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ABSTRACT

Motivation: Next-generation DNA sequencing platforms are
becoming increasingly cost-effective and capable of providing
enormous number of reads in a relatively short time. However,
their accuracy and read lengths are still lagging behind those
of conventional Sanger sequencing method. Performance of
next-generation sequencing platforms is fundamentally limited by
various imperfections in the sequencing-by-synthesis and signal
acquisition processes. This drives the search for accurate, scalable
and computationally tractable base calling algorithms capable of
accounting for such imperfections.
Results: Relying on a statistical model of the sequencing-by-
synthesis process and signal acquisition procedure, we develop
a computationally efficient base calling method for Illumina’s
sequencing technology (specifically, Genome Analyzer II platform).
Parameters of the model are estimated via a fast unsupervised
online learning scheme, which uses the generalized expectation–
maximization algorithm and requires only 3 s of running time per
tile (on an Intel i7 machine @3.07GHz, single core)—a three
orders of magnitude speed-up over existing parametric model-
based methods. To minimize the latency between the end of the
sequencing run and the generation of the base calling reports, we
develop a fast online scalable decoding algorithm, which requires
only 9 s/tile and achieves significantly lower error rates than the
Illumina’s base calling software. Moreover, it is demonstrated that the
proposed online parameter estimation scheme efficiently computes
tile-dependent parameters, which can thereafter be provided to
the base calling algorithm, resulting in significant improvements
over previously developed base calling methods for the considered
platform in terms of performance, time/complexity and latency.
Availability: A C code implementation of our algorithm can be
downloaded from http://www.cerc.utexas.edu/OnlineCall/
Contact: hvikalo@ece.utexas.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Recent development of next-generation sequencing platforms has
enabled cost-effective whole-genome sequencing and resequencing,
reinvigorated transcriptomics, and has provided an essential tool
for research in functional and comparative genomics, epigenetics
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and metagenomics (Mardis, 2008). However, before the promised
benefits of widespread applications of DNA sequencing come to
fruition, sequencing technology requires further improvements.
Although next-generation sequencing systems are cost-effective and
capable of providing very high number of reads in a relatively
short time, their accuracy and read lengths are still lagging
behind those of conventional Sanger sequencing method. In this
article, we focus on Illumina’s sequencing platform (Bentley et al.,
2008) and, relying on a mathematical model of sequencing-by-
synthesis, propose a fast online algorithm for unsupervised learning
of the parameters of the model and a computationally efficient
technique for sequential base calling. The model captures the
different sources of uncertainty in the sequencing process and signal
acquisition procedure. Illumina’s current base calling software,
Bustard, is very fast but its performance leaves a lot of room for
improvement. Consequently, several novel base calling methods for
Illumina’s sequencing platform have been proposed in recent years
(Lederberger and Dessimoz, 2011). Elrich et al. (2008) developed
an approach referred to as Alta-cyclic which relies on a supervised
training stage (using a rich DNA library with a known reference
genome on a control lane) to find parameters of a model, and uses
support vector machines for optimal basecalling. Rougemont et al.
(2008) proposed model-based clustering and information theoretic
ideas for basecalling. The developed method, referred to as Rolexa,
uses a Gaussian mixture model for classification, and uses filters
which cut off bases/reads with quality scores that are below a certain
threshold. Kircher et al. (2009) proposed Ibis which uses a machine
learning scheme similar to Alta-cyclic, and relies on base-specific
parameters and multiclass support vector machines with polynomial
kernels for acceleration of the algorithm. Recently, Kao et al.
(2009) proposed a Bayesian inference method for base calling. In
particular, this approach relies on a batch expectation–maximization
algorithm to infer parameters of a detailed mathematical model
of sequencing-by-synthesis on Illumina’s platform, and applies the
Markov Chain Monte Carlo technique to perform base calling. The
approach, named BayesCall, was shown to significantly improve
base calling error rates over state-of-the-art techniques. However,
the approach turned out to be computationally demanding and
therefore infeasible for basecalling millions of reads obtained from
Illumina’s sequencing platforms. The follow-up article by the same
authors presents naiveBayesCall (Kao and Song, 2010), a simplified
heuristic, which runs significantly faster than BayesCall at the cost
of small-to-moderate deterioration of the error rate performance.

