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ABSTRACT

Motivation: For many complex traits, including height, the majority
of variants identified by genome-wide association studies (GWAS)
have small effects, leaving a significant proportion of the heritable
variation unexplained. Although many penalized multiple regression
methodologies have been proposed to increase the power to detect
associations for complex genetic architectures, they generally lack
mechanisms for false-positive control and diagnostics for model
over-fitting. Our methodology is the first penalized multiple regression
approach that explicitly controls Type I error rates and provide model
over-fitting diagnostics through a novel normally distributed statistic
defined for every marker within the GWAS, based on results from a
variational Bayes spike regression algorithm.
Results: We compare the performance of our method to the lasso
and single marker analysis on simulated data and demonstrate that
our approach has superior performance in terms of power and
Type I error control. In addition, using the Women’s Health Initiative
(WHI) SNP Health Association Resource (SHARe) GWAS of African-
Americans, we show that our method has power to detect additional
novel associations with body height. These findings replicate by
reaching a stringent cutoff of marginal association in a larger cohort.
Availability: An R-package, including an implementation of our
variational Bayes spike regression (vBsr) algorithm, is available at
http://kooperberg.fhcrc.org/soft.html.
Contact: blogsdon@fhcrc.org
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Population-based genome-wide association studies have succeeded
in discovering a large number of variants that individually explain a
small percentage of heritability for many complex phenotypes. For
example, when considering height in Caucasian populations, over
180 loci have been identified (Allen et al., 2010; Weedon et al.,
2008), which cumulatively explain 10% of the variation, whereas
the total estimated heritable variation is 80–90% (Hirschhorn et al.,
2001; Sale et al., 2005). This ‘missing’ or ‘dark’ heritability
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(Maher, 2008) has many purported causes, including additional
highly penetrant or large effect rare alleles (Manolio et al., 2009),
epistatic interactions (McCarthy and Hirschhorn, 2008), epigenetic
variation (Eichler et al., 2010) or many uncharacterized loci of
small effect (Yang et al., 2010). In the case of height, most of the
additional loci recently identified are in this latter category, and
only reach genome-wide significance in studies with hundreds of
thousands of subjects (Allen et al., 2010; Weedon et al., 2008; Yang
et al., 2010). In addition, predictive models of height within the
Framingham study (Makowsky et al., 2011) have demonstrated that
a much larger number of loci are likely contributing to variation
in height, though not all of these loci may reach a stringent
genome-wide significance threshold. Yang et al. (2010) also showed
that the estimated heritability ascribed to height can largely be
explained through observed common variants across the genome,
where common variants explained 45% of the variation in height
within an Australian population of European descent. These studies
demonstrate an important challenge that while evidence suggests
many common genetic variants driving phenotypic variation exist,
our current methodologies and studies are under-powered to map
the location of many of these causal variants.

The GWAS approach of testing individual variants for association
with phenotype has succeeded in producing replicable associations
(McCarthy and Hirschhorn, 2008). This success is largely
attributable to both stringent Type I error control after accounting for
a large number of tests and the systematic correction for confounding
factors such as population stratification (Gibson, 2010; Price et al.,
2010). Complex phenotypes, such as body height, with hundreds
of genetic associations could in theory benefit from a modeling
approach that tests for multiple genetic variants simultaneously. One
type of solution to this problem is the use of penalized multiple
regression methods. These methods can have greater power to detect
genetic associations by including all the genetic variants within the
GWAS in the model of association (Carbonetto and Stephens, 2011;
He and Lin, 2011; Hoggart et al., 2008; Li et al., 2011; Logsdon
et al., 2010; Makowsky et al., 2011; Wu et al., 2009). Penalized
regression consists of estimating the additive genotypic effects
β =β1,...,βm, in a multiple regression model yi =

∑m
j xijβj +ei .

In this model, yi is the phenotype, xij is the jth genotype, and
ei is the residual error for the ith individual. Penalization of β is
necessary to prevent model over-fitting when millions of variants
are being tested with only thousands of samples. Although each
penalized regression method proposed for GWAS can have greater
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power than single-marker analysis, none has demonstrated strict
control of FWER, thus precluding their broader application in the
field.

We propose the first penalized regression methodology, based on
the variational Bayes approach of Logsdon et al. (2010), that is
capable of directly controlling the family-wise error rate (FWER)
through a variant level test statistic, zvb, that is approximately
N (

0,1
)

distributed under the null hypothesis. Similar to Logsdon
et al. (2010) and Carbonetto and Stephens (2011) our variational
Bayes spike regression (vBsr) approach treats the genetic effects
β as random, with the prior βj ∼

(
1−pβ

)
I[β =0]+pβ I[β �=0].

