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A cotton fiber cDNA and its genomic sequences encoding an A-type cyclin-dependent kinase (GhCDKA) were cloned and
characterized. The encoded GhCDKA protein contains the conserved cyclin-binding, ATP binding, and catalytic domains.
Northern blot and RT-PCR analysis revealed that the GhCDKA transcript was high in 5–10 DPA fibers, moderate in 15 and 20
DPA fibers and roots, and low in flowers and leaves. GhCDKA protein levels in fibers increased from 5–15 DPA, peaked at 15 DPA,
and decreased from 15 t0 20 DPA. The differential expression of GhCDKA suggested that the gene might play an important role in
fiber development. The GhCDKA sequence data was used to develop single nucleotide polymorphism (SNP) markers specific for
the CDKA gene in cotton. A primer specific to one of the SNPs was used to locate the CDKA gene to chromosome 16 by deletion
analysis using a series of hypoaneuploid interspecific hybrids.

1. Introduction

Cotton fibers are unicellular seed trichomes differentiated
from the outer integument of a developing seed. The regu-
lation of cell division is thus an important aspect of fiber ini-
tiation and development. About 25% of commercial cotton
ovule epidermal cells stops division and develops to produce
fibers [1]. It has been reported that the cell cycle in fiber cells
is arrested in the G1 phase during the early stages of fiber
development [2]. A central role in the regulation of the cell
division is played by cyclin-dependent kinases (CDKs) and
their regulatory cyclin subunits [3–5]. Eleven types of cyclins
(A, B, C, D, H, CycJ18, L, T, U, SDS (solo dancers), and P)
have been identified in plants [6, 7]. Plant CDKs, identified in
23 species of algae, gymnosperms, and angiosperms, contain
three functional domains: an ATP-binding domain, a cyclin-
binding domain, and a catalytic domain. They are classified
into five types (A, B, C, D, and E) based on their sequence
differences in the cyclin-binding domain [8]. The A-type
CDK (CDKA) proteins are characterized by the presence

of the PSTAIRE motif, which is essential for cyclin binding
[9]. Plant CDKAs, but not CDKBs, have been shown to
complement yeast CDK mutants [10–13], suggesting that
plant CDKAs are functional homologues of the yeast CDK.
Plant CDKAs not only control cell cycle progression from
the G1 to S phase and from the G2 to M phase [5, 14]
but also participate in cell proliferation and maintenance
of cell division competence in differentiated tissues during
development [15]. Since the CDKA gene is expressed in
both dividing and differential tissues [15, 16], it has been
suggested that the gene is involved in both cell division and
differentiation [17, 18].

To dissect the possible functional role of CDKA in fiber
cell differentiation and development, we have cloned and
characterized a fiber CDKA cDNA and its corresponding
genomic sequences. The expression levels of the CDKA tran-
script and the CDKA protein were also determined in elon-
gating cotton fibers from 5 to 20 DPA ovules and other tis-
sues. The CDKA sequence data was then used to develop sin-
gle nucleotide polymorphism (SNP) markers specific for the
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CDKA gene(s) in cotton. Lastly, a primer specific to one of
the SNPs was used with single primer extension technology
to locate the CDKA gene to chromosome 16 by deletion anal-
ysis using a series of hypoaneuploid interspecific hybrids.

2. Materials and Methods

2.1. Cloning of Fiber GhCDKA cDNA. Two degenerate
primers (CDK1: 5′-ATHGGDGARGGHACHTAYGG-3′

and CDK2: 5′-CKATCWATCARYARRTTYTG-3′) (H: A +
C + T, D: A + G + T, R: A + G, Y: C + T, K: G +
T, W: A + T) designed from the conserved ATP-binding
and catalytic domains of plant CDKA genes were used for
PCR to amplify cDNA with homology to the CDKA gene
using total cDNA from a cotton (Gossypium hirsutum L.
cv. DES119) fiber cDNA library as template. The cDNA
library was constructed using 10 DPA (days post-anthesis)
fiber RNA with a Marathon cDNA amplification kit (BD
Biosciences, San Jose, CA, USA). A 383 bp DNA fragment
was amplified, purified using a QIAEX II gel extraction
kit (Qiagen), cloned into pGEM-T Easy Vector (Promega),
and sequenced with an ABI PRISM 310 Genetic Analyzer.
The DNA sequencing data was analyzed using the BLAST
program (NCBI) and LASERGENE software (DNASTAR).
Analysis of the sequencing data showed that the 383 bp DNA
fragment encoded an A-type CDK. Two gene specific primers
CDKC-1 (5′GGCGTTGTTTATAAGGCTCGTGATCGTG-
3′) and CDKC-2 (5′CATTCCTTTATCAAATTCTCCGTG-
GTG-3′) were designed from the 383 bp DNA fragment
and used to amplify a full-length GhCDKA cDNA by the
Rapid Amplification of cDNA Ends (RACE) method with
the Marathon cDNA Amplification kit. In the 3′ RACE
reaction, CDKC-1 and the adaptor primer AP1 (5′-CCA-
TCCTAATACGACTCACTATAGGGC-3′, 10 μM) were used
in the first PCR, and CDKC-2 and the adaptor primer
AP2 (5′-ACTCACTATAGGGCTCGAGCGGC-3′) were used
in the second (nested) PCR. The 5′ RACEs were also
performed as 3′ RACEs, except that primers CDK5-1 (5′-
GACACTTTCTCAGGAAGATAGTTG-3′) and CDKC-3
(5′-CCCTATGAGAGTGACAATAAGCAATG-3′) were used
in the first and second RACE amplifications, respectively. A
full-length GhCDKA cDNA was assembled using the 5′ and
3′ RACE products and subsequently confirmed by PCR using
Pfu DNA polymerase (Stratagene).

2.2. Isolation of the Genomic Sequence of the GhCDKA Gene.
Two primers CDKC-1 and CDK5-1 were used in LA (long
and accurate) PCR to amplify DES119 genomic DNA with
the Takara LA PCR kit ver.2.1. The PCR was conducted with
an initial denaturation at 94◦C for 4 min, followed by 30
cycles at 94◦C for 30 sec and 68◦C for 4 min and a final exten-
sion at 68◦C for 5 min. A 7547 bp DNA fragment containing
the GhCDKA gene was amplified. The PCR product was gel
purified and cloned, and both DNA strands are sequenced as
described above.

The 5′ and 3′ flanking regions of the GhCDKA gene were
amplified using a PCR-based genomic DNA walking method
and inverse PCR. Genomic walking was conducted by

amplifying the adaptor-ligated genomic libraries using gene-
specific primers GSR-1 (5′-TGAGTTGTGCAGTGAAGT-
GCATTG-3′) and GSR-2 (5′-CTCTAATTGCAGTGCTAG-
GTACAC-3′). The self-ligated genomic DNA (previously
restricted with Hind III) was used as template in the inverse
PCR amplification with primers GSF (5′-TCTGGAAGC-
GGAAAGAAGCA-3′) and GSR-1 and LA Taq DNA poly-
merase (see Figure 1 in Supplementary Material available
online at doi:10.1155/2012/613812.)

2.3. Expression Analyses of the GhCDKA Gene. Total RNA
(10 μg) isolated from various cotton tissues were elec-
trophoresed in a formaldehyde/agarose gel, transferred onto
a nylon membrane, and fixed by UV-crosslinking. A 618 bp
DNA fragment corresponding to the C-terminal and 3′-UTR
region of the GhCDKA cDNA was amplified by PCR using
two primers CDKC-2 and CDK5-1, labeled with [α-32P]
dCTP with the random priming labeling method, and used
as a probe for Northern hybridization. After