
Fluorescence-Based Phenotypic Selection Allows
Forward Genetic Screens in Haploid Human Cells
Lidia M. Duncan1., Richard T. Timms1., Eszter Zavodszky1, Florencia Cano1, Gordon Dougan2,

Felix Randow3, Paul J. Lehner1*

1 Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom, 2 The Wellcome Trust Sanger Institute, The Wellcome Trust Genome

Campus, Hinxton, United Kingdom, 3 MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom

Abstract

The isolation of haploid cell lines has recently allowed the power of forward genetic screens to be applied to mammalian
cells. The interest in applying this powerful genetic approach to a mammalian system is only tempered by the limited utility
of these screens, if confined to lethal phenotypes. Here we expand the scope of these approaches beyond live/dead screens
and show that selection for a cell surface phenotype via fluorescence-activated cell sorting can identify the key molecules in
an intracellular pathway, in this case MHC class I antigen presentation. Non-lethal haploid genetic screens are widely
applicable to identify genes involved in essentially any cellular pathway.
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Introduction

Forward genetic analysis – the concept of identifying gene function

from mutants with a discernible phenotype – has a proven track

record of elucidating gene function. However, the difficulty in

generating and recovering bi-allelic mutations in diploid cells is a

major barrier to the application of this approach in the study of

mammalian biology. In a major breakthrough, three groups recently

circumvented this problem by pioneering forward genetic screens in

haploid cells. Carette and colleagues [1] initially demonstrated the

power of this approach by performing forward genetic screens in the

near-haploid human KBM7 chronic myeloid leukemia cell line [2].

By creating a library of knockout KBM7 cells using a gene-trap

retrovirus and screening for mutant cells resistant to a range of lethal

insults, including bacterial toxins and cytotoxic viruses, they

identified host genes required for toxin or viral killing [1,3,4]. More

recently, two independentgroupsderivedhaploidmurineembryonic

stem cells lines and demonstrated the ability to perform forward

genetic screens to identifygenes required for sensitivity to toxins [5,6].

In all these three examples, cells with mutations in relevant genes

were isolated due to their resistance to a lethal insult. Such lethality

screens are the simplest to perform but have inherent limitations. Few

cellular processes are readily adaptable to a live/dead screen, and

mutations that result in an intermediate phenotype are unlikely to be

recovered. For haploid genetic screens to have widespread utility, a

system is required whereby cells with relevant mutations can be

selected based on a change in cell surface phenotype or the expression

of a genetically-encoded reporter. The ability to screen on non-lethal

phenotypes would greatly expand the scope of these methods such

that they could be used to identify genes involved in essentially any

cell-autonomous process.

Our aim was to test the applicability of this approach and

determine whether cells with relevant mutations could be selected

from a library of mutagenised near-haploid KBM7 cells on the

basis of a change in cell surface phenotype. We chose to probe the

cell surface expression of major histocompatibility complex class I

(MHC-I) molecules, since the MHC-I antigen presentation

pathway is well-characterized and utilizes a number of discrete

components which function in a coordinated fashion to promote

trafficking of peptide-loaded MHC-I molecules to the cell surface

[7]. Newly-synthesized MHC-I heavy chains are co-translationally

inserted into the endoplasmic reticulum (ER) where they

heterodimerise with beta-2-microglobulin (b2m). MHC-I mole-

cules then associate with the TAP peptide transporter (TAP1/2)

via tapasin, a dedicated MHC-I chaperone which allows MHC-I

access to TAP-delivered peptides generated from proteasome-

mediated degradation of cytosolic proteins [7]. The successful

loading of MHC-I molecules with peptide allows their release from

the peptide loading complex and exit from the ER to the cell

surface, where they present peptides to cytotoxic T lymphocytes

(CTL). Here we show that KBM7 cells unable to present MHC-I

molecules at the cell surface can be selected from a mutagenized

library by fluorescence-activated cell sorting (FACS), and use this

approach to isolate mutant clones deficient for components of the

MHC-I antigen presentation pathway.