This prior can be thought of as a constraint on β similar to
best subset selection, with pβ controlling the sparsity of the
subset solution. We simplify the models proposed by Logsdon
et al. (2010), who propose a three-component mixture, and the
approach of Carbonetto and Stephens (2011), who propose a two-
component mixture, by using a two-component mixture without
the ‘slab’ component (see Supplementary Material for further
details). The variant level statistic zvb is derived based on the
results of fitting the vBsr model. We show that when pβ →0
this statistic is asymptotically N (

0,1
)

under the null hypothesis.
We then propose a diagnostic statistic (log

(
KL

)
) to determine

the size of the vBsr best subset solution (i.e. pβ :pβ >0) such
that this empirical distribution is approximately N (

0,1
)

for the
vast majority of genetic variants within the GWAS. The main
assumptions of this approach are that most genetic variants are
independent of the phenotype of interest, their empirical distribution
under the null hypothesis will be N (

0,1
)
, and this distribution

will be very sensitive to model over-fitting (for example if pβ is
tuned to be too large). Given these conservative assumptions, the
innovation of this test-statistic is therefore 2-fold. Not only can
we demonstrate that it is possible to generate an approximately
N (

0,1
)

distributed test statistic within a multi-locus penalized
regression methodology (and therefore have much tighter control of
the FWER) but also it is possible to use the data to suitably tune the
penalized regression methodology to ensure that this approximation
is valid.

1.1 Variational Bayes approximate inference
While variational Bayes approximations were first proposed as
mean-field theory in theoretical physics (Parisi, 1988), they have
seen a recent resurgence in the field of machine learning (Beal,
2003; Bishop, 2006) by providing tractable approximations to
challenging Bayesian inference problems. Consider an arbitrary
vector of parameters θ1,...,θJ =�, a data matrix W , a likelihood
function defined as

∏N
i p

(
Wi|�

)
and a prior defined as p

(
�

)
. A

typical Bayesian inference problem is to identify the posterior
distribution of the parameters of interest given the data, p

(
�|W )

.
In practice, this is often analytically or computationally intractable
(e.g. exact Markov chain Monte Carlo approaches may not scale
well to large datasets), so instead one can fit a model with an
approximate distribution Q

(
�|W )=∏J

j qj
(
θj|W

)
, by minimizing

the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951)
DKL

(
Q

(
�|X )||p(

�|W ))=∫
q
(
�|W )

log
(
q
(
�|W )

/p
(
�|W ))

d�.
In addition, the variational Bayes approximation generates a lower
bound L(

W
)

of the marginal posterior probability of the data
p
(
W

)
. Further details of variational Bayes methods are provided in

the Supplementary Material.

2 METHODS

2.1 GWAS regression models
We compare the relative performance of vBsr with both the popular lasso
penalized regression method (Tibshirani, 1996) and standard single variant
test statistics for a range of simulated datasets and experimental data.
We chose these methods for comparison to demonstrate that vBsr can control
Type I error as well as single variant analysis, but under certain circumstances
has greater power than either a single variant analysis or the lasso. The lasso
was chosen for comparison since previous work indicates it has greater power
than single variant tests in GWAS (Wu et al., 2009), but in general suffers
from poor Type I error control (Li et al., 2011).

For all the multiple locus methods, we consider the following multiple
regression model (with the single variant methods only considering each
j-th variant separately)

yi =
m∑
j

xijβj +
p∑
k

zikαk +ei,

where yi is the phenotype, xij is the genotype at the j-th locus for m loci,
zik is the k-th unpenalized covariate for p covariates and ei is the residual
error term, which is assumed to be normally distributed with error variance
parameter σ 2

e , for the i-th individual. All columns of the genotype matrix X
are standardized to have mean zero and variance one. The first column of
the covariate matrix Z is always the intercept. For single-marker analyis, we
define χ2

sma as the standard score statistic for single variant association for
this regression model.

2.2 vBsr model
2.2.1 Fitting the vBsr model For the vBsr model, we assign an improper
‘spike’ prior to each penalized regression coefficient βj ∼

(
1−pβ

)
I[β =0]+

pβ I[β �=0]. To estimate the posterior distribution of penalized regression
coefficients, we use a variational Bayes approximation and minimize the
Kullback–Leibler divergence between the factorized approximate posterior
distribution

∏m
j qβj

(
βj|α,σ 2

e ,pβ ,y,X,Z
)

and the full posterior distribution,

p
(
β1,...,βm|α,σ 2

e ,pβ ,y,X,Z
)
. For the vBsr model, the approximate

posterior distribution for an arbitrary βj parameter is
(
1−pj

)
I
[
βj =0

]+
pjN

(
μj,σ

2
j

)
I
[
βj �=0

]
, with pj the approximate posterior probability of βj

not being zero, μj the approximate posterior mean of the non-zero effect and
σ 2

j the approximate posterior variance of the non-zero effect. We estimate

the error variance parameter σ 2
e and unpenalized covariate parameters

α1,...,αp through maximization of the lower bound L(
y|σ 2

e ,α,X,Z
)≤

p
(
y|σ 2

e ,α,X,Z
)
. The full derivations of these updates are provided in the

Supplementary Material.

