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Abstract

It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other
nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and
generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here
we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We
then examined oxygen consumption and acidification rates using recently available technology in the form of an
extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations
from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP
synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low
serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such
effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not
basal or ATP related oxygen consumption. Labeled glucose oxidation to CO2 increased, but only marginally after high
glucose exposure while oleate oxidation to CO2 decreased. Overnight exposure to linolenic acid, but not oleic or linoleic
acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an
increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells,
exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet
mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not
support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in
endothelial cells or platelets.
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Introduction

Some have suggested that high circulating glucose concentra-

tions delivered to cells that are independent of insulin for glucose

entry leads to increased substrate delivery to mitochondria.

Substrate oxidation would then increase membrane potential

leading to enhanced mitochondrial superoxide production, thus,

contributing to the long term complications of diabetes. Indeed,

some studies of non-insulin-dependent cultured cells or ex vivo

blood platelets reported increased reactive oxygen species (ROS)

production as a result of exposure to high glucose in the media

[1,2,3,4]. In contrast, other reports show no such change in ROS

[5,6]. Moreover, there are reports of increased ROS production

on exposure to low glucose [7,8].

Notwithstanding the controversy regarding ROS, the under-

lying supposition that exposure of non-insulin dependent cells to

glucose actually alters mitochondrial substrate oxidation has not

been established. This issue cannot be addressed by studying

mitochondria isolated after exposure to varied nutrient compo-

sition since the organelles are removed to a completely different

and artificial extra mitochondrial environment. However, recent

advances in technology have improved our capacity to assess

oxidative metabolism in intact cells [9,10]. Here we use this

methodology to directly assess the effect of acute and chronic

(overnight) glucose and fatty acid exposure on mitochondrial

oxygen consumption by cultured vascular endothelial cells. We

also examined the effect of acute glucose on mitochondrial

oxidation in freshly isolated platelets obtained from non-diabetic

and hyperglycemic, type 1 diabetic human subjects. Both

endothelial cells and platelets are independent of insulin for

glucose uptake and, therefore, potentially vulnerable to excess

substrate delivery when exposed to high medium nutrient

composition. Both cell/particle types are important in mediating

the effects of glycemia on vascular function [11,12] and

abnormal endothelial function is a well-established risk factor

for the macrovascular complications of diabetes [13].

Here, we show that endothelial cells and platelets remain

robust in regard to mitochondrial oxidative metabolism, in spite

of differences in glucose and fatty acid exposure. We also identify

some contrasts between the bioenergetic properties of endothelial

cells and platelets and between fatty acids of differing saturation.
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Methods

Human Subjects Declaration
These studies were approved by the University of Iowa

Institutional Review Board (IRB). All participants signed an IRB

approved written informed consent and all studies were conducted

according to the principles expressed in the Declaration of

Helsinki.

Reagents and Supplies
Reagents, kits, and supplies were obtained as specified or

purchased from standard sources.

Cell Culture
BAE cells were grown in medium M199 (Invitrogen) supple-

mented with MEM non-essential amino acids (Invitrogen), MEM

vitamins (Sigma), 2 mM L-glutamine (Invitrogen), 1 mM sodium

pyruvate (Invitrogen), and 17% fetal bovine serum (HyClone,

Logan, UT, USA) as described [14]. Cells were cultured in 75-cm2

flasks and were split at a 1:10 ratio prior to reaching confluence.

Cells were used between passages 5 and 10. For extracellular flux

experiments (see below) split cells were seeded in 24-well

respirometry plates (Seahorse Bioscience, North Billerica, MA,

USA).

Human Studies
Blood samples for platelets were obtained at 10–12 AM from

five male and five female subjects with type 1 diabetes (age 4364

years, BMI 27.662.2, HbA1c 7.860.4 corresponding average

glucose 9.860.6 mM, and plasma glucose at blood draw

10.361.4 mM) diagnosed by an Endocrinologist and followed in

our University Diabetes Out-Patient Clinic. Samples were also

obtained from five female non-diabetic, healthy individuals (age

4569 years, BMI 26.961.5, plasma glucose at blood draw

4.060.5 mM).

Subjects were included based on: 1) Age 18–70; 2) (for diabetic

subjects) Type 1 diabetes based on typical history as assessed by an

Endocrinologist and history of diabetic ketoacidosis or continuing

need for insulin therapy since diagnosis or C-peptide less than

0.4 ng/100 ml in spite of glucose .6.7 mM. Subjects were

excluded based on: 1) History of blood or platelet disorder; 2)

Mitochondrial disorder; 3) Any other acute or chronic disease felt

to interfere with data interpretation.

Platelet Isolation
Platelet rich plasma (PRP) was obtained from 60 ml EDTA

treated human blood using standard methods [15]. PRP was

prepared by centrifugation at 1206g for 10 min at room

temperature. PRP was then centrifuged at 7506g for 10 min to

separate platelets from plasma. Platelets were washed at 7506g in

the presence of 0.12 M NaCl, 3 mM Na EDTA, 5.5 mM D-

glucose, and 0.03 M Tris HCl, pH 7.4, and counts were obtained

using a Z1 Coulter Particle Counter (Beckman Coulter). This

procedure generated 108 to 109 platelets per ml in a 5 ml volume.

Respirometry (Extracellular Flux Analysis)
Oxygen consumption rate (OCR) and extracellular acidification

rate (ECAR) were measured using an intact cell respirometer

designed for adherent cells (XF-24 Extracellular Flux Analyzer,

Seahorse Bioscience) [10]. BAE cells were seeded at a density of

5,000–10,000 cells per well in 24 well plates designed for

respirometer analyses. Cells reached confluency after two days

and were subjected to respirometry 3 to 4 days after seeding.

Freshly isolated platelets were added to 24-well Seahorse plates

and spun at 1000 g for 15 min immediately before respirometry

assay.

OCR and ECAR were determined in assay medium consisting

of medium M199 lacking serum, bicarbonate, and pyruvate

(Invitrogen) over time periods up to 95 minutes with assessments at

8–10 minute intervals. Where indicated under ‘‘results’’, we

carried out certain experiments wherein the Seahorse assay

medium was supplemented with 25 mM HEPES, pH 7.4. Prior

to analysis, cells within individual wells were exposed for 18 h to

glucose or fatty acids as described in the legends and/or text.