Results

A Haploid Genetic Screen to Identify Genes Required for
Cell Surface MHC-I Expression

Near-haploid KBM7 cells express high cell surface MHC-I

and HLA typing showed them to be HLA-A2, HLA-B60 and
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HLA-Cw10. These cells were mutagenised with a gene-trap

retrovirus [1] to create a library of knockout cells, which were

then selected by fluorescence-activated cell sorting (FACS) for

the very small population of cells (,0.02%) expressing low cell

surface MHC-I (Fig. 1A). Two sequential sorts were required,

with each sort enriching the selected population by at least two

orders of magnitude. Following the first sort a small population

of MHC-Ilow cells was visualized (,8%), which was further

enriched to near purity during the second sort (Fig. 1B). Three

separate screens were performed using different anti-MHC-I

primary antibodies: w6/32, which recognizes total MHC-I,

BB7.2, which is specific for HLA-A2, and 4E, which recognizes

the HLA-B molecule. In each case, we selected for cells

displaying reduced cell surface MHC-I. To identify the

disrupted genes responsible for the defect in MHC-I expression,

the retroviral integration sites in all sets of selected cells were

amplified using splinkerette-PCR and sequenced using 454

pyrosequencing [8,9]. Together this analysis revealed retroviral

insertions in four genes known to be involved in the MHC-I

antigen presentation pathway: 9 independent retroviral integra-

tions were found in the gene encoding b2m, 8 in tapasin

(TAPBP), 2 in TAP2 and 1 in the HLA-A2 gene itself (Fig. 1C).

Overall, the identification of multiple known genes in the

pathway demonstrates the power of this approach for interro-

gating the genetic basis of cellular processes.

Generating Mutant Clones Deficient for Components of
the MHC-I Antigen Presentation Pathway

A major advantage of this technique is that genetically-deficient

knockout human cells are generated as part of the screen, which

therefore provides an invaluable resource to allow further

functional characterization of the disrupted gene. To isolate

knockout clones for the four genes involved in the MHC-I

pathway, we plated single cells from the FACS-selected MHC-Ilow

populations into 96-well plates and identified the gene-trap

insertion site in the resulting clones by PCR (Fig. 2A). Cells

deficient in each of the four genes were recovered. The lack of

expression of the disrupted genes was readily confirmed by RT-

PCR (Fig. 2B), and we verified a functional knockout in each case

by flow cytometry (Fig. 2C). Knockout of b2m abolished total cell

surface MHC-I expression, while the knockout of HLA-A2

prevented only HLA-A2 surface expression, but left HLA-B60

and total MHC-I unaffected. Cells deficient in TAP2 and tapasin

showed decreased surface MHC-I, with a more marked effect on

HLA-B60 than HLA-A2, consistent with reports that the HLA-B

heavy chain is more TAP-dependent since HLA-A2 can acquire

TAP-independent, signal sequence-derived peptides [10,11].

Discussion

The enormous potential of forward genetic screens in cultured

haploid mammalian cells is only tempered by their restricted use to

Figure 1. A haploid genetic screen to identify genes required for cell surface expression of MHC-I molecules. A. Schematic of the
screen. B. Selecting MHC-Ilow cells by FACS. Mutagenised KBM7 cells were labeled for surface MHC-I and those cells defective for MHC-I presentation
enriched by two sequential rounds of FACS. The FACS plots correspond to the stages of the screen outlined above them in A. C. The genetic screen
identifies multiple genes known to be involved in the MHC-I antigen presentation pathway. Important genes within the MHC-I antigen presentation
pathway are targeted by multiple independent retroviral integrations (red triangles).
doi:10.1371/journal.pone.0039651.g001

Non-Lethal Genetic Screens in Haploid Human Cells
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live/dead screens. Here we show that selection on non-lethal

phenotypes by FACS allows haploid genetic screens to be

performed in human KBM7 cells leading to the identification of

key components of an intracellular pathway. Fluorescent labeling

and subsequent sorting for MHC-Ilow cells among a library of

mutagenised KBM7 cells led to the successful isolation of knockout

KBM7 clones deficient in four components of the MHC-I antigen

presentation pathway. This powerful approach can therefore be

used to identify multiple components of an intracellular pathway.

Furthermore, the iterative enrichment of cells expressing the

desired phenotype by FACS, as opposed to screens based on live/

dead phenotypes, has the additional advantage of identifying

mutant cells with intermediate phenotypes (for example, as with

the TAP2 and tapasin knockout cells) which are less likely to be

identified in live/dead screens.