2.2.2 vBsr Z-statistic, zvb After fitting the model, we define the vBsr Z-
statistic zvb, for the j-th variant, as zj =μj/σj . We show in the Supplementary
Material that when pβ →0, this statistic is equivalent to the standard N (

0,1
)

distributed score statistic (under the null hypothesis) for a single variant test
of association. Alternatively, we want to use this test statistic when there
are multiple variants identified as being associated with phenotype when
pβ >0 and zvb is no longer equivalent to the single variant score statistic. For
notational and computational convenience, we define the tuning parameter
�0 =2log

(
pβ

)−2log
(
1−pβ

)+log
(
2π

)
. Given most genetic variants are

independent of phenotype, we choose �0 to ensure the empirical distribution
of the zvb statistic for the vast majority of genetic variants matches
the N (

0,1
)

distribution as diagnosed based on an estimated Kullback–
Leibler divergence, log

(
KL

)
. See the Supplementary Material for a detailed

description of this log
(
KL

)
diagnostic statistic.

2.2.3 Bayesian model averaging If the genotypes are correlated, we
run the algorithm multiple times with different initial conditions specified
by random permutations of the ordering of the updates of the βj
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parameters. This allows us to identify multiple local maxima of the
lower bound L(

y|σ 2
e ,α,X,Z

)
where each maximum can correspond to

a different sparse subset of genotypes identified as being in the model
(i.e. genotypes with posterior probabilities pj >>0). We then reduce the
model uncertainty associated with identifying many different sparse models
by producing a Bayesian model averaged Z-statistic ẑvb, for the j-th

genotype, ẑj =∑g
s p

(
Ms

)
zsj , with p

(
Ms

)∝exp
{

maxσ 2
e ,α L(

y|σ 2
e ,α,X,Z

)}
,

for g unique local maxima. Further details are presented in the Supplementary
Material.

2.3 Lasso regression
The lasso solution to the regression equation is

(̂
α,β̂

)=argmin
α,β

n∑
i

⎛
⎝yi −

m∑
j

xijβj −
p∑
k

zikαk

⎞
⎠

2

+λ

m∑
j

|βj|,

for some choice of penalty parameter λ. We use the path solution to the lasso
that is solved with the R package glmnet (Friedman et al., 2010), where
the log-likelihood is defined as: �

(
β
)=−1/2

(
n
(
log

(
2πσ 2

)+1
)+2

)
, with

n being the observed sample size, and σ 2 =∑
i

(
yi −∑

j xijβj −∑p
k zikαk

)2
/n

and the corresponding Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC) are lassoaic =−2�

(
β
)+2|β|, lassobic =

−2�
(
β
)+log(n)|β|, with justification of the choice of degrees of freedom

|β| as described in Zou et al. (2007). The default settings are used for glmnet,
with a path length of 1000. In addition, 10-fold cross-validation is also
performed using the glmnet package and the penalty parameter with the
minimum mean-squared error is chosen for analysis of the entire dataset.

2.4 Simulations
We simulated haploid genotype data for 10 000 independent genotypes
sampled from a Bernoulli distribution with frequency parameter varying
between 0.1 and 0.5. Since all simulated genetic architectures were additive,
the use of haploid genotypes as opposed to diploid genotypes did not appear
to have an effect on any of the results we observed. Sample sizes of 500,
1000 and 2000 were simulated. We first performed null simulations to
demonstrate Type I error control by testing null phenotypes (with error
variance parameters chosen as in the non-null simulations). Next, we
performed non-null simulations to test both Type I error control and power, by
simulating genetic architectures with 50 independent loci randomly sampled
from the 10 000 independent genotypes. The genetic effects for this model
were sampled from a standard normal distribution and the heritability was
fixed at 0.5 or 0.9. For each sample size and overall heritability, 1000
replicate phenotype datasets were generated with the same genotypes, while
re-sampling the location and magnitude of the genotypic effects. For each
phenotype, replicate vBsr was only run once since the lower bound tends
to only have one maximum when the genotypes are independent. Finally,
we analyzed simulated phenotype data with genetic architectures generated
using correlated genotypes. For the correlated genotype data, we used the first
10 000 genotypes on Chromosome 1 within the SHARe dataset, where we
randomly split the data into disjoint sets of 500, 1000 and 2000 individuals.
For these correlated genotypes, we found that the lower bound had more
local maxima, so we ran 60 random restarts of the vBsr algorithm for each
replicate analysis. For the simulations with correlated genotypes, the lasso
was excluded because of its poor FWER control (as shown in Table 1).

2.5 Analysis of SHARe data
The WHI SHARe genotype data were collected using the Human SNP Array
6.0 (Affymetrix, Santa Clara, CA, http://www.affymetrix.com) genotype
platform, for 8515 self-identified African-American women who consented
to have their DNA analyzed. Individuals were filtered based on failed
genotyping, call rate <95% or sex/ethnicity discrepancy. Among related
individuals, only the subject with the highest call rate was retained.