During respirometry, wells were sequentially injected (as exempli-

fied in figure 1) at the times indicated in the figures with:

oligomycin (2 mM) to block ATP synthase to assess respiration

required for ATP turnover (OCRATP); carbonyl cyanide p-

[trifluoromethoxy]-phenyl-hydrazone (FCCP, 2 mM), a proton

ionophore, to induce chemical uncoupling and maximal respira-

tion (OCRMAX); or antimycin-A (0.5 mM) plus rotenone (2 mM) to

completely inhibit electron transport and measure non-mitochon-

drial respiration. The FCCP concentration used in these studies

was determined by titration with differing amounts of the

uncoupler using the least amount required for maximal uncou-

pling. The above concentration of oligomycin, FCCP, antimycin,

and rotenone apply to all figures in this manuscript.

All values for OCR and ECAR in BAE cells were normalized to

DNA content of the individual wells. OCR and ECAR values for

platelets were expressed per well (206106 platelets/well). Calcu-

lations of respiratory parameters were as described [16]. To

calculate these parameters, we considered basal OCR as the last

value (for example, see figure 1) prior to injection of the first

additive (oligomycin). Likewise, we considered OCR on oligomy-

cin as the last value prior to FCCP injection, OCR on FCCP as

the last value prior to antimycin plus rotenone injection, and non-

mitochondrial OCR as the last value recorded after antimycin plus

rotenone.

As described [16], we then calculated the following parameters.

OCRBASAL was determined as OCR in the basal state minus non-

mitochondrial OCR. OCRATP was determined as OCR in the

basal state minus OCR on oligomycin. OCRLEAK (in other words

rate of oxygen consumption accountable by the proton leak) was

calculated as OCR on oligomycin minus non-mitochondrial

OCR. OCRMAX was calculated as OCR on FCCP minus non-

mitochondrial OCR. As described [16], ‘‘state apparent’’ was

calculated as 4-[(OCRATP)/(OCR on FCCP - OCR on oligomy-

cin)]. State apparent provides an index of the respiratory state

(extent of state 3 versus state 4 respiration as commonly defined for

isolated mitochondria). ECAR (mpH/min) was quantified as the

recorded acidification rates in the basal state and after injection of

additives as described for the OCR measurements. ECAR is

expressed as milli pH (mpH) units representing the change in pH

per min where mpH = 1/1000th pH unit.

Quantification of DNA
After respirometry, well contents were extracted in 0.4% SDS

and diluted to 0.01%. DNA content of each well was determined

after respirometry using a Sigma DNA Quantitation Kit (DNA-

QF) using calf thymus DNA standards prepared in 0.01% SDS.

Glucose and Oleate Oxidation to CO2

Cells were grown in culture medium and exposed to 5.5 or

25 mM glucose for 18 h. Cells were then washed and pre-

incubated for 20 min in culture medium with 20 mM oleate and

5.5 or 25 mM glucose with 1.5% fatty acid-free BSA, and 1 mM

carnitine in 12-well plates (Costar, Corning Inc., Acton, MA)

Glucose and Bioenergetics
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containing 1.0 ml total volume per well. In each experiment,

glucose and oleate oxidation were assessed in parallel studies under

the same conditions except for the addition of either [1–14C]oleic

acid or D-[14C(U)]glucose. Cells were incubated for 120 min

before trapping of CO2 released by perchloric acid as we

previously described [17]. Final specific activities in the incubation

media were 20.0 mCi/mmol for oleate and 0.36 mCi/mmol for

glucose at 5.5 mM and 0.080 mCi/mmol for glucose at 25 mM.

Glucose and Glutamine Oxidation to CO2

Cells were grown in culture medium and exposed to 5.5 or

25 mM glucose for 18 h plus supplemental glutamine to a final

concentration of 2.7 mM. Cells were then washed and pre-

incubated for 20 min in culture medium with 2.7 mM glutamine

and 5.5 or 25 mM glucose with 1.5% fatty acid-free BSA, and

1 mM L-carnitine in 12-well plates and trapped CO2 was

determined as above. Glucose and glutamine oxidation were

assessed in parallel studies under the same conditions except for

the addition of either [14C(U)]-glutamine or D-[14C(U)]glucose.

Final specific activities in the incubation media were 0.19 mCi/

mmol for glutamine and 0.36 mCi/mmol for glucose at 5.5 mM

and 0.080 mCi/mmol for glucose at 25 mM.

ROS Production
Oxidation of mitochondrial-targeted hydroethidine (MitoSOX,

Invitrogen) was assessed by high performance liquid chromatog-

raphy (HPLC) following a modification of reported methodology

[18,19]. Cells were washed twice with 2 mL of Dulbecco’s

Phosphate Buffered Saline, containing calcium chloride and

magnesium chloride (DPBS) followed by addition of 0.9 ml

Figure 1. Oxygen consumption (OCR) and simultaneous rates of extracellular acidification (ECAR) by BAE cells exposed to differing
glucose concentrations. Cells were exposed to 5.5 (closed circles) or 25 (open circles) mM glucose for 18 h prior to the experimental run with the
same concentrations continued during the run. A) Representative experiment depicting OCR determined before (beginning time 0) and after
sequential injections of the indicated compounds; oligomycin (2 mM), FCCP (2 mM), or antimycin A (Ant A, 0.5 mM) plus rotenone (Rot, 2 mM). B)
Simultaneous ECAR measurements. Data show the mean 6 SEM of 5 values determined for each data point for each glucose condition. Quantitative
results of this and other experiments are listed in tables 1 and 2.
doi:10.1371/journal.pone.0039430.g001

Table 1. Effect of chronic exposure to glucose on oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) in
BAE cells exposed to concentrations ranging from 5.5 to 25 mM for 18 h with these concentrations maintained during incubation
in the extracellular flux analyzer.