The efficient assembly of peptide loaded MHC-I molecules

requires both MHC-I dedicated components (TAP, tapasin, the

class I heavy chain and b2m) as well as more general cellular

chaperones (calnexin, calreticulin and ERp57). While the majority

of MHC-I dedicated components were identified in our screen, no

mutations were found in genes encoding the more generalized

cellular chaperones. Either the functions of these chaperones are

redundant, or a growth disadvantage in cells deficient in these

genes prevented clones from surviving the selection process.

Another solution to broaden the utility of haploid genetic

screens is to convert an otherwise non-toxic screening agent into a

lethal one to permit a live/dead screen. By attaching the catalytic

subunit of diphtheria toxin to cholera toxin, which by itself is not

lethal to KBM7 cells, Guimaraes and colleagues [12] identified

new host genes required for cholera toxin intoxication. This

approach is limited, however, as mutations will always be found in

genes required for sensitivity to the toxic agent. Furthermore,

mutations that confer only partial resistance are unlikely to be

recovered. In contrast, the selection of mutant cells by FACS

allows screens to be performed on a wide range of non-lethal

phenotypes, and has the potential to identify mutations with an

intermediate effect. This was the case in our MHC-I screens, as we

successfully recovered cells deficient in TAP2 and tapasin, loss of

which results in a partial rather than a total loss of cell surface

MHC-I expression.

Figure 2. Isolation of knockout clones deficient for components of the MHC-I antigen presentation pathway. A. Identifying knockout
clones by PCR. A schematic representation of the b2m, tapasin and TAP2 knockout clones identified by PCR from 96 single cell clones from the HLA-
Blow selected population. Screening a relatively low number of single cell clones is sufficient to identify knockout cells representing the relevant
target genes found in a screen. B. The gene-trap insertions result in a loss of gene expression. The knockout clones were analyzed for HLA-A2, b2m,
tapasin and TAP2 expression by RT-PCR. C. Knockout of genes involved in the MHC-I pathway impairs cell surface expression of MHC-I molecules. The
b2m, HLA-A2, tapasin and TAP2 knockout clones were labeled for the indicated proteins and analyzed by flow cytometry.
doi:10.1371/journal.pone.0039651.g002

Non-Lethal Genetic Screens in Haploid Human Cells
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In summary, we report the success of FACS in allowing forward

genetic screens to be performed in mutagenised haploid human

KBM7 cells by enriching for cells of the desired phenotype.

Although we have used this technique to select cells on the basis of

a change in cell surface phenotype, this method is equally

applicable to the selection of cells based on altered expression of a

genetically-encoded fluorescent reporter. The ability to perform

forward genetic screens in near-haploid KBM7 cells on non-lethal

phenotypes opens up this technology for interrogating the genetic

basis of a wide range of cellular processes.

Materials and Methods

Cell Culture
KBM7 cells [2] and HEK 293ET cells were maintained in

Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented

with 10% fetal calf serum and 1% penicillin/streptomycin.

Antibodies
The mAb W6/32 recognizes conformational MHC-I [13]; mAb

BB7.2 (recognizes conformational HLA-A2) and mAb 4E (recog-

nizes conformational HLA-B) were generous gifts from P.

Cresswell. The Cy5-conjugated goat anti-mouse IgG secondary

antibody was obtained from Jackson ImmunoResearch.

Gene-trap Mutagenesis
The gene-trap vectors pGT0-GFP, pGT+1-GFP and pGT+2-

GFP were a generous gift from T. Brummelkamp [1]. The

bidirectional SV40 polyadenylation signal was replaced with a

unidirectional one amplified as a BamHI-MluI fragment from the

plasmid Flx800.15, to create pGT0-GFP-pA, pGT+1-GFP-pA

and pGT+2-GFP-pA. Mutagenised KBM7 libraries were gener-

ated using a mixture of all three vectors.

