each Ti in T . Below only the running time for computing C(S,Ti) will
be studied since computing C(S,Ti(δ)) is similar to computing C(S,Ti). In
addition to the big ‘O’ notation, the number of operations will be used in the

(a)

(b)

Fig. 3. Vector representations and a linked list representation of a set of
spectra. (a) Vector representations of five spectra T1 ={2,6,8,10}, T2 =
{2,3,5,10}, T3 ={6,9,10}, T4 ={2,5,8,10} and T5 ={3,7,10}. The five
spectra have the same precursor mass 10. (b) A linked list representation of
the five spectra. The nodes with a cross represent null

Fig. 4. Algorithm 1: Index match algorithm

speed analysis since some algorithms have the same order of complexity,
but the constant factors vary dramatically.

For simplicity, assume that all spectra in T have the same number m
of masses. When all the spectra are stored as ordered mass lists, it needs
k(m+n−2) mass comparisons to computing C(S,·) for all spectra in T
(the precursor masses in S and Ti ∈T are not compared). This method is
referred to as the simple list match algorithm. Using vector representations
of spectra is a simple method for speeding up the computation. When S is
represented as a vector and all spectra in T are represented as ordered mass
lists, it needs k(m−1) comparisons to compute C(S,·) for all spectra in T .
This method is referred to as the simple vector match algorithm.

Next we introduce an index-based algorithm for speeding up the
computation of mass counting scores. For simplicity, assume that all spectra
in T have the same precursor mass M. By keeping the vector representations
of all spectra in T left aligned, a linked list containing 1’s is generated for
each column (Fig. 3). There are totally M linked lists: L1,L2,...,LM . Link
list Li contains all spectra which have a ‘1’ at column i and the end of Li is a
null node. Based on the linked lists, the index match algorithm (Algorithm 1)
is proposed for computing mass counting scores (Fig. 4).

The average number of increment operations in Step 4 of Algorithm 1 is
k(m−1)(n−1)/M for computing C(S,·) for all spectra in T . It is about
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M/cn times faster than the simple vector match algorithm, where c is
the ratio between the running time of step 4 (including the operation of
finding Tj) of Algorithm 1 and the comparison operation in the simple vector
match algorithm (c≤5 in practice). The value of M/n is determined by the
sparseness of the vector presentation of S. Suppose the number of masses
in every 100 Da interval in the spectrum is no more than 10 (t =10). When
the scale factor in mass discretization is 1, which is usually used for ion
trap spectra, M/n≈10. When the scale factor is 100, which is used for
Fourier transform ion cyclotron resonance spectra, Algorithm 1 achieves
about 1000/c-fold speed up when compared with the simple vector match
algorithm.

One possible problem in the above analysis is that the lengths of the link
lists are not distributed evenly and the link lists Lai selected in Step 3 of
Algorithm 1 tend to be very long. The experiment on a dataset from human
cell lysate shows that Algorithm 1 is 33.5 times faster than the simple vector
match algorithm when the scale factor is 100 (see Section 3). The difference
between the speed up on real datasets and the theoretical estimation might
be from the uneven distribution of the lengths of the linked lists.

The number of operations required to generate, or even to read, the
indexes is k(m−1)+M, which makes Algorithm 1 even slower than the
simple vector match algorithm. Therefore, Algorithm 1 is applicable only
when the indexes are used repeatedly. Despite this limitation, the algorithm
still has many applications, such as large-scale spectral identification
allowing unknown PTMs.

Here is an example about how to use indexes repeatedly. Consider
a dataset of 105 MS/MS spectra and a database of 1 million peptides
(theoretical spectra), whose precursor masses range from 10 to 20 kDa.
The error tolerance for precursor masses is set to 100 Da so that unknown
PTMs with a mass value in [−100 Da,100 Da] can be identified. The
theoretical spectra are divided into 100 small groups based on their precursor
masses. The ith group contains all spectra with precursor masses in
[104 +100(i−1),104 +100i]. Then indexes (linked lists) are generated for
each small group of theoretical spectra. For a query (experimental) spectrum
with a precursor mass N , the best-scoring theoretical spectrum can be found
by searching the experimental spectra against at most three theoretical
spectrum groups whose precursor masses overlap with [N −100,N +100].
The indexes for each group are used about 3000 times on average. In
this case, the running time for generating the indexes is negligible when
compared with that for searching the spectra.

The space complexity of Algorithm 1 is O(km). Each node in Figure 3b
is stored in 8 bytes (4 bytes for the pointer and 4 bytes for the label).
A common desktop computer with 2 GB memory can process a spectra
library with 2.5×106 spectra when each spectrum in the spectral library
has no more than 100 masses. If the size of the spectral library is very large,
we split the large spectral library into smaller spectral libraries, then use
Algorithm 1 to search query spectra against each small spectral library, and
finally report identifications by combining the searching results of the small
spectral libraries.