D-glucose (mM) 5.5 11 18 25 5.5+19 mM L-glucose

OCR (pmol/min/mg DNA)

OCRBASAL 7967 8869 89611 73614 84615

OCRATP 6865 7565 7469 61611 72612

OCRMAX 127619 144623 152632 113623 132623

Non-mito 2563 2964 2764 2464 2865

OCRLEAK 1164 1364 1663 1263 1264

ECAR (mpH/min/mg DNA)

Basal 11.061.8 10.061.6 12.961.8 11.461.6 10.761.6

Oligomycin 24.163.6 24.163.6 30.164.5 * 29.464.4 * 25.263.9

FCCP 29.163.9 27.963.4 32.964.2 31.663.6 28.664.7

Non-mito 30.864.4 31.564.5 35.265.6 33.964.9 29.565.0

*p,0.05 versus 5.5 mM glucose condition by repeated measures one-way ANOVA, n = 6 experiments with each individual value representing a mean of 4–5 wells within
a single experimental run.
doi:10.1371/journal.pone.0039430.t001
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Earle’s Balanced Salt Solution (EBSS) containing glucose concen-

trations equivalent to prior exposures. Cells were then loaded with

MitoSOX (10 mM), incubated for 20 min at 37uC, washed with

DPBS, and further incubated for 60 min at 37uC with the same

glucose concentrations with or without added antimycin A.

Incubations were then stopped by addition of ice-cold DPBS after

which cells were scrapped and suspended in small Eppendorf

tubes, pelleted at 5 min x 1000 g and stored at 280uC.

Subsequently, cells were lysed in 0.1% Triton X-100. Protein

was determined on the lysates followed by extraction in methanol

containing 0.2 M perchloric acid followed by extraction with 1 M

potassium phosphate buffer, pH 2.8. HPLC was performed using

a Supelco Ascentis C-18, 5 uM pore size, 25 cm64.6 mM column

at a flow rate of 1 ml/min with an injection volume of 50 ml. A

mobile gradient consisted of 0.1% trifluoroacetic acid (TFA) in

water (phase A) and 0.1% TFA in acetonitrile (phase B). Initial

flow consisted of 20%B/80%A. Separation of peaks was achieved

by a linear gradient of mobile phase B from 45 to 50% from time

10 to 20 minutes. Fluorescent detection was accomplished using

excitation set at 510 nm and emission at 595 nm. UV detection

was performed at 290 nm.

Fluorescent detection: H2O2 production was also measured

using the fluorescent probes 10-acetyl-3,7-dihydroxyphenoxazine

(DHPA or Amplex Red, Invitrogen) and 2’,7’-dichlorodihydro-

fluorescein diacetate (H2DCFDA, Invitrogen) according to man-

ufacturer recommendations. BAE cells were exposed to variant

nutrient composition for 18 h as in the respirometry experiments.

H2O2 production was measured with a microplate fluorescence

reader using wavelength settings of 485 nm excitation and 520 nm

emission for H2DCFDA or 544 nM excitation and 590 nm

emission for DHPA. Assays were performed in medium M199

without serum, sodium bicarbonate, or pyruvate and containing

5 mM or 25 mM glucose.

Oxidative damage was also assessed as aconitase inactivation in

isolated BAE mitochondria. Mitochondria of good quality and

purity were isolated from BAE cells as we previously described

[20]. Aconitase activity was measured according to a standard

assay as NADPH at 340 nm [21]. Mitochondria were incubated as

described [21] in assay buffer containing 2 units of isocitrate

dehydrogenase, and 5 mM citrate, pH 7.2.

Statistics
Data were analyzed by two-tailed, unpaired t-test or ANOVA

as indicated in the figure legends, tables, or text.

Results

Acute and Chronic Glucose Exposure does not Increase
Mitochondrial Oxygen Consumption by BAE Cells

Figure 1A depicts a representative experiment demonstrating

the effect of overnight exposure to 5.5 or 25 mM glucose on basal

OCR and on OCR as affected by sequential additions of

oligomycin, FCCP, and rotenone plus antimycin A. The overnight

glucose concentrations were maintained during the experimental

run. Glucose exposure had no significant effects on OCR under

any of the conditions examined. Table 1 lists the results of multiple

repetitions of the same experiment confirming the lack of effect of

perturbed glucose concentrations.

Similar data were obtained when cells were maintained at

5.5 mM glucose overnight followed by acute exposure to variant

glucose added at the onset of each experimental run (table 2).

Effect of Acute and Chronic Glucose Exposure on
Extracellular Acidification Rates in BAE Cells

As shown in table 2, acute exposure to high glucose had no

significant effect on ECAR. However, as seen in figure 1B and

table 1, chronic exposure to 18 mM or 25 mM glucose compared

to 5.5 mM glucose did increase ECAR after oligomycin injection.

There was also a trend towards glucose-induced increased ECAR

during basal respiration, after FCCP, and when mitochondrial

electron transport was blocked by antimycin plus rotenone

(table 1).

Effect of Glucose Exposure on OCR and ECAR under
Variant Cell Nutrient and Growth Conditions

We also examined mitochondrial function in sub-confluent cells

(figure S1) and in cells exposed to 2% serum (figure S2). However,

variant glucose exposure did not alter functional parameters under

these conditions. Interestingly FCCP, at the concentration

optimized for use in confluent cells, had much less effect in sub-

Table 2. Effect of acute exposure to glucose on oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) in BAE
cells exposed to concentrations of 5.5 mM to 25 mM for 20 minutes with these concentrations maintained during incubation in
the extracellular flux analyzer, n = 6 experiments with each individual value representing a mean of 4–5 wells within a single
experimental run.