The basecalling method we propose, OnlineCall, relies on a
mathematical model that is a simplified version of the model used
by BayesCall and naiveBayesCall. Parameters of the proposed
model can be inferred in a computationally efficient manner.
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As a result, the parameter estimation step of OnlineCall is more
than 3500 times faster than the parameter estimation step of
BayesCall and naiveBayesCall. Moreover, the adopted efficient
estimation procedure allows us to treat parameters in the model
as tile-dependent, and makes tile-by-tile inference of parameters
computationally affordable. The base calling step of OnlineCall
is orders of magnitude faster compared to some other publicly
available schemes (50 times faster than naiveBayesCall and
approximately 750 times faster than Bayescall). Both parameter
estimation and basecalling steps are implemented as online (as
opposed to batch) algorithms. Performance of the proposed
techniques is tested on a full lane of DNA sequencing reads of
bacteriophage phiX 174 acquired by Illumina’s Genome Analyzer II.
It is demonstrated on this data that allowing tile-dependent model
parameters translates to improved error rates as compared to other
practically feasible basecalling methods—a significant improvement
over Bustard and a moderate improvement over naiveBayesCall.

2 METHOD

2.1 Mathematical model
The mathematical model described in this subsection is based on presentation
in (Kao et al., 2009).
Phasing, pre-phasing and the generated signal: in the Illumina’s reversible
terminator chemistry, dNTPs with removable protecting group are added
in each test cycle. Ideally, only the first unpaired base of each template
should bind with the dNTP that is its Watson–Crick complement. However,
incorporation of dNTPs into complementary strands is not perfect and
phasing and pre-phasing occur. The former refers to the event where no base
is incorporated while the latter denotes the event where the complementary
strand is extended by more than one base. Phasing and pre-phasing are
significant sources of erroneous basecalls, especially towards the ends of
the reads as the phasing and pre-phasing effects accumulate.

We adopt the representation of a template sequence of length L by a 4×L
matrix S, where the ith column of S, Si , has a single non-zero entry which
is equal to 1 and which indicates the type of the base in the ith position
of the template sequence. We use the convention where the first component
of Si corresponds to A, the second to C, the third to G and the fourth to
T . Phasing and pre-phasing are treated probabilistically, and described as
Bernoulli random variables. Let pph denote the probability that no base is
incorporated into a complementary strand (i.e. the probability of phasing),
and let ppr denote the probability of incorporating more than one base (i.e.
the probability of pre-phasing). For computational tractability, it is assumed
that at most two bases can be incorporated in a single test cycle. Define an
(L+1)×(L+1) transition matrix P with entries Pi,j (0< i,j<L) given by

Pi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pph, if j= i

(1−pph)(1−ppr), if j= i+1

ppr(1−pph), if j= i+2

0, otherwise.

The signal generated over N cycles of the synthesis process affected by
phasing and pre-phasing can be expressed as Z=SET , where E= (Ei,j) is
an N ×L matrix with entries Ei,j =[Pi]0,j , the probability that a template
terminates in state j after i cycles. We denote the ith column of the 4×N
matrix Z by Zi .
Cross-talk: during the data acquisition step, the clusters are exposed to lasers
with two different emission wavelengths. The excited fluorescent labels
attached to incorporated nucleotides emit light, and the image containing
information about the type of each incorporated nucleotide is acquired and
processed. However, the emission spectra of the fluorescent labels overlap,
resulting in significant cross-talk. The cross-talk is quantified by a 4×4

matrix K having off-diagonal elements which are reflective of the level of
the emission spectrum overlap between signals generated in the same cycle.
Signal decay/droop: signal decay observed in sequencing-by-synthesis
platforms is not necessarily smooth, that is, it may exhibit variations that
are conveniently represented as being probabilistic. In particular, the decay
can be modeled by a cycle-dependent scalar parameter λi which evolves over
time according to