Body height was measured at baseline in centimeters, using wall mounted
stadiometers. Height measurements below the 1-st percentile and above the
99-th percentile were truncated as per request of the Fred Hutchinson Cancer
Research Center Institutional Review Board, to maintain anonymity. Further
details of the quality control of the genotype data are presented in Carty et al.
(2011), and study protocols and additional details of the WHI cohort are
presented elsewhere (The Women’s Health Initiative Study Group, 1998).
Some details that are different from the previous analyses of these data
include imputing the sporadic missing data to the empirical mean of the
observed genotypes, and filtering to 5% minor allele frequency. In addition,
as opposed to the analysis published in Carty et al. (2011), the 47 individuals
without height data from the first visit were excluded. These differences were-
implemented to make our analysis more conservative than the analysis of
Carty et al. (2011) to strengthen our confidence in the penalized regression
methodologies. For the analysis of the SHARe height data, we performed a
marginal pre-screening (using the first four principal components and age as
covariates) with a P-value cutoff of 10−3. This left 1579 markers (out of an
original 772 202 which passed the quality control filters and 5% minor allele
frequency filter). We performed a marginal pre-screening to decrease the
analysis time for the vBsr method to hours instead of days on a workstation
with a twelve core Intel Xeon processor. The vBsr algorithm was run with
1000 restarts, to ensure a high-quality model could be identified across the
lower bound surface.

3 RESULTS

3.1 Simulation results
Simulation results for our method in comparison to standard single-
marker analysis as well as three different methods for the choice
of the penalty parameter

(
λ
)

for model selection with the lasso
based on AIC, BIC and 10-fold cross-validation are shown in Table
1. The simulation results depicted in this table were for genetic
markers that were simulated independently of one another. We see
for the null simulations in Table 1 that the Type I error rates can
be explicitly controlled for both single-marker analysis and the zvb
statistic using two conservative strategies for choosing the penalty
parameter (either based on the minimum KL diagnostic statistic, or
the expected KL diagnostic statistic, see Section 2 for details), while
only the choice of model size through BIC for the lasso maintains
the Type I error even marginally. As expected, the choice of penalty
parameter for the lasso based on AIC tends to always choose
a large over-fit model in these null simulations, whereas cross-
validation does a decent job of controlling the model size, but does
not explicitly enforce extreme sparsity, all of which are consistent
with previously observed results on model selection criterion for
AIC, BIC and cross-validation (Chen and Chen, 2008). Importantly,
cross-validation is intended to minimize the prediction error of the
lasso model rather than to select genome-wide significant predictors,
thus it is not surprising that cross-validation selects a larger model.

For the non-null simulations depicted in Table 1, we still see that
the FWER can be controlled for both the zvb and χ2

sma statistics,
but the criteria for choosing the size of the lasso solution perform
even worse than in the null simulations. Of all the methods for
choosing the size of the lasso solution, BIC does the best, but it still
contains an average of 4.91 false positives per replicate analysis (for
h2 =0.5,n=1000). These results suggest that the lasso is sensitive
to weak sampling correlations between true and false positives when
n<<m.

We considered six different strategies for choosing the model
size based on the penalty parameter �0 in the penalized regression
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Fig. 1. The family-wise error rate (FWER) and power for six different strategies for choosing the model size associated with the zvb statistic, and for
single-marker analysis (χ2

sma) for simulations of 104 independent genotypes with differing sample sizes and heritabilities. For the FWER, the red horizontal
line shows a FWER of 0.05 and the blue horizontal lines show the 95% CIs for controlling FWER to 0.05. The six different strategies are: choice based on
minimum of KL diagnostic statistic (za

vb), expectation of the diagnostic statistic (zb
vb), minimum plus one standard error (zc

vb), expectation plus one standard

error (zd
vb), minimum plus two standard errors (ze

vb) and expectation plus two standard errors (zf
vb)

model, with the most conservative strategies being either choosing
the �0 with the smallest KL diagnostic statistic or the �0 with the
largest KL statistic less than its expected value of log

(
KL

)
based

on empirical simulations (za
vb and zb

vb, respectively). The four more
liberal strategies were to consider the largest KL statistics less than
the minimum plus one (zc

vb) or two (ze
vb) standard errors of log

(
KL

)
,

and the same for the expected value of log
(
KL

)
(zd

vb and z
f
vb,

respectively). The left panel of Figure 1 depicts the FWER starting
with single-marker analysis on the far left, then comparing these six
different strategies for choosing model size starting with the most

conservative za
vb and ending with the most liberal z

f
vb, for the six

different non-null simulations. The right panel of Figure 1 depicts
power for this same set of test statistics. The more conservative
strategies show excellent control of FWER, though have a more
modest increase in power over single-marker analysis. Alternatively,
the more liberal strategies show a slight deviation from the exact
control of FWER but have greater power.