D- glucose (mM) 5.5 11 18 25 5.5+19 mM L-glucose

OCR (pmol/min/mg DNA)

OCRBASAL 90615 90613 80611 80610 81610

OCRATP 63612 72610 6268 6267 6367

OCRMAX 147631 144632 140633 127632 142633

Non-mito 22611 2569 28610 29610 3069

OCRLEAK 2767 1964 1864 1964 1863

ECAR (mpH/min/mg DNA)

Basal 14.564.5 17.165.2 16.364.2 16.764.3 15.864.5

Oligomycin 26.268.1 27.568.6 28.067.3 28.968.0 24.466.7

FCCP 28.268.6 27.569.5 25.466.5 26.968.1 24.466.6

Non-mito 29.269.1 28.469.1 27.867.3 27.668.8 24.366.8

No significant differences were observed.
doi:10.1371/journal.pone.0039430.t002
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confluent cells. Thus respiration was not maximized and we do not

show data for those assessments. However, glucose concentration

had no effect on OCR in sub-confluent cells after FCCP addition.

Glucose also had no effect on OCR in confluent cells after FCCP

administration when FCCP was injected with no prior oligomycin

injection (figure S3).

Pyruvate, which is not generally included in Seahorse incuba-

tion medium, could impact the effects of variant glucose exposure.

However, when supplemental pyruvate was included, we again

saw no differences in the effects of added glucose on OCR;

although pyruvate per se did increase ECAR (figure S4).

Power to Detect Negative Effects on Glucose on OCR
Figure 2A provides a visual representation of power to detect a

difference in our major outcome variable, the effect of overnight

glucose exposure on basal OCR. This measure was repeated in 68

individual wells for glucose at 5.5, in 68 wells for glucose at

25 mM, and with only slightly less repetitions for glucose at 11 and

18 mM. These numbers include measurements made in both

buffered (HEPES and phosphate) and weakly buffered (buffered

with phosphate alone - as used to measure simultaneous ECAR

and OCR) medium, since there was no difference according to

buffering capacity (figure 2B). Differences between glucose at

5.5 mM in figure 2A were not significant in comparison to any of

the elevated glucose groups whether analyzed by unpaired t-tests

or ANOVA with multiple comparisons to control. These numbers

provide a power of 95% to detect a 20% difference in means for

5.5 versus 25 mM by unpaired t-test at the observed standard

deviation (32% of the mean) and a 78% power to detect a

15% difference in means. Moreover, since we also compare 18

and 11 mM glucose to 5.5 mM our power can be viewed as

considerably greater to at least detect an effect of some degree of

glucose elevation. Finally, we point out that similar power

consideration apply beyond basal OCR, since we carried out the

same number of measurements for data obtained on sequential

addition of oligomycin, FCCP, and antimycin plus rotenone.

Elevated Medium Glucose does not Alter Cell DNA and
Mitochondrial Protein Content

Figure 2C shows that 18 h exposure to differing glucose

concentrations had no effect on DNA content per well used in

the Seahorse assays. In smaller numbers of samples, protein

content was likewise unaffected and DNA to protein ratios

remained constant in spite of varying antecedent glucose (figure

Figure 2. Effect of glucose on oxygen consumption rates (OCR) in BAE cells during basal incubation. Cells were grown to confluency
and exposed overnight (18 h) to the glucose concentrations indicated. Respirometer experiments were carried out in weakly buffered (phosphate)
medium as recommended by the manufacturer (Seahorse, Inc) for simultaneous detection of OCR and ECAR or in the same medium buffered with
25 mM HEPES. A) Basal OCR, all data (scatterplot with median value); B) Basal OCR (mean 6 SE) in cells incubated in buffered or weakly buffered
medium; C) DNA content per well (mean 6 SE) in cells depicted in panel B. Glucose had no significant effects on OCR or DNA whether analyzed by
ANOVA or multiple t-tests. Incubation in buffered compared to weakly buffered medium had no significant effects at any glucose concentration.
Numbers in parentheses indicate number of repetitions.
doi:10.1371/journal.pone.0039430.g002
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S5). As indices of mitochondrial numbers, we assessed the cellular

content of mitochondrial specific proteins normalized to total cell

DNA and protein. The content of porin and complex IV protein

were unaffected by medium glucose (figure S5); this figure also

demonstrating that the outer membrane protein, porin, is, in fact,

specifically expressed by mitochondria in BAE cells.

Effect of Acute Glucose Exposure on OCR and ECAR after
Antecedent (Overnight) Glucose Deprivation

Figure 3A shows that antecedent 18 h exposure to 0.5 mM

glucose or to 2.5 mM glucose, compared to cells exposed to

antecedent 5.5 mM glucose, did not alter basal OCR upon

subsequent acute administration of 5.5 mM glucose. Likewise

OCR during oligomycin and non-mitochondrial OCR were

unaffected. However, maximal OCR (during FCCP) was reduced

in cells exposed to antecedent low (0.5 mM) glucose. There was a

trend towards the same effect of antecedent low glucose on

maximal OCR when subsequent acute glucose exposure was set at

25 mM rather than 5.5 mM (figure 3B). Quantitative data are

shown in figure 3C. ECAR was not significantly altered by these

manipulations (data not shown).

Effect of Fatty Acid Administration on OCR and ECAR
BAE cells were exposed to oleate at concentrations of 50 or

150 mM with 1.5% fatty acid-free BSA and 1 mM L-carnitine

administered in both acute or overnight fashion (n = 12 to 14 wells

per condition). These treatments had no significant effects on

OCR or ECAR (data not shown). In additional experiments, cells

were exposed for 18 h to 18-carbon fatty acids (150 mM) of

differing saturation including oleate (18:1, n-9), stearate (18:0),

linoleate, (18:2, n-6), or a-linolenate (18:3, n-3). These treatments

did not alter OCR (figure 4A). However, ECAR was enhanced

depending on the extent of unsaturation (figures 4B and 4C). We

did note that stearate appeared partially toxic to cells which

appeared partly fragmented. However, no such alterations were

present after exposure to the other fatty acids. Linolenate

enhanced both ECAR and OCR (figure 4D) and significantly

increased the ratio of ECAR to OCR (figure 4E) while oleate

decreased the ECAR to OCR ratio (figure 4E).