λi |λi−1 ∼N ((1−d )λi−1,(1−d )2λ2
i−1σ

2), (1)

where d denotes a droop factor presumed to be common to all cycles and
reads, σ is the standard deviation of a scalar Gaussian random variable and
| denotes conditioning. Consequently, the signal generated in the ith cycle is
given by Xi =λi(SET )i .
Signal leakage: acquired raw data shows considerable evidence of signal
leakage from one cycle into the next. Let Yi denote the four-dimensional
vector comprising signal intensities acquired in each of the four channels
during the ith test cycle. Collect the vectors Y1,Y2,...,YN into a 4×N matrix
Y, where N denotes the number of cycles. It is assumed that the signal leakage
from cycle i−1 to cycle i is a constant fraction α, 0<α<1, of the signal
acquired in cycle i−1, Yi−1.
Noise: measurement uncertainties are assumed to primarily originate
from fluctuations in K and are modeled by multiplicative noise of the
form

∑s=4
s=1 Xi(s)νs, where νs are 4×1 zero mean independent identically

distributed Gaussian random vectors each having covariance �. Thus, the
covariance �i in the ith cycle is

�i =‖Xi‖2
2�.

Full model: the full model which incorporates all of the listed effects is of
the form

Yi ∼N (KXi,�i) i=1

Yi|Yi−1 ∼N (KXi +(1−d )αYi−1,�i) i=2,....N . (2)

Time-dependent windowing: bayesCall (Kao et al., 2009) relies on
time-dependent parameters to significantly improve the performance of
basecalling. To this end, cycles are separated into ‘windows’, the length
of which W is sufficiently small to capture local variations in parameters.
Therefore, the set of parameters associated with the ith window, l =� i

W �, is
in general different from those associated with other windows.

2.2 Revised model
Analysis of experimental data reveals that the coefficient of variation (ratio
of the standard deviation to the mean) of λi in equation (1) is small, typically
below 0.1 for cycles i≥20, and below 0.06 in the latter cycles which are more
prone to erroneous basecalls than the early ones. Therefore, approximating
decay by its mean may provide sufficient information about this phenomenon
to a basecalling scheme. Nevertheless, to remain capable of capturing small
variations in λi, we allow the droop factor to vary from one cycle to another
and model the decay as λi =λ

∏i
j=2(1−d j), where λ denotes the transduction

coefficient which maps synthesis events to the generated signal intensity and
dj denote cycle-dependent droop factors.

On another note, the intricate way in which pph and ppr affect generated
signal is a major reason for needing a computationally intensive parameter
estimation step. Note that the signal generated in the ith cycle Xi can be
expressed as

(λ
i∏

j=2

(1−dj))(Si +
min{L,i−1}∑

j=1

αi,jSi−j +
min{L,N−i}∑

j=1

β i,jSi+j),

where αi,j and β i,j are evaluated from pph, ppr and dj , and where we assume
that no more than L cycles leading and L cycles following the ith one
affects the signal generated in the ith cycle. Assuming that the values of
pph, ppr and d j do not vary much from the (i−L)th to the (i+L)th cycle, we
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approximate Xi by

λ

i∏
j=2

(1−dj)Si +
min{L,i−1}∑

j=1

αi,jXi−j +
min{L,N−i}∑

j=1

βi,jXi+j .

The above expression describes dependence (induced by phasing effects) of
the signal generated in the ith cycle on signals generated in cycles preceding
and following the ith one. If there were no measurement noise, the same
relation would hold for Yi, Yi−j and Yi+j – pre-multiplication of both sides
of (2.2) with the cross-talk matrix K would result in Yi being approximately
equal to

λ

i∏
j=2

(1−dj)KSi +
min{L,i−1}∑

j=1

αi,jYi−j +
min{L,N−i}∑

j=1

βi,jYi+j .