In Algorithm 1, indexes are generally created for (theoretical) spectral
library. However, indexes can also be created for query spectra when the
protein database is stored in some special data structure, such as suffix
arrays (Zhou et al., 2010), and it is not efficient to create indexes for the
protein database.

2.2 Diagonal spectral identification
To find the diagonal score between a query spectrum S and a spectrum Ti,
the simple comparison algorithm computes the shift values of all mass pairs
between S and Ti and counts the number of mass pairs for each shift value.
The algorithm reports the mass counting scores for all possible shift values
in one run, and the number of mass comparisons is k(m−1)(n−1).

The DSI problem can also be solved using spectral convolution. Fast
Fourier Transformation (FFT) is a standard method for computing the
convolution of two vectors. Let S and T be two 0−1 vectors with lengths
N and M. The running time of FFT for computing the convolution of S and

Fig. 5. Sub-vectors of two spectra T1 ={2,6,8,10} and T2 ={2,3,5,10}.
Spectrum T1 has two sub-vectors T1[1..4]=00010100 and T1[2..4]=0100.
Spectrum T2 has two sub-vectors T2[1..4]=10100000 and T2[2..4]=
0100000

Fig. 6. Algorithm 2: Index diagonal algorithm

T is O(N logM). When both the vectors are sparse, the running time can
be reduced to O(nlog2 M) using an algorithm from (Cole and Hariharan,
2002), where n is the number of ‘1’s in S. However, most vectors generated
from high-accuracy spectra in the DSI problem are extremely sparse (e.g.
one ‘1’ in 2000 elements), and the overhead of FFT makes it slower than
the simple comparison algorithm.

Index diagonal algorithm The index-based algorithm for the DSI problem
is similar to Algorithm 1. For each ‘1’ in the vector representation of S
except the last, we remove all elements left to the ‘1’ (including itself) from
the vector to generate a sub-vector of S. The sub-vector generated from the
ith ‘1’ is denoted as S[i..n]. In total, there are n−2 sub-vectors from S.
For example, spectrum {2,6,8,10} has two sub-vectors 00010100 and 0100
(Fig. 5).

By keeping all sub-vectors from T left aligned (Fig. 5), indexes (a set
of linked lists) are generated as described in Figure 3. Figure 6 shows the
index diagonal algorithm (Algorithm 2) for the DSI problem. Below we
prove that Algorithm 2 reports diagonal scores correctly. Suppose that the
best diagonal score is C(S,T (d)) between S and T and the smallest matched
mass pair between S and T (d) is (ai,bj +d). When comparing sub-vector
S[i..n] and T [ j..m], every mass in S is subtracted by ai (shifted to the left
by ai) and every mass in T is subtracted by bj =ai −d (shifted to the left by
ai −d). Thus, C(S,T (d))−1 (the matched mass pair (ai,bj) is not counted)
is computed and Algorithm 2 outputs the best diagonal score correctly.

The average number of increment operations in Step 4 of Algorithm 1,
called by Step 2 of Algorithm 2, is k(m−1)(m−2)(n−1)(n−2)/4M since
the average numbers of ‘1’s in sub-vectors of S and T are (n−1)/2 and
(m−1)/2, respectively. The ratio between the running time of Algorithm 2
and the simple comparison algorithm is about cmn/4M. When the number
of masses in every 100 Da interval in the spectrum is no more than 10
(t =10), and the scale factor (in mass discretization) is 100 and n≤100,
Algorithm 2 achieves about 40/c times speed up when compared with the
simple comparison algorithm. When the scale factor is 1000, it achieves
about 400/c times speed up. The space complexity of Algorithm 2 is O(km2).
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(a)

(b)

Fig. 7. Left and right sub-vectors of two spectra T1 ={2,6,8,10} and T2 =
{2,3,5,10}

The number of nodes in Figure 5 is k(m−1)(m−2)/2. A desktop computer
with 2 GB memory can process a spectral library with 5×104 spectra when
m≤100. Similar to the method described in the previous subsection, a large
spectral library is split into smaller ones for spectral library search when
the indexes of the large spectral library cannot be stored in the computer
memory.

Two direction indexes In Algorithm 2, a total of n−2 sub-vectors from
S are compared with sub-vectors from T . When mass ai is from a noise
peak, the computation for sub-vector S[i..n] can be skipped without missing
any positive identifications. Each mass in S corresponds to a peak with an
intensity value. High-intensity peaks are more likely to be signal peaks than
low-intensity ones and their corresponding sub-vectors should be compared
to sub-vectors from T . Based on this observation, we use two direction
indexes for computing diagonal scores.