Figure 3. Effect of antecedent low glucose on mitochondrial bioenergetics in BAE cells. A) Mitochondrial function was assessed after 18 h
exposure to 5.5, 2.5, or 0.5 mM glucose followed by acute exposure to 5.5 mM glucose. Data are expressed as percent basal (relative to the last basal
data point just prior to addition of oligomycin) and represent mean 6 SEM values determined in 12–16 wells. B) Mitochondrial function assessed after
18 h exposure to 5.5, 2.5, or 0.5 mM glucose followed by acute exposure to 25 mM glucose. Data points and injected compounds are as in panel A. C)
Quantitative data comparing OCR on FCCP as a function of basal OCR in cells previously and then acutely exposed to the glucose concentrations
indicated. Values represent mean 6 SEM values over 9–12 wells, * p,0.05 ** p,0.01 compared to antecedent 5.5, acute 5.5.
doi:10.1371/journal.pone.0039430.g003
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Nutrient Oxidation to CO2 in BAE Cells Exposed to
Elevated Medium Glucose

As an additional measure of nutrient oxidation in BAE cells, we

measured CO2 production from labeled glucose, glutamine, and

oleate in BAE cells exposed overnight to 5.5 or 25 mM glucose. In

the presence of 20 mM oleate, treatment with 25 mM glucose

compared to 5.5 mM glucose mildly, but significantly, increased

glucose oxidation to CO2 by 7.4% (p,0.05, n = 12) and reduced

oleate oxidation to CO2 by 10.3% (p,0.05, n = 12). In the

presence of 2.7 mM glutamine (no added oleate), treatment with

25 mM glucose compared to 5.5 mM glucose did not alter glucose

or glutamine oxidation to CO2 (n = 12).

ROS Production from BAE Cells Exposed to High Medium
Nutrient Composition

We were unable to detect an increase in ROS production as

oxidation of mitochondrial-targeted hydroethidine in cells exposed

to 5.5 versus 25 mM glucose (figure S6). Addition of antimycin A

as a positive control, well known to increase mitochondrial

superoxide production [22], did increase HPLC peak intensity.

We were also unable to detect an increase in H2O2 production

from BAE cells exposed to high glucose (15, 20, or 25 mM)

compared to 5.5 mM glucose for 24, 48, or 72. This was the case

whether we used Amplex red or H2DCFDA as fluorescent probes

(data not shown). We did observe a significant decrease in

aconitase activity in cells exposed to high fat in the form of

Intralipid for 24 h, but only a non-significant decrease in cells

exposed to high glucose (figure 5). Intralipid is a fat emulsion

designed for intravenous human administration as a nutrient

supplement. It is largely made from soy bean oil and consists of

linoleic (44–62%), oleic (19–30%), palmitic (7–14%), linolenic (4–

11%) and stearic (1.4–5.5%) acids.

Effect of Acute and Chronic Glycemia on Human Platelet
Bioenergetics

Platelets were observed to adhere to the Seahorse well surface

and remain in place throughout the assay procedure (figure S7).

Incubating human platelets in vitro at 22 mM glucose, compared to

5.5 mM glucose, did not significantly alter OCRBASAL, OCRATP,

Figure 4. OCR and ECAR after overnight exposure to 18-carbon fatty acids of differing saturation. A) Oleate, stearate, linoleate, or
linolenate did not alter OCR compared to control cells unexposed to fatty acid. Data represent mean 6 SEM values at the time points indicated
(n = 12–14 for each data point). B) ECAR determined simultaneously with OCR in panel A. Linolenate, the most highly unsaturated species, enhanced
ECAR. C) Quantitative data (mean 6 SEM ) comparing fatty acid effects on ECAR during the conditions indicated (Ant + Rot = antimycin A plus
rotenone). D) OCR versus ECAR (mean 6 SEM for both parameters) E) ECAR to OCR ratios according to fatty acid treatment (mean 6 SEM). * p,0.05
or ** p,0.01 compared to control.
doi:10.1371/journal.pone.0039430.g004
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OCRMAX, or non-mitochondrial OCR whether the platelets

derived from diabetic or control subjects (figure 6). Also,

incubating platelets with 5.5 mM D-glucose plus 16.5 mM L-

glucose (osmotic control) did not alter the above parameters in

comparison to 5.5 or 22 mM D-glucose (data not shown).

Moreover, these parameters did not differ between platelets

obtained from subjects with type 1 diabetes and control subjects

(figure 6). Likewise ECAR was not affected by these conditions

(figure 6). Among the diabetic subjects, the OCR and ECAR

parameters did not differ by gender (data not shown).

Platelet Bioenergetics Compared to BAE Cells
Platelet mitochondria demonstrated robust mitochondrial oxi-

dative metabolism in the basal state which was 4–5 fold greater

than non-mitochondrial oxygen consumption (figure 7). Figure 7

contrasts OCR and ECAR between platelets and BAE cells. Based

on the data in figure 7 (combining the entire group of diabetic and

non-diabetic subjects), we calculated that OCRBASAL was 9365%

of OCRMAX in platelets, whereas OCRBASAL in BAE cells was

6564% of OCRMAX (p,0.001 by unpaired t-test, n = 15 platelet

and 14 BAE preparations). OCRATP accounted for 6664% of

maximal mitochondrial respiration in platelets compared to

5164% in BAE cells (p,0.05). Calculated state apparent was

3.3860.09 for platelet mitochondria compared to 3.6960.06 for

BAE cells (p,0.01). Absolute numbers for extent of oxygen

consumption or acidification rate cannot be directly compared

between endothelial cells and platelets since normalization was

carried out differently (BAE cells to DNA content, platelet rates to

number of platelets). However, extracellular acidification rates

relative to OCR were clearly greater in platelets compared to BAE

cells (figure 7).

Discussion

Hyperglycemia is critical to the development of the microvas-

cular complications of type 1 and type 2 diabetes and, at least in

subgroups, to macrovascular complications as well [23,24].

However, the mechanisms responsible are still debated. A decade

ago it was posited [3,25] that non-insulin-sensitive cells exposed to

high circulating glucose are driven toward increased mitochon-

drial substrate oxidation and increased potential. This would,

consequently, lead to greater mitochondrial ROS production and,

ultimately, the complication of diabetes. Although those studies

contributed substantially to generating interest in the role of ROS

in diabetic complications, controversy is evident. The authors

reported increased H2O2 production in bovine and aortic

endothelial (BAE) cells exposed to high glucose in the medium

and asserted that the increased ROS was due to glucose-driven

increased mitochondrial substrate oxidation. That assertion was

based on a citation of a study of insulinoma cells which generated

over 2-fold more CO2 after high glucose exposure. BAE cells were

not studied and we know of no other reports demonstrating high

glucose driven increased mitochondrial substrate oxidation.