However, measurements are perturbed by noise and hence we use the
above expression to approximate the mean value of Yi, while the associated
uncertainty is modeled by a Gaussian noise of appropriate variance (as
discussed in section 2.1). Therefore, the overall model is given by

Yi|(Yi−J1 ,...,Yi−1,Yi+1,...,Yi+J2 )∼N (λ
i∏

j=2

(1−dj)KiSi

+
min{L,i−1}∑

j=1

αi,jYi−j +
min{L,N−i}∑

j=1

βi,jYi+j,(λ
i∏

j=2

(1−dj))
2�i)

(3)

where J1 =min{i−1,L},J2 =min{L,N −i}, i=1,....N . Note that within a
given window l, all parameter values are constant, for example for W =6 and
l =1, K1 =K2 ···=K6. Similar expressions hold for the other parameters.

To summarize, we introduce the following modifications of the model
equation (2):

1. Expression for the signal decay (1) is replaced by the relation λi =
λ

i∏
j=2

(1−dj) and

2. Effects of phasing and prephasing are modeled implicitly by adding
a fraction αi,j and βi,j of the jth lagging and leading cycle signals to
the ith cycle signal. It is assumed that no more than L such leading
and lagging bases contribute to the signal.

Note that the form of cross-talk and noise remain unchanged. It will
be clarified in later sections why this revised model offers computational
advantages over the original one.

2.3 Final model
Fitting the data to the model reveals that only the base immediately following
or preceding the tested base makes a significant contribution to the signal
generated by the test. This observation is consistent with the results reported
in Elrich et al. (2008); Kao et al. (2009); Kircher et al. (2009). Therefore,
we set L=1 and retain only αi,1 and βi,1 in our model. Then, the final model
is of the form

Yi|(Yi−11{i>1},Yi+11{i<N })∼N (λ
i∏

j=2

(1−dj)KiSi

+αiYi−11{i>1}+βiYi+11{i<N },(λ
i∏

j=2

(1−dj))
2�i)

(4)

where 1 is an indicator function equal to 1 if the tested condition is true and
0 otherwise, αi,1 and βi,1 are renamed as αi and βi and i=1,...,N . Note that
we may, in principle, use L>1. The additional computational costs incurred
by doing so are relatively small. There is, however, a price to be paid in terms
of latency, that is, in the number of cycles that must pass before parameter
estimation/basecalling can start.

2.4 Unsupervised online parameter estimation
An unsupervised learning scheme allows for a more economical use of
resources and is, therefore, preferred over a supervised scheme. The latter
suffers from the disadvantage that it requires training data, for example,
in the form of known sequences analyzed in a dedicated control lane. Our
unsupervised learning scheme has an additional, potentially major advantage
of relying on an online, as opposed to a batch, algorithm. The online algorithm
starts parameter estimation after only a few cycles of the sequencing run;
hence, the latency between the start of the sequencing run and the completion
of basecalling may be significantly reduced. In each cycle of a sequencing
run, images of all lanes are acquired. Our online learning scheme, in
combination with an adequately fast image processing algorithm capable
of providing raw data in a timely manner, can perform calling of bases only
a few cycles after their incorporation.
Scheme for the online parameter estimation: to facilitate unsupervised
estimation of the parameters in equation (4), we rely on an online EM
algorithm (Mclachlan and Krishnan, 1997) and use a training set of R=250
reads randomly selected across a tile. The EM algorithm iteratively solves
the following optimization problem

�n =arg max
�

E(λ,S)|�n−1 [L(S,λ,�)], (5)

where the scalar coefficient λ and the template sequence matrix S are latent
variables, α, β, K, � and dj (henceforth collectively referred to as �) are the
parameters to be optimized over, and L denotes the log-likelihood function.
The expectation is taken over the latent variables given the current estimate
of � (i.e. given �n−1).