Each ‘1’ in the vector representation of S splits the spectrum into a left
sub-vector and a right sub-vector. The left sub-vector is the reverse of the
sub-vector left to the element ‘1’ and the right sub-vector is the sub-vector
right to the element ‘1’ (the right sub-vector is the same to the sub-vector
described in Fig. 5). In total, there are n−1 sub-vector pairs from S. For
example, the second ‘1’ in spectrum 0100010100 (mass list {2,6,8,10})
splits it into a left (reversed) sub-vector 00010 and a right sub-vector 0100.
In total, spectrum 0100010100 has three sub-vector pairs (0, 00010100),
(00010, 0100) and (0100010, 00). The two sub-vectors generated from the
ith ‘1’ are represented as S[i..0] and S[i..n].

We generate two sets of indexes (linked lists): one for the left sub-vectors
of T and the other for the right sub-vectors of T (Fig. 7). Using the indexes,
the two-index diagonal algorithm (Algorithm 3) is proposed for computing
the diagonal scores between S and all spectra in T (Fig. 8).

Below we prove that Algorithm 3 computes the best diagonal score
correctly. Suppose that S and T ∈T have the best diagonal score x=
C(S,T (d)) and (ai,bj +d) is a matched mass pair. When comparing the sub-
vector pair S[i..0] and S[i..n] and the sub-vector pair T [ j..0] and T [ j..m],
C(S,T (d))−1 is computed (the matched mass pair (ai,bj) is not counted).
Thus, Algorithm 3 outputs the diagonal score correctly. There are x diagonal
masses in S which can be mapped to a mass in T with the shift d. If one of
the x diagonal masses is selected in Step 1 of Algorithm 3, the best diagonal
score is reported correctly.

The average number of increment operations in Step 4 of Algorithm 1,
called by Step 2 of Algorithm 3, is k(m−1)(m−2)(n−1)(n−2)/M. In
practice, only α masses corresponding to the highest intensity peaks instead
of all masses are used in step 1 of Algorithm 3. In this case, the ratio between

-

Fig. 8. Algorithm 3: Two-index diagonal algorithm

the running time of Algorithm 3 and the simple comparison algorithm is
αcm/M, which is better than Algorithm 2. If one of the α masses is a
diagonal mass, the best diagonal score is computed correctly. Experimental
results show that this approach misses only a small number of identifications.
The memory requirement for Algorithm 3 is doubled when compared with
Algorithm 2.

3 RESULTS
We implemented all algorithms in Java and tested the algorithms on
a desktop computer with a 2.6 G CPU and 12 G memory.

3.1 Datasets
A dataset from human cell lysate and a dataset from human plasma
were used in the experiments. They are referred to as LYSATE
and PLASMA datasets, respectively. In the preparation of LYSATE
dataset, the samples were reduced with dithiothreitol and alkylated
with iodoacetamide and were digested with trypsin. The peptide
mixture obtained were separated by an high-performance liquid
chromatography (HPLC) system coupled online to a Orbitrap-Velos
(Thermo Fisher Scientific). Triplcate higher energy collisionally
activated dissociation (HCD) datasets were acquired (Frese et al.,
2011). We tested our algorithms on only one date set with 37810
spectra of the triplicate. In the preparation of PLASMA dataset,
peptidome of plasma samples was isolated and analyzed by an HPLC
system coupled to a Orbitrap-Velos (Thermo Fisher Scientific).
A total of 8495 HCD and 8495 collision-induced dissociation
MS/MS spectra were acquired (Shen et al., 2011). The spectra were
preprocessed as described in Section 2. MS-Deconv (Liu et al.,
2010) was used to convert high charge peaks to neutral masses of
fragment ions. Only top 10 masses were selected in each 100 Da
interval in PRM spectra (t =10).

The human protein database was downloaded from UNIPROT
(www.uniprot.org). To analyze LYSATE dataset, all tryptic peptides
with length from 6 to 40 were generated. In total, there were
1271249 peptides. The spectra in PLASMA dataset were searched
against whole protein sequences in the human protein database
using diagonal scores since they were from degraded peptides of
endogenous proteins.
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Fig. 9. Running time of the index match algorithm (Algorithm 1) on
LYSATE dataset

3.2 Speed tests for MSI
The speed of the simple list algorithm, the simple vector match
algorithm and Algorithm 1 was tested on LYSATE dataset. The
error tolerance for precursor masses was set as 100 Da to identify
spectra with unknown PTMs. For Algorithm 1, we divided the
theoretical spectral library (generated from peptides) into small
groups based on their precursor masses. The ith group contained all
theoretical spectra with precursor masses in [500+100(i−1),500+
100i]. Indexes were generated for each small group of theoretical
spectra.