Here we used recently available methodology [10] to directly

assess the effect of high nutrient exposure of intact BAE cells and

platelets on mitochondrial oxygen consumption and extracellular

acidification. We show that BAE cells as well as freshly isolated

platelets remain robust in terms of maintaining constant

mitochondrial oxidative metabolism in spite of widely variant

glucose concentrations. This is true whether glucose exposure is

acute or chronic (overnight) for the BAE cells and whether glucose

exposure is acute or chronic (antecedent exposure to in vivo

hyperglycemia) for the platelets. Moreover, this appears to hold for

glucose added to confluent or sub-confluent cells, for cells exposed

to antecedent low serum, and for cells studied in the presence of

variant pyruvate in the medium.

Our data did reveal a slight increase in labeled glucose

oxidation to CO2 by cells exposed to high glucose. However, this

increase was marginal at best and only evident in the presence of

oleate. Moreover, any such small increase in glucose-induced

oxidation to CO2 may be offset by decreased oxidation of fat or

other nutrients, such that there would be no overall increase in

mitochondrial OCR. So, our findings for labeled glucose oxidation

are consistent with data for OCR by extracellular flux.

Our major purpose was to determine whether elevated

extracellular glucose enhances mitochondrial oxidation; an

underlying supposition as to the reason why glucose might

increase mitochondrial ROS production. As above we observed

no such effect. Subject to limitations of the probes we used, we

were also unable to detect any increase in whole cell ROS

production in BAE cells exposed to high glucose either with 2,7-

dichlorodihydrofluorescein diacetate (DCF) or 10-acetyl-3,7-dihy-

droxyphenoxazine (Amplex Red), two commonly used probes for

hydrogen peroxide release (data not shown), or by oxidation of

mitochondrial-targeted hydroethidine (figure S6). Thus, we were

unable to confirm past reports of high glucose induced ROS in

insulin-insensitive cells. Of note, the detection specificity for

glucose-induced elevated H2O2 production reported in some past

studies [2,3] has been questioned [26], since those reports claimed

inhibition by superoxide dismutase (or a mimetic), an enzyme that

should increase (not decrease) H2O2 production. Further,

although high glucose-induced ROS in insulin insensitive cells

[1,2,3] and platelets [4] has been described in multiple reports, the

concept is not supported by all studies. For example cultured

hepatocytes exposed to high glucose generate more glycogen

rather than increase respiration or potential [27] and some studies

of non-insulin sensitive cells do not support an effect of glucose to

induce ROS at the cell level [5,6]. Differences may be due to

methodology; including specific cell type(s) examined, antecedent

cell nutrition, and the particular means of detecting ROS. We did

detect a decrease in aconitase activity in BAE cells exposed to high

glucose or fatty acids (figure 5); the enzyme serving as a marker for

oxidative damage and representing a mitochondrial protein

Figure 5. Aconitase activity in BAE cells exposed to antecedent
glucose and lipid. Enzyme activity was determined in mitochondria
isolated from BAE cells exposed to 5 mM glucose (control), 30 mM
glucose, or 5 mM glucose plus 0.1% Intralipid (see text for composition)
for 24 h. Activity was determined as NADPH production (A340nm) from
cis-aconitate in the presence of exogenous isocitrate dehydrogenase
monitored over 60 min. * p,0.05 compared to control by 2-way
ANOVA, n = 6 per group.
doi:10.1371/journal.pone.0039430.g005
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Figure 6. Effect of acute and antecedent (in vivo, before isolation) glucose exposure on human platelet mitochondrial function.
Panels A and B) Representative tracings depicting OCR and ECAR by platelets (206106 per well) isolated from a healthy (non-diabetic) subject as
affected by sequential additions of oligomycin (2 mM, injection point A), FCCP (2 mM, point B), and antimycin A (0.5 mM) plus rotenone (2 mM, point
C). Each data point represents the mean 6 SEM of 5 repetitions. Panels C-F) Calculated (see text) values for OCRBASAL, OCRATP, OCRFCCP, and non-
mitochondrial OCR and ECAR in diabetic and control subjects at 5.5 and 22 mM glucose (as specified in panel titles). Bars represent the mean 6 SEM,
n = 10 for diabetic subjects, n = 5 for control subjects. Each data point for each subject represents a mean of 4–5 repetitions.
doi:10.1371/journal.pone.0039430.g006

Glucose and Bioenergetics

PLoS ONE | www.plosone.org 9 June 2012 | Volume 7 | Issue 6 | e39430



particular sensitive to oxygen radical-induced dysfunction [28].

However, this was statistically significant only for cells exposed to

high fat in the medium, not for high glucose.

We note that Inoguchi et. al. [29] used a specific electron

paramagnetic resonance technique to document increased ROS

production from cultured aortic endothelial cells and smooth

muscle cells. However, that those investigators concluded that the

ROS derived from NAD(P)H oxidase and, thus, not expected to

depend on mitochondrial oxidation or superoxide generated by

electron transport.

We also show that oxidative metabolism by human platelets is

not altered by antecedent exposure to high circulating glucose (as

manifest in subjects with type 1 diabetes) or by acute in vitro

exposure to high glucose. We are aware of only one very recent

report describing platelet bioenergetics using the (Seahorse)

extracellular flux approach [30]. That study examined platelets

from small numbers of subjects with type 2 diabetes compared to

controls and reported reduced basal OCR, maximal OCR on

dinitrophenol (DNP), and OCR directed at ATP synthesis. ECAR

was not reported. Our data contrast in that we did not see reduced

respiration in our diabetic samples. Our subjects had type 1, not

type 2, diabetes controlled on insulin and likely did not have the

associated vascular risk often seen in type 2 diabetes. Our data

confirm the feasibility of using the extracellular flux analyzer for

platelet studies; an issue of some importance given that platelets

represent an easily assessable source of human tissue for

mitochondrial studies. In fact, other than biopsy material,

circulating blood is the only available source. Moreover platelets,

as opposed to neutrophils or lymphocytes, are far easier to prepare

as fresh preparations in sufficient amounts for study. We also

observed that platelets adhere strongly to wells within the

extracellular flux analyzer throughout the assay procedure.

Oxidative metabolism by platelets has been subject to some

debate since some reports claim that glucose use is primarily

through non-oxidative glycolysis [31,32,33]. But, although devoid

of nuclei, platelets do have mitochondria, so our data demon-

strating mitochondrial oxidation does not seem surprising. It is also

of note that platelets respired closer to maximal capacity than BAE

cells, wherein maximal respiratory capacity far exceeded basal. In

addition it is of interest that, relative to OCR, platelets manifest

higher ECAR values compared to BAE cells (figure 7), consistent

with a greater extent of non-oxidative glycolytic metabolism.

A prior report (which did not assess glucose or fatty acid effects)

examined the bioenergetics of BAE cells using the extracellular

flux approach [16]. Interestingly our data for state apparent of the

BAE cells, 3.69 (see text under ‘‘results’’), agrees closely with the

value of 3.67 reported in the above citation.

Our studies revealed some additional findings of interest. Upon

acute glucose administration after overnight low glucose, we found

that maximal mitochondrial respiration was reduced in BAE cells

(figure 3). This may have occurred due to overall antecedent

cellular depletion of ATP. Respiration measured in the presence of

FCCP is intended to assess ‘‘maximal respiration’’ in fully

uncoupled mitochondria. However, respiration during FCCP in

intact cells can reflect cytoplasmic factors such as ionophoric

effects on endosomes and alterations in cytoplasmic calcium,

thereby affecting substrate supply [9]. So, we can at least speculate

that this effect, along with antecedent low glucose, limited

substrate supply so that FCCP may not have had a true

‘‘maximal’’ action. In the regard, the reduction in ‘‘maximal’’

OCR after antecedent low glucose appeared less after acute

25 mM glucose than after 5.5 mM glucose (figure 3), suggesting

that the higher acute glucose may have partially offset the

depletion in energy stores.

We also noted that linolenic acid, the most unsaturated of the

agents tested, enhanced ECAR and the ratio of ECAR to OCR in

endothelial cells (figure 4), suggesting an increase in glycolytic

metabolism to lactate. Plotting ECAR versus OCR revealed an

upward and right shift for linolenic acid (figure 4D) suggesting a

degree of uncoupling as well. In fact, there were trends in these

directions for linoleic acid; the next most saturated fatty acid.

Interestingly, oleate reduced the ratio of ECAR to OCR largely

due to a reduction in ECAR possibly consistent with more relative

oxidative metabolism but at a lower energetic state. It is possible to

speculate that since linolenate is a relatively poor substrate for

mitochondrial b-oxidation compared to more saturated fatty acids,

the cells would rely more on glucose for ATP; thus, the higher

ECAR. But if this were the case, we might expect ECAR in the

presence of linolenate to become equivalent to that of the other

fatty acids during mitochondrial inhibition (antimycin plus

Figure 7. Comparison of mitochondrial bioenergetics between intact freshly isolated human platelets and BAE cells grown at
5.5 mM glucose. Glucose concentration was maintained at 5.5 mM during extracellular flux experiments. Platelet data represent mean 6 SEM
values for all 15 subjects that comprised the data in figure 6. BAE cell data represents 14 repetitions (mean 6 SEM) for each data point.
doi:10.1371/journal.pone.0039430.g007
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rotenone). Of course, there are other possible mechanisms

including a myriad of effects that might result from alterations in

gene expression.

There are limitations to our results. Although, our data show

that excess glucose does not drive mitochondrial oxidation, we

have only limited information as to the fate of excess glucose. In

the BAE cells exposed to overnight high glucose, some portion is

likely consumed through non-oxidative glycolysis generating

lactate since ECAR was enhanced by glucose exposure. Platelets

are known to store glycogen so glucose may have consumed in that

process. We were unable to show an increase in ECAR in platelets

exposed to high glucose suggesting that non-oxidative glycolysis

was not enhanced. Of course, it is possible that the excess glucose

provided to our cells or platelets simply was not transported across

the plasma membrane and/or limited as to further metabolism

after transport. The probes we used for detection ROS may not be

specific for any one radical and we cannot be sure of the nature of

the hydroethidine oxidation we observed without further assess-

ment of the products eluted on HPLC. Moreover, competition by

cellular superoxide dismutase and/or other antioxidant steps could

mitigate the extent of probe detection. Finally, we did not measure

platelet activation. Possibly, this differed between diabetic and

non-diabetic subjects or differed as a result of glucose exposure in

vitro and could conceivably alter oxygen use. But, this does not

change the fact that we observed no difference in mitochondrial

OCR or ECAR.

In summary, our major results show that acute and chronic high

glucose or fatty acid exposure does not alter mitochondrial oxygen

consumption by cultured BAE cells. Moreover, acute and

antecedent in vivo high glucose exposure does not alter mitochon-

drial oxygen consumption by freshly isolated human platelets.

Hence, our data do not support the concept that increased glucose

driven mitochondrial electron transport is responsible for en-

hanced ROS production, suggesting that the diabetic milieu affects

redox status in other ways. We contrast the bioenergetics of

platelets to endothelial cells and show that platelets respire at

closer to maximal capacity and manifest greater extracellular

acidification than BAE cells (consistent with greater glycolytic

metabolism). Further, we provide data suggesting that the extent of

fatty acid saturation may enhance glycolysis without affecting

oxidative metabolism.

Supporting Information

Figure S1 Effect of glucose on oxygen consumption
rates (OCR) and extracellular acidification rates (ECAR)
in sub-confluent BAE cells. Cells were grown in the usual

fashion (‘‘methods’’, main manuscript) for one day after seeding.