As previously stated, we divide the sequencing run into windows and
estimate parameters sequentially (i.e. window-by-window). Parameters for
the lth window are initialized using the values of the parameters estimated
in the (l−1)st window. To prevent over-fitting, optimization equation (5)
is performed over two windows, l and l+1 and the resulting � is used as
the set of parameters for window l. We empirically found that the choice
of the window length W =6 leads to a very good performance in terms of
basecalling error rates, while requiring practically feasible CPU run times.

Following model equation (4), for the lth window, we need to maximize
expectation of the log-likelihood function

Eλ,S

R∑
k=1

(l+1)W∑
i=(l−1)W+1

− 1

2
L(λk ,Sk

i ,�l ), (6)

L(λk ,Sk
i ,�l )= logdet(λk (

i∏
j=2

(1−dj))
2�i)+

(Y k
i −λk

i∏
j=2

(1−dj)KiS
k
i )T �−1

i (Y k
i −λk

i∏
j=2

(1−dj)KiS
k
i )

(λk
i∏

j=2

(1−dj))
2

(7)

where Y i =Yi −βYi+1 for i=1, Y i =Yi −αYi−1 for i=N and Y i =Yi −
αYi−1 −βYi+1 for i>1,i<N . The superscript k is an index of a read in
the training set and ranges from 1 to R.
E-step for the first window: given the initial parameter estimates, the E-step
entails finding the expectation of the log-likelihood function in equation (6)
over continuous and discrete variables λ and S. Closed form expressions are
not available, while the numerical Monte-Carlo methods are computationally
very intensive. As an alternative, we use the following method. In the first
window, we call S using Bustard’s approach since, in general, it performs
well in the first few cycles. As a result, the E-step can be reduced to find
the expectation of the log-likelihood function over the continuous-valued
variable λk for k =1,2,...,R. For this, we use an importance sampling
scheme.
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Finding λ̂k : using the parameters � and S, for each read k we can find
λk = λ̂k by maximizing the log-likelihood function equation (7). The part of
the objective function in equation (7) which is dependent on λk is given by

(l+1)W∑
i=(l−1)W+1

−4logλk − Y k
i �−1

i Y k
i

2(λ
i∏

j=2

(1−dj))
2

+ (KiSk
i )T �−1

i (Y k
i )

(λ
i∏

j=2

(1−dj))

. (8)

Differentiating with respect to λk , we arrive at the following expression,

(l+1)W∑
i=(l−1)W+1

−4

λk
+ Y k

i �i
−1Y k

i

(λk )3(
i∏

j=2

(1−dj))
2

− (KiSk
i )T �i

−1(Y k
i )

(λk )2(
i∏

j=2

(1−dj))

. (9)

Setting this to 0, we get an equation quadratic in λk . Since λk >0, the unique
solution λ̂k is obtained by solving equation (9). The fact that the maximum
of the log-likelihood function over λk can easily be found is used in various
parts of the remaining sections.
Importance Sampler: to evaluate the log-likelihood function equation (7),
we use an importance sampling scheme. It is empirically observed that the
distribution of λk has a relatively small coefficient of variation, that is, its
distribution is heavily concentrated around λ̂k . We found that a normal
distribution with mean λ̂k and standard deviation 0.1 has a heavier tail
than the empirical distribution of λk . We use the aforementioned normal
distribution as a proposal density, sampling points from it and calculating
their weights. In particular, NIS =500 samples are generated from the
proposal density . Following equation (7), our log-likelihood function is
computed numerically according to

− 1

2

R∑
k=1

(l+1)W∑
i=(l−1)W+1

NIS∑
j=1

wj,kL(λk
j ,S

k
i ,�l ), (10)

where λk
j is the generated samples and wj,k denote their corresponding

normalized weights.
M-step for first window: the objective function in equation (7) is not
convex over the parameter vector �. However, the function is separately
differentiable and convex over each of the parameters in �. To maximize
it, we use a cyclic co-ordinate descent scheme which rotates among the
components of �. Such a method is guaranteed to converge to a local
minimum as long as there is a unique minimum over each of the coordinates.
Differentiating equation (10) with respect to each of the variables, we find
that this condition is indeed satisfied. We omit further details of this step for
the sake of brevity of the presentation.
Stopping criteria: when the ratio of the change in the value of the objective
function to the value of the objective function in a previous iteration is less
than ε=0.003, the co-ordinate descent is terminated. A similar stopping
criterion is used for the EM algorithm as well.