The running time of the simple list match algorithm and the simple
vector match algorithm was about 20.4 and 2.9 min, respectively. It
took 4.7 s to generate all indexes for Algorithm 1. The running time
of Algorithm 1 decreases as the scale factor in mass discretization
increases (Fig. 9). When the scale factor was 100, Algorithm 1 was
about 33.5 times faster than the simple vector match algorithm.
The difference between the speed up on the real dataset and the
theoretical estimation might be from the uneven distribution of the
lengths of the linked lists (Fig. 3b).

3.3 Speed tests for DSI
The speed of the simple comparison algorithm and Algorithm 2
was also tested on LYSATE dataset. Each query spectrum was
compared with all theoretical spectra (generated from peptides).
Since the simple comparison algorithm was very time consuming,
we decided to test it on a smaller dataset of 3781 query spectra (1/10
of the complete dataset). The running time of the simple comparison
algorithm was about 884.6 min for processing the small dataset (the
estimated running time for the complete dataset is 8846 min). The
running time of Algorithm 2 with a scale factor of 100 was 460
min for the complete dataset, which is about 19.2 times faster than
the simple comparison algorithm. The running time for generating
indexes was about 8 s.

Algorithms 2 and 3 were compared on LYSATE dataset with
a fixed scale factor 100. Using the target-decoy approach with a
shuffled decoy database, Algorithm 2 identified 1702 spectra with
spectrum level 0.18% false discovery rate (FDR). The corresponding
cutoff value for diagonal scores was 9. Algorithm 3 with different
settings of the parameter α was tested. For each query spectrum,
the top α masses were selected based the intensities of their
corresponding peaks. Only identifications with a diagonal score
exceeding 9 were reported. The identification is considered correct
if it has the same identification or the same diagonal score when

Table 1. Performance of the two-index diagonal algorithm
(Algorithm 3) with various settings of the parameter α and a
cutoff value 9 for diagonal scores on LYSATE dataset

α Running Speed up when No. of correct No. of incorrect
time compared with identifications identifications
(min) Algorithm 2

2 31.5 14.6X 867 14
5 78.5 5.9X 1309 10

10 153.6 3.0X 1624 3
20 284.9 1.6X 1697 0

compared with Algorithm 2 (Algorithms 2 and 3 may report two
different peptides with the same diagonal score for one spectrum).
It took about 12 s to generate the two sets of indexes for Algorithm 3.
The running time and the number of identifications of Algorithm 3
are reported in Table 1. When α=10, Algorithm 3 achieved 3.0
times speed up and identified 1624 spectra (only 78 spectra were
missed and 3 spectra were incorrectly identified) when compared
with Algorithm 2. In practice, a two-pass approach can be used to
combine the advantages of the two algorithms: Algorithm 3 with
α=10 is used in the first pass of spectral identification; if no good
diagonal scores are reported, Algorithm 2 is used in the second pass
of spectral identification.

3.4 Comparison with MASCOT
We compared MASCOT (Perkins et al., 1999) and Algorithm 2 on
PLASMA dataset since it has many spectra with PTMs. The purpose
of the comparison was to evaluate the performance of Algorithm 2
on PTM identification. The error tolerances for precursor masses
and fragment ion masses were set to 15 ppm and 0.05 Da, and
no enzymes were specified in the parameter setting of MASCOT.
The running time of MASCOT was 7.1 min. Using the target-
decoy approach (shuffled decoy database), MASCOT identified
2892 spectra with spectrum level 1% FDR. We applied Algorithm 2
(the error tolerance of fragment ion masses was considered in
the implementation and was set to 15 ppm) to find a protein-
spectrum-match (PrSM) with the best diagonal score for each
spectrum, then an E-value for each reported PrSM was computed
using a generating function approach (Kim et al., 2008). The
running time of Algorithm 2 was 4886 min. Using the same target-
decoy approach, Algorithm 2 identified 3138 spectra with spectrum
level 1% FDR. Algorithm 2 reported 610 identifications missed
by MASCOT, including 223 identifications with unknown PTMs
(Fig. 10). The index-based algorithms and MASCOT can be used
as complementary tools in spectral identification.

4 CONCLUSION
The speed of the index based algorithms is related to the resolution
of MS/MS spectra, and the algorithms are fast for high-resolution
MS/MS spectra. It is a surprising result that using indexes speeds
up the computation of diagonal scores. Generally, FFT is the
best solution for computing the convolution of two vectors. But
when the two vectors are sparse, the simple comparison algorithm
and Algorithm 2 are much faster than FFT, and the index-based
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Fig. 10. Comparison of MASCOT and Algorithm 2 on PLASMA dataset.
With spectrum level 1% FDR, MASCOT identified 2892 spectra and
Algorithm 2 identified 3138 spectra. Algorithm 2 identified 610 spectra
missed by MASCOT

algorithms are faster than the simple comparison algorithm in
practice.
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