Retrovirus was produced in HEK 293ET cells. HEK 293ET

cells at greater than 90% confluency in a 6-well plate were

transfected with 4 mg total DNA using Lipofectamine 2000

(Invitrogen). The gene-trap vectors plus the packaging plasmids

pMD.GagPol and pMD.VSVG were mixed in a ratio of 10:7:3 in

250 ml OptiMEM (Invitrogen), mixed with 10 ml transfection

reagent diluted in 250 ml OptiMEM, incubated for 20 min at

room temperature and added dropwise to the cells growing in

media without antibiotics. The virus-containing supernatant was

harvested from 48 h post-transfection, filtered through a 0.45 mm

filter, and applied directly to 1.56106 KBM7 cells in a 24-well

plate in the presence of 10 mg/ml hexadimethrine bromide

(PolybreneH, Sigma-Aldrich). The cells were then spun at

1800 rpm for 45 min, returned to the incubator, and after 3 h

fresh media added.

Flow Cytometry
Typically 26105 cells were washed with PBS, spun down

(1600 rpm, 5 min, 4uC) and resuspended in 50 ml PBS. Primary

antibody was then applied for 15 min at 4uC. The cells were then

washed again with PBS, spun down, resuspended in 50 ml PBS

and stained with a flurochrome-conjugated secondary antibody for

15 min at 4uC in the dark. Following a final wash step, the cells

were fixed in 200 ml 0.3% formaldehyde and run on a

FACSCalibur (BD Biosciences).

FACS
,56107 cells mutagenised cells were labeled with primary

antibody for 15 min at 4uC in a total volume of 1 ml, washed with

PBS, and then labeled with a Cy5-conjugated anti-mouse IgG

secondary antibody in the same way. Sorting was carried out on

an Influx cell sorter (BD Biosciences).

Mapping of Retroviral Integration Sites and 454
Pyrosequencing

We employed a splinkerette PCR-based method to identify

retroviral insertion sites, broadly as described by Koudijs and

colleagues [9]. Briefly, genomic DNA was extracted from 1 million

KBM7 cells (Gentra Puregene kit) and sheared by sonication

(BioruptorH, Diagenode) to an average fragment size of ,400 bp.

DNA fragment ends were blunted with T4 DNA polymerase

(NEB), phosphorylated with T4 polynucleotide kinase (NEB) and

ligated with annealed splinkerette adaptors (59- GTTCCCATGG-

TACTACTCATATAATACGACTCACTATAGG-39 and 59-

CCTATAGTGAGTCGTATTATAATTTTTTTTT-

CAAAAAAA-39). Following digestion with BpmI (NEB), two

rounds of PCR were carried out using one set of primers binding

to the 59LTR of the retroviral gene-trap vector and another set of

primers binding to the splinkerette adaptor. For 454 pyrosequenc-

ing, the second round virus-end PCR primer included GS FLX

454 primer A plus a 10 bp barcode and the second round adaptor-

end primer contained primer B. Primer sequences are detailed in

Table S1. Multiplexing was achieved by amplifying samples from

the different screens with unique barcode sequences; the DNA

concentration of each sample following PCR amplification was

quantified using a PicoGreen assay (Invitrogen) and mixed evenly.

Following a column clean-up step (Qiagen PCR purification kit),

the total library of PCR products was sequenced using the Lib-L

emPCR kit (Roche) using one-quarter of a picotitre plate on a 454

GS FLX Titanium sequencing instrument (Roche). Processing of

454 reads was achieved using the Galaxy FASTX toolkit [14].

Reads were sorted by barcode, trimmed of viral and adaptor

sequences, aligned to the human genome (hg19) using LastZ and

visualized in IGV [15].

Identification of Mutant Clones
FACS-selected MHC-Ilow mutant cells were plated into

individual wells of a 96-well plate. Three weeks later genomic

DNA was extracted from the resulting clones and the site of the

gene-trap insertion identified by PCR, using one primer (GFP_R)

binding to the GFP in the gene-trap virus and the second primer

binding at an appropriate distance from the insertion site within

the HLA-A2, B2M, tapasin and TAP2 genes (Table S1).

RT-PCR
Total RNA was extracted from KBM7 cells using the RNeasy

Plus Mini Kit (Qiagen), and converted into cDNA by the addition

of reverse transcriptase and an oligodT primer. A PCR reaction

was then carried out using two primers binding within the mRNAs

of the target genes designed to produce a ,200 bp amplicon

(Table S1). Products were visualized on a 2% agarose gel.

Supporting Information

Table S1 Primer sequences.

(DOC)
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