Even when the model size is constrained to fix the ratio of the
number of true positives to false positives, the zvb statistic can have
greater power than the lasso, as shown in the precision-recall curves
in Supplementary Figure S1 with the liberal choice of log(KL)

based on the expected value plus two standard errors, z
f
vb. Precision

(true-discovery rate) is defined as tp/tp+fp and recall (power) is
defined as tp/tp+ fn, for the total number of true positives (tp), false
positives (fp) and false negatives (fn) at a given cutoff of the test
statistics for zvb or χ2

sma, or a given penalty parameter λ for the
lasso across 100 replicate simulations. This appears to be especially
true for smaller sample sizes with more signal (i.e. greater total
heritability). Supplementary Figure S1 also demonstrates that both
vBsr and the lasso can outperform single-marker analysis in terms
of power and false-discovery rates. In addition, we explored similar

simulations with non-independent markers, with results described in
the Supplementary Results and shown in Supplementary Figures S2
and S3, where vBsr has superior control of FWER and superior
power compared with single-marker analysis for high heritability
simulations. We also inspected the Quantile–Quantile plots for the
different test statistic strategies, also discussed in the Supplementary
Results and shown in Supplementary Figure S4.

3.2 SHARe analysis results
We investigate the relative performance of the zvb statistic when
compared with single-marker analysis and the lasso in terms of
the percentage of genotypes that replicated (with a single-locus
test) when considering an independent cohort(s). First, none of the
model size selection procedures produced meaningful results above
and beyond marginal screening to Psma <10−3 for the lasso (AIC
chose a model with 1089 out of 1579 pre-screened features, BIC
chose the null model and CV chose a model with 1049 out of 1579
pre-screened features), therefore we did not further investigate that
approach. The percentage of loci identified at an estimated false-
discovery rate of 10% (assuming 106 features) that were replicated
when considering an independent cohort [as described in Carty
et al. (2011) for height] was 50% (5/10) with the vBsr approach,
as opposed to 33.3 (3/9)% for the single-marker analysis approach.
The estimated false-discovery rate was determined as in Benjamini
and Hochberg (1995). Notably, for height there is sufficient signal
such that the zvb statistic identifies an additional two loci beyond
the marginal test that were replicated in Carty et al. (2011) in an
independent cohort. A complete comparison of the results of Carty
et al. (2011) and the zvb statistic is shown in Table 2.

Specifically, both the vBsr approach and the single-marker
analysis approach identify the SNPs rs2011603 on Chromosome 4
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Table 1. The family-wise error rates and expected number of false positives per replicate analysis, FWER (E[FP]), for a simulation of 104 independent
genotypes, with 50 causal variants and 1000 replicates

Simulation zvb
a zvb

b χ2
sma lassoaic lassobic lassocv

h2 =0.0,n=500 0.063 (0.068) 0.062 (0.066) 0.057 (0.059) 1.00 (>500) 1.00 (>500) 0.518 (10.38)
h2 =0.0,n=1000 0.048 (0.050) 0.053 (0.055) 0.044 (0.046) 1.00 (>1000) 0.033 (2.977) 0.498 (8.97)
h2 =0.0,n=2000 0.050 (0.051) 0.056 (0.057) 0.049 (0.050) 1.00 (>2000) 0.023 (0.027) 0.506 (7.98)
h2 =0.5,n=500 0.046 (0.047) 0.042 (0.042) 0.055 (0.056) 1.00 (>500) 0.993 (>500) 1.00 (99.71)
h2 =0.5,n=1000 0.048 (0.048) 0.040 (0.040) 0.048 (0.049) 1.00 (>1000) 0.925 (4.910) 1.00 (155.8)
h2 =0.5,n=2000 0.040 (0.040) 0.052 (0.053) 0.051 (0.052) 1.00 (>2000) 0.982 (7.297) 1.00 (188.5)
h2 =0.9,n=500 0.051 (0.054) 0.048 (0.050) 0.057 (0.059) 1.00 (>500) 1.00 (162.4) 1.00 (221.7)
h2 =0.9,n=1000 0.045 (0.045) 0.051 (0.052) 0.051 (0.051) 1.00 (>1000) 1.00 (18.90) 1.00 (248.1)
h2 =0.9,n=2000 0.054 (0.055) 0.051 (0.051) 0.063 (0.063) 1.00 (>2000) 1.00 (15.41) 1.00 (248.8)

The phenotypes in the h2 =0.0 simulations were generated under the null model. The zvb and χ2
sma statistics are controlled to have a FWER of 0.05, whereas the choice of size of

the lasso solution is determined by either AIC, BIC or 10-fold cross-validation. The FWER is computed over the null markers.
a Results for �0 chosen based on the minimum value of the KL diagnostic statistic along the path.
b Results for �0 chosen based on the expected value of the KL diagnostic statistic (as determined by Monte Carlo simulations) along the path.