A brief comment on the convergence of the EM algorithm for parameter
estimation in the first window is in place. It can be observed that the
empirical log-likelihood may fluctuate (especially, when the algorithm is
nearing termination), and hence the convergence of this stochastic EM is
not monotonic. However, it can be shown that for such a stochastic EM
algorithm, convergence is guaranteed provided NIS is increased with every
EM step (Celeux and Diebolt, 1992). In particular, increasing NIS ensures
that the difference between empirical expectation and true expectation of
the log-likelihood function remains small. In our implementation, NIS is
increased by 30% in every iteration.
E-step for subsequent windows: the simple parameter estimation scheme
which we use in the first time window performs well primarily because
phasing effects are tolerable in the early cycles of the synthesis process.
As the cycle number grows, cumulative effects of phasing, signal decay
and measurement noise cause deterioration of performance and demand a
more sophisticated parameter estimation and basecalling procedure. Since
the simple basecalling procedure used to call bases in the first window

is no longer adequate, we must resort to numerical evaluation of the
expected value of the log-likelihood function in equation (6). However,
this is computationally demanding because the expectation is over both the
continuous variable λk and the discrete variables Sk

i . To make the inference
practically feasible, we approximate expression equation (6) by fixing the
value of the parameter λk to the value λ̂k obtained by the EM algorithm in
the previous time window. Consequently, expectation of the log-likelihood
function is evaluated over the discrete variables Sk

i only, and hence we replace
equation (6) by

− 1

2

R∑
k=1

(l+1)W∑
i=(l−1)W+1

∑
s∈A,C,G,T

P(Sk
i,s|Y)L(λ̂k ,Sk

i ,�l ). (11)

The probabilities P(Sk
i,A|Y),P(Sk

i,C |Y),P(Sk
i,G |Y) and P(Sk

i,T |Y) can be
obtained from equation (4).
M-step for subsequent windows: the M-step for subsequent windows is very
similar to the M-step for the first window, with the only difference stemming
from the fact that the particle weights are now the probabilities of each
symbol. The remaining steps are exactly the same as those described earlier.
Note that because the E-step is evaluated in a closed form equation (11), the
EM algorithm converges monotonically.
Updating λ̂k : after each step of the EM algorithm used for estimating
parameters in a given window, MAP calls for Sk

i are made. The calls and
the most recent parameters are then used to update λ̂k by solving equation
(9). The updated value of λ̂k is then used by the EM algorithm in the next
window.

2.5 Base calling
Base calling requires solving the following maximization problem

argmax
S,λ

P(S,λ |Y,�)

for each read. On the basis of equation (4), this is equivalent to maximizing
the log-likelihood function

− 1

2

N∑
i=1

(8log(λ)+

(Y i −λ

i∏
j=2

(1−dj)KiSi)
T �−1

i (Y i −λ

i∏
j=2

(1−dj)KiSi)

(λ
i∏

j=2

(1−dj))
2

)

(12)

Base calling follows in the lines of parameter estimation. Initialization
is done by assuming that the bases in the first two windows can be called
correctly using the simple scheme used by Bustard. Given Si for the first
two windows, the initial λ̂ is found by solving quadratic equation (9). For
the next window, each of the four possibilities for Si are tested to obtain the
corresponding log-likelihoods. The choice of Si that leads to the maximum
value of the log-likelihood function is declared as the call. The associated
likelihood is declared as the quality score for the call. Once all bases in a
window have been called, λ̂ is updated by solving equation (9) anew. Such
updates allow for both local and global variations in λ to be accounted for,
and ensure that noisy cycle intensities do not have a prolonged effect on
future calls. The described basecalling procedure is repeated until all the
bases in all the windows are called.

2.6 Quality scores
Although error rates provide a ground for benchmarking the performance
of various base calling algorithms, quality scores enable assessment of the
confidence of a base calling procedure. To assess the ‘goodness’ of quality
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scores (and thus measure the performance of an algorithm), we consider
their discrimination ability (Ewing and Green, 1998; Smith et al., 2008).
The discrimination ability for a given error rate is obtained by sorting all
bases according to their quality scores in descending order and finding the
number of bases called before the error rate exceeds the predefined threshold.
In our base calling scheme, the quality scores assigned is the likelihood for
the called base obtained from equation (12).

3 RESULTS
The Illumina flowcell has 8 lanes, each lane having 100 tiles.
Performance of OnlineCall is verified on a full lane data obtained
by sequencing phiX174(EMBL/NCBI accession number J 02482)
bacteriophage using Illumina’s Genome Analyzer II, generating
reads of length 76. After basecalling the lane by Bustard,
naiveBayesCall, Rolexa, Ibis and OnlineCall, the calls were mapped
onto the known reference sequence comprising 5386 bases. The
optimal alignment which relies on computing the Hamming distance
is found ( the Hamming distance between two strings of equal length
is the number of positions at which the corresponding symbols are
different). Any read that maps with <30% of erroneously called
bases is retained while reads having more erroneously called bases
are removed to ensure that there is no ambiguity in the alignment.
This results in approximately 7.15 million reads and 544 million
bases which are used to compare the performance of the considered
basecalling schemes. Average error rates over the lane comprising
100 tiles are compared in Table 1.

Figure 1a compares the per-tile error rates of five basecalling
schemes: Bustard, naiveBayesCall, Rolexa, Ibis and OnlineCall. For
the first 22 tiles, OnlineCall’s tile-dependent parameter estimation
strategy enables significant reduction of error rates as compared to
other schemes. For the remaining tiles, performance of OnlineCall
is very close to that of naiveBayesCall. Figure 1b shows the
dependence of basecalling error rates on cycle number. OnlineCall
and naiveBayesCall have similar performance, and are increasingly
better than Bustard for cycles beyond the 30th one. Figure 1c is a
plot of the discrimination ability of the five basecalling schemes. Up
to an error rate 0.0038, Bustard’s quality scores are the best, after
which OnlineCall has the most reliable quality scores.

4 DISCUSSION

4.1 Implementation and running times
We implemented our codes on an Intel i7 machine @3.07GHz using
only a single core. With our codes written in C, it takes ∼20 s to
read in an intensity file, perform the parameter estimation step on
250 reads, call bases for the whole tile and write it in fastq format.
Processing an entire lane requires about 30 min. naiveBayesCall, on
the other hand, takes 19 h just for a single parameter estimation step
where as its basecalling step takes 6 h. Thus, our implementation
is 50 times faster than naiveBayesCall. Note that the run times of
naiveBayesCall are reported for an implementation on a processor
with eight cores; we expect that a parallel implementation of our
algorithm would reduce the total running time by roughly eight
times. In addition, if the acquired images could be processed in
real-time, our proposed scheme, being sequential in nature, would be
able to almost instantaneously provide very high-quality base calls
to the end user. A comparison of the running times ( for processing

Table 1. A comparison of error rates, information content and running times
(per lane) for different base callers (note that Bustard’s running time is
underestimated since it does not account for the parameter estimation step)

Decoding strategy Error rate IC(in mil) Running times
(min)

Rolexa 0.0171 514.3 720
Bustard 0.0154 512.7 40
Ibis 0.0147 526.9 480
NaiveBayescall 0.0139 528.9 1500
OnlineCall 0.0137 529.3 30

an entire lane) between our OnlineCall and the other basecallers is
shown in Table 1.

4.2 Information content of base calling
A major drawback of the discrimination ability metric is the fact that
it does not take into account absolute values of quality scores—any
scaling of the quality scores leads to the same value of discrimination
ability. Moreover, it is not clear how to use this measure to compare
different base callers which may be calling different numbers of
reads/bases. For a fair comparison between different base calling
strategies, we suggest a new metric referred to as the information
content of a tile/lane, defined as

IC=
R∑

j=1

N∑
i=1

(
q

j
i1{Sj

i is correct}−q
j
i1{Sj

i is incorrect}

)
,

where q
j
i is the quality score associated with the ith call of the jth

read, S
j
i is the corresponding call, N is the number of cycles and

R is the number of reads in the tile/lane. A justification for such
a metric is the following: For a correct call, it is desirable that
the quality score to be as large as possible, and hence we reward
the correct call by the amount of its quality score. On the other
hand, calling a base incorrectly is penalized with its corresponding
quality score. (Not calling a base is not penalized.) Since base
callers are invariably followed by downstream applications like
de novo assemblers, which can exploit redundancy in reads to
correct errors, the base callers purpose should be to provide as much
reliable information as possible to the subsequent stages. Rejecting
somewhat subpar reads will undoubtedly improve error rates, but
will also feed those downstream applications with less information
and therefore in the overall scheme of things, may lead to poor
performance in the particular applications.

Table 1 shows the information content measure of performance of
the different schemes applied to base calling a lane comprising 100
tiles. We see that OnlineCall and naiveBayesCall have comparable
performance with ∼3.25% more information being extracted
compared to Bustard. Figure 1d plots the information content as
a function of cycle number. These figures imply that Bustard
aggressively makes low quality score calls in later cycles, somewhat
compensating (from the information content point of view) for
the poorer error rates it achieves. The information content metric
may reflect performance better than quality scores and error rates,
especially in a situation where different base calling strategies result
in different number of calls.
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Fig. 1. Comparison of the five basecalling strategies under different performance metrics.

Table 2. Results of de novo assembly using different base calling strategies

Coverage
Bustard NaivebayesCall OnlineCall

Max N50 Max N50 Max N50

5X 635 276 580 268 613 285
10X 1502 985 1644 1061 1656 1096
15X 2936 2500 3513 3241 3524 3328
20X 3821 3677 4178 4097 4496 4429

4.3 Impact of improved base calling on DeNovo
assembly

We investigated the impact of improved base calling on de novo
assembly. For this study, we relied on VELVET (Zerbino and Birney,
2008), version 1.2.03. A tile was randomly chosen from the whole
lane and reads at coverage of 5X , 10X , 15X and 20X were randomly
selected for the assembly. A k-mer size of 31 was used for the
analysis. The experiment was repeated 100 times and average values
for the maximum contig length and N50 are reported in Table 2.

N50 is a statistic commonly used to measure the goodness of
an assembler. For this, all contigs are sorted in descending order
according to their lengths, the minimum set of contigs whose lengths
total 50% of the total length of all contigs is determined, and N50
is declared as the length of the shortest contig in this set. As can
be seen, OnlineCall and naiveBayesCall outperform Bustard on all
the different metrics at all coverages except for the 5X coverage
maximum contig length. Moreover, OnlineCall performs better than
naiveBayesCall. This clearly demonstrates the superiority of our
algorithm compared to the competing schemes.

CONCLUSION
In this article, we proposed a novel model and developed a fast
online parameter estimation and base calling scheme for Illumina’s

next-generation sequencers. The error rates and discrimination
ability of the proposed method are better than those of the
existing competing schemes. At the same time, the proposed
method is three orders of magnitude faster than some of the
recently proposed competing schemes, and is practically feasible.
We demonstrated positive impact of the developed method on
downstream applications (in particular, extended lengths of the
contigs in sequence assembly). Improved base calling will enable
performance advancements of genome and transcriptome assembly
as well as genotype/SNP calling. As a part of our future work, we
will investigate the impact of read-by-read parameter estimation and
base calling on the overall platform performance. Studies of intertile
and intratile parameter variations presented in the current article are
a useful starting point. We also intend to investigate the information
content metric in more details and explore fundamental relationships
between quality scores, error rates and read/base rejection.
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