Sub-confluent cells were then exposed to glucose concentrations

ranging from 5.5 to 25 mM or to 5.5 mM D-glucose +19.5 mM

L-glucose (5.5+L) for 18 h (overnight) prior to the respirometer

studies. Glucose concentrations were maintained during incuba-

tion in the extracellular flux analyzer. Glucose exposure had no

significant effects on OCR or ECAR under these conditions.

n = 7–8 determinations at each glucose concentration. OCR and

ECAR were determined before and after sequential injections of

oligomycin (2 mM), FCCP (2 mM), or antimycin A (0.5 mM) plus

rotenone (2 mM) as described under ‘‘methods’’, main manuscript.

Data for OCR in the presence of FCCP is not included. This is

because FCCP actually reduced or did not change OCR relative

to basal conditions, indicating the lack of optimization of the

FCCP concentration for the sub-confluent condition. However,

glucose had no effect to alter OCR after FCCP.

(TIF)

Figure S2 Effect of glucose on oxygen consumption
rates (OCR) and extracellular acidification rates (ECAR)
in BAE cells exposed to low serum concentration. Cells

grown in the usual fashion (‘‘methods’’, main manuscript) except

that three days after seeding, the medium was changed from 17%

serum (used in other studied reported in this manuscript) to 2%.

Cells were studied in the respirometer 24 h after the reduction in

serum. Cells were exposed to glucose concentrations ranging from

5.5 to 25 mM or to 5.5 mM D-glucose +19.5 mM L-glucose

(5.5+L) for 18 h prior to the respirometer studies with these

concentrations maintained during incubation in the extracellular

flux analyzer. n = 4 determinations at each glucose concentration.

OCR and ECAR were determined before and after sequential

injections of oligomycin (2 mM), FCCP (2 mM), and antimycin A

(0.5 mM) plus rotenone (2 mM) as described under ‘‘methods’’,

main manuscript. Glucose exposure had no significant effects on

OCR or ECAR under these conditions.

(TIF)

Figure S3 Effect of glucose on oxygen consumption
rates (OCR) in BAE cells during basal incubation and in
the presence of FCCP added either before or after
oligomycin. Confluent cells were exposed to glucose concentra-

tions (mM) as shown on the x-axes ranging from 5.5 to 25 mM or

to 5.5 mM D-glucose plus 19.5 mM L-glucose (5.5+L) for 18 h

prior to the respirometer studies. Basal OCR (panel A) is depicted

in cells subsequently treated with oligomycin (dotted bars) or

FCCP (filled bars) (panel B). Respirometer incubations were

carried out under basal conditions for 21 min followed by

oligomycin (2 mM) or FCCP (2 mM) for 21 min. Cells treated

with oligomycin were then exposed to FCCP (2 mM) for an

additional 21 min. OCR measurements were taken at the end of

each time period. Glucose did not significantly alter OCR under

these conditions. n = 4–5 determinations at each glucose concen-

tration.

(TIF)

Figure S4 Effect of glucose and variant pyruvate
concentration on oxygen consumption rates (OCR) and
extracellular acidification rates (ECAR) in confluent BAE
cells. Cells were grown in the usual fashion (‘‘methods’’, main

manuscript) and studied under basal conditions (panels A and B),

in the presence of oligomycin (panels C and D), and in the

presence of FCCP (panels E and F). Pyruvate was added acutely

during the respirometer runs at the concentrations shown. Cells

were exposed for 18 h to the glucose concentrations indicated with

these glucose concentrations maintained during incubation in the

extracellular flux analyzer. n = 4–6 determinations for each

condition. Pyruvate had no significant effects on OCR but had a

significant overall effect on ECAR (p,0.01) by two-way ANOVA

(glucose x pyruvate x interaction) for each condition (basal,

oligomycin, and FCCP). Glucose and interaction were not

significant. * p,0.05 versus 0.1 mM pyruvate by Bonferroni

posttests.

(TIF)

Figure S5 Total and specific mitochondrial protein
content per unit DNA is not altered by overnight
exposure to high glucose concentration. Cells were grown

to confluency as described under ‘‘methods’’, main manuscript.

Panel A) Porin content in mitochondrial (M), whole cell (W), and

supernatant (cytoplasmic) (S) BAE cell fractions. Data is represen-

tative of 4 repetitions of this blot demonstrating that BAE cell

porin is localized to mitochondria. Panels B and C) Representative

blots depicting porin and mitochondrial complex 4 protein

(OxPhos) at expected kD (arrows) in whole BAE cells grown to
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confluency and exposed to 5.5 or 25 mM glucose for 18 h before

preparation of cell extracts. Panels D to E) Quantification of porin

and OxPhos as a function of whole cell protein. Panel F) DNA/

protein ratios in the same cell extracts. Panels G and H)

Quantification of porin and OxPhos protein as a function of

whole cell DNA. Glucose exposure did not significantly alter these

parameters. n = 8–10 repetitions for each group.

(TIF)

Figure S6 Glucose does not alter oxidation of MitoSOX
in BAE cells. Cells were grown to confluency, then exposed

overnight (18 h) to 5.5 or 25 mM glucose. Some cells exposed to

5.5 mM glucose were then treated with Antimycin A (10 mM) for

60 min. HPLC was carried out as described in ‘‘methods’’, main

manuscript. Upper tracings in each panel depict detection by UV.

Lower tracings depict fluorescence. The major peak, eluting at

15.6 minutes, was enhanced by Antimycin A, a positive control,

known for its strong induction of mitochondrial superoxide

through action on Coenzyme Q redox cycling in Complex III.

A) Cells exposed to 5.5 mM glucose; B) 25 mM glucose or; C)

5.5 mM glucose then Antimycin A. D) Quantitative data. *p,0.01

compared to 5.5 mM glucose by one-way ANOVA and Dunnett’s

posttest; n = 8 for each glucose concentration, n = 3 for antimycin

A.

(TIF)

Figure S7 Platelets adhere to respirometer plates.
Platelets were imaged by light microscopy after Seahorse runs

(as performed in figure 6, main manuscript). A) Platelets exposed

to 5.5 mM glucose B) Platelets exposed to 25 mM glucose.

Magnification x 40. Each panel is representative of 3 repetitions.

(TIF)
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