Table 2. Summary of vBsr results at F̂DR =0.10 for body height

SNP Gene Chr Positiona Pvb Psma Psma
b Prep

rs2121450 Intergenic 2 23094986 6.22×10−8 1.16×10−5 7.08×10−6 3.57×10−4

rs2011603 LCORL 4 17634582 1.50×10−9 2.99×10−9 6.52×10−9 2.71×10−10

rs10027658 Intergenic 4 85011302 4.30×10−7 2.14×10−6 5.43×10−6 6.72×10−4

rs1359312 COL22A1 8 140076725 7.13×10−7 2.87×10−6 3.92×10−6 1.45×10−1

rs606452 SERPINH1 11 74953826 4.43×10−7 3.15×10−6 3.47×10−6 1.56×10−9

rs7968682 HMGA2 12 64658147 5.66×10−7 1.01×10−5 5.49×10−6 4.22×10−10

rs565042 NGFR 17 44932838 8.72×10−8 1.30×10−7 1.09×10−7 5.22×10−5

rs11867328 PSMD12 17 62776578 3.26×10−8 2.36×10−8 1.76×10−8 2.31×10−6

rs7239949c DYM 18 44872826 9.68×10−8 1.65×10−7 1.62×10−7 8.14×10−7

rs12393627 ARSE X 2895723 1.21×10−8 1.05×10−6 1.45×10−6 4.96×10−12

This table compares the P-values computed using the zvb statistic (Pvb) and single-marker analysis (Psma), for body height using the SHARe GWAS data as described in Section 2,
with the single-marker analysis P-values (Psma

b) and replication P-values (Prep) reported by Carty et al. (2011). Bold rows represent loci that were replicated based on Carty et al.
(2011).
a The chromosome positions are for build 36 of the human genome.
b Analysis of (Carty et al., 2011) excluded missing genotypes and contains a slightly different subset of the WHI SHARe samples, therefore the P-values are not exactly the same
between analyses.
c While this specific locus did not replicate, it was in linkage disequilibrium with a locus (rs1787200) that did replicate with Prep =7.37×10−10. The R2 within the SHARe samples
analyzed in this article between these two loci is 0.28.

(LCORL), rs13292627 on Chromosome X (ARSE) and rs7239949
on Chromosome 18 (DYM ) that all replicated in the meta-analysis
of Carty et al. (2011). (Locus rs7239949 did not replicate itself, but
was in strong linkage disequilibrium with locus rs1787200 that did
replicate.) In addition, the vBsr approach identified two additional
associations with rs606452 on Chromosome 11 (SERPINH1) and
rs7968682 on Chromosome 12 (HMGA2) that also replicated in
Carty et al. (2011), that were not chosen by SMA with an estimated
F̂DR=0.10. Both single-marker analysis and the vBsr approach
identified rs11867328 on Chromosome 17 as being genome-wide
significant, though this result was not replicated in the meta-analysis
of Carty et al. (2011). Similarly, the association at rs565042 in the
nerve growth factor receptor (NGFR) gene did not replicate.

To illustrate the vBsr path solution, we show the estimates of the
expected regression coefficients in Figure 2 along the path of �0.
Around �0 =−13 many genetic markers start to enter the model,
where likely most of these are false positives. Figure 2 also shows
where each choice of model size lies on the �0 path. The most

conservative strategy of za
vb identifies very few features, whereas the

more liberal strategy of zd
vb incorporates a large number of features,

of which many are likely false positives. In this case zb
vb lies on the

cusp before too many false positives enter the model and degrade
the quality of the distributional assumption of the test statistic.

We also show the Q–Q plots for both zvb and our single-marker
analysis in Supplementary Figure S5. For this analysis, we choose
�0 =−13.39 specifically such that the Q–Q plot appeared null in
the 10−3 <Pvb <10−4 region, (this corresponded to the strategy
associated with the zb

vb statistic) where Pvb is the P-value associated

with the zb
vb statistic. The Pvb statistic only becomes inflated when

Pvb <10−4, indicating there exists a value of the model complexity
parameter �0 such that the distributional assumption of the zvb test
statistic is valid for the majority of markers except for the tail cases.
Our simulations supported this observation, as shown in the bottom
left panel of Supplementary Figure S4, where the distribution of
the zb

vb statistic for the null variants almost perfectly matches its
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Fig. 2. The estimated expected regression coefficients as a function of the
penalty parameter �0 for the analysis of height. As the penalty parameter
increases in magnitude, the size of the model increases until it becomes
over-fit. The position in the path for the four different strategies is shown
with the vertical bars, with the chosen strategy (zb

vb) in blue. The features
that were significant for zb

vb at F̂DR=0.10 are also shown in blue along the
entire path

expected distribution. Notably, the Q–Q plots for the zb
vb statistic

look closer to the null assumption than the corresponding SMA Q–
Q plots. We found in other simulations (not shown) that the marginal
pre-screening had very little effect on the FWER control of the vBsr
approach and resulted in a mild loss in power when the phenotype
was very heritable or the sample sizes were very large. Although it
would be possible to run the entire dataset with the vBsr approach,
the identified solution mostly contained variants that were nominally
significant (i.e. Psma <10−5), indicating it would be unlikely that
any additional associations would arise as genome-wide significant.

4 DISCUSSION
The zvb test statistic provides three major practical advantages
over either single-marker analysis or alternative multiple locus
penalized regression approaches in the GWAS setting. First, as
demonstrated through both simulations (as shown in Fig. 1;
Supplementary Figs S1 and S3), and the analysis of the WHI
SHARe GWAS of height (shown in Table 2), this statistic has
greater power to detect additional replicable loci beyond those
that are identifiable by either a standard single-marker analysis or
the lasso, given the phenotype is highly heritable or the sample
size is sufficiently large. In addition, while the increase in power
was modest over the single-marker analyses in terms of replicated
associations, we also see that the two associations vBsr identified
on Chromosome 17 had statistically significant correlations with
the two replicated hits on Chromosome 17 (the R2 between
rs11658329, the replicated association and rs11867328, the vBsr

association was 0.044, P <10−16, and the R2 between rs1549519,
the replicated association and rs565042, the vBsr association, was
0.066, P <10−16). Although the physical distance between these
associations is large, because of the weak statistical dependence
vBsr still identifies a signal.

Second, the main innovation of the zvb statistic is that it is possible
to tune vBsr such that it is approximately N (

0,1
)

distributed
under the null hypothesis. This means that, unlike other penalized
regression methodologies, it is possible to directly control either
the FWER or FDR. Other multiple locus penalized regression
procedures often rely on cross-validation, or information criterion
such as AIC or BIC to choose the appropriate model size and
magnitude of their penalty (Chen and Chen, 2008), which will not
necessarily control the Type I error to an arbitrary level (as shown
in Table 1 for the lasso). We demonstrated the Type I error control
capability of our method through a wide range of simulations, of
either the null model for independent genotypes, the null features in
a non-null model with independent genotypes (as in Table 1), or even
in a non-null model with linkage disequilibrium among genotypes
(as in Supplementary Fig. S2).

Third, while a few authors have proposed a choice of penalty
parameter within penalized regression methods to asymptotically
bound the type I error (Hoggart et al., 2008), our approach is
unique, in that we demonstrate a data-driven choice of the penalty
parameter �0. The penalty parameter �0 (or alternatively pβ ) is
an appropriate tuning parameter because it directly determines the
evidence necessary for a given genetic variant to be included in
the model by controlling the scale of the posterior probability of
inclusion, pj , for all genetic variants. The posterior probability of
inclusion for a given variant is an essential aspect of the vBsr model
since it determines the effect of a given genetic variant on the overall
model through the expectation E

[
βj

]=pjμj , where pj →0 implies
the variant is not in the model and pj →1 implies the variant is
in the model and effectively unpenalized. In general, we always
choose �0 such that the empirical distribution of the zvb statistic
matches very closely to the expected N (

0,1
)

null distribution for
the vast majority of genetic features (i.e. up to the 99-th percentile for
simulations, or between the 99.9-th and 99.99-th percentiles in the
dataanalysis), within the study (as shown in Supplementary Figs S4
and S5). Therefore not only can we control the Type I error to an
arbitrary level, but also, we do not necessarily rely on an asymptotic
argument for the choice of �0 to ensure the validity of our choice of
penalty parameter.

Finally, the vBsr methodology incorporates additional general
features beyond the choice of penalty parameters which are
unique and distinguish it from alternative penalized regression
methodologies (Fan and Li, 2001; Hoggart et al., 2008; Li et al.,
2011; Wu et al., 2009; Zhang, 2010) including other ‘spike-and-slab’
approaches (Yen, 2011). This includes the use of Bayesian model
averaging to regularize over uncertainty in the space of identified
models. In addition, there is theoretical evidence that ‘spike-and-
slab’penalized regression approaches do not suffer from the possible
model selection inconsistency of the lasso, given highly correlated
predictors (Yen, 2011; Zhao and Yu, 2006). We see the practical
consequences of this fact for m>>n datasets where the Type I
error rates for the lasso seem to be driven by random correlations
between causal and null features (as shown in Table 1), even
among independently sampled genetic features. Finally, by defining
a test-statistic which is approximated by a N (

0,1
)

distribution for
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every genotype in the dataset, it is possible to diagnose confounding
population structure as is common with single-marker analysis, but
challenging with other penalized regression methods.

5 CONCLUSION
Our vBsr methodology is a novel approach for identifying additional
replicable loci within genome-wide association studies that directly
addresses the limitations of other penalized multiple regression
methodologies. Specifically, the data-driven choice of penalty to
ensure the validity of the distribution of the test statistic and the use
of a penalty with attractive theoretical model selection properties
make this a robust and practical tool for the GWAS practitioner
interested in identifying additional replicable associations for
complex phenotypes with rich genetic architectures.

ACKNOWLEDGEMENTS
The authors thank Gabriel Hoffman and Pei Wang for input on
this article. The authors also thank the feedback of two anonymous
reviewers, whose suggestions significantly strengthened this article.
This article was prepared in collaboration with investigators of the
WHI and has been reviewed and approved by the Women’s Health
Initiative. WHI investigators are listed at http://www.whiscience.
org/publications/WHI_investigators_shortlist.pdf. The datasets used
for the analyses described in this article were obtained from dbGaP at
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through dbGaP
accession phs000200.v5.p2.

Funding: This work was supported by the National Institutes of
Health [U01 HG005152, R01 HG006164, P01 CA53996, R01
CA90998]. The WHI program is funded by the National Heart, Lung,
and Blood Institute, National Institutes of Health, U.S. Department
of Health and Human Services [N01WH22110, 24152, 32100-2,
32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-
26, 42129-32, 44221]. Funding for WHI SHARe genotyping was
provided by National Heart, Lung, and Blood Institute [N02-HL-
64278].

Conflict of Interest: none declared.

REFERENCES
Allen,H. et al. (2010) Hundreds of variants clustered in genomic loci and biological

pathways affect human height. Nature, 467, 832–838.
Beal,M. (2003) Variational algorithms for approximate Bayesian inference. PhD Thesis,

University of London.
Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J. Roy. Stat. Soc. B. Met., 57, 289–300.

Bishop,C. (2006) Pattern Recognition and Machine Learning. Springer, New York.
Carbonetto,P. and Stephens,M. (2011) Scalable variational inference for bayesian

variable selection in regression, and its accuracy in genetic association studies.
Bayesian Analysis, 6, 1–42.

Carty,C.L. et al. (2011) Genome-wide association study of body height in african-
americans. Hum. Mol. Genet., 21, 711–720.

Chen,J. and Chen,Z. (2008) Extended bayesian information criteria for model selection
with large model spaces. Biometrika, 95, 759–771.

Eichler,E. et al. (2010) Missing heritability and strategies for finding the underlying
causes of complex disease. Nat. Rev. Genet., 11, 446–450.

Fan,J. and Li,R. (2001) Variable selection via nonconcave penalized likelihood and its
oracle properties. J. Am. Stat. Assoc., 96, 1348–1360.

Friedman,R. et al. (2010) glmnet: Lasso and elastic-net regularized generalized linear
models. J. Stat. Softw., 33, 1–22.

Gibson,G. (2010) Hints of hidden heritability in gwas. Nat. Genet., 42, 558–560.
He,Q. and Lin,D. (2011) A variable selection method for genome-wide association

studies. Bioinformatics, 27, 1–8.
Hirschhorn,J. et al. (2001) Genomewide linkage analysis of stature in multiple

populations reveals several regions with evidence of linkage to adult height. Am. J.
Hum. Genet., 69, 106–116.

Hoggart,C. et al. (2008) Simultaneous analysis of all snps in genome-wide and re-
sequencing association studies. PLoS Genet., 4, e1000130.

Kullback,S. and Leibler,R. (1951) On information and sufficiency. Ann. Math. Stat., 22,
79–86.

Li,J. et al. (2011) The bayesian lasso for genome-wide association studies.
Bioinformatics, 27, 516–523.

Logsdon,B. et al. (2010) A variational bayes algorithm for fast and accurate multiple
locus genome-wide association analysis. BMC Bioinformatics, 11, 58.

Maher,B. (2008) Personal genomes: the case of the missing heritability. Nature, 456,
18–21.

Makowsky,R. et al. (2011) Beyond missing heritability: prediction of complex traits.
PLoS Genet., 7, e1002051.

Manolio,T. et al. (2009) Finding the missing heritability of complex diseases. Nature,
461, 747–753.

McCarthy,M. and Hirschhorn,J. (2008) Genome-wide association studies: potential next
steps on a genetic journey. Hum. Mol. Genet., 17, R156–R165.

Parisi,G. (1988) Statistical Field Theory. Addison Wesley Publishing Company.
Price,A. et al. (2010) New approaches to population stratification in genome-wide

association studies. Nat. Rev. Genet., 11, 459–463.
Sale,M. et al. (2005) Loci contributing to adult height and body mass index in african

american families ascertained for type 2 diabetes. Ann. Hum. Genet., 69, 517–527.
Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.

B Met., 267–288.
Weedon,M. et al. (2008) Genome-wide association analysis identifies 20 loci that

influence adult height. Nat. Genet., 40, 575–583.
The Women’s Health Initiative Study Group (1998) Design of the women’s health

initiative clinial trial and observational study. Control Clin. Trials, 19, 61–109.
Wu,T. et al. (2009) Genome-wide association analysis by lasso penalized logistic

regression. Bioinformatics, 25, 714–721.
Yang,J. et al. (2010) Common snps explain a large proportion of the heritability for

human height. Nat. Genet., 42, 565–569.
Yen,T.J. (2011) A majorization-minimization approach to variable selection using spike

and slab priors. Ann. Stat., 39, 1748–1775.
Zhang,C. (2010) Nearly unbiased variable selection under minimax concave penalty.

Ann. Stat., 38, 894–942.
Zhao,P. and Yu,B. (2006) On model selection consistency of lasso. J. Mach. Learn Res.,

7, 2541–2563.
Zou,H. et al. (2007) On the degrees of freedom of the lasso. Ann. Stat., 35, 2173–2192.

1744


	A novel variational Bayes multiple locus Z-statistic for genome-wide association studies with Bayesian model averaging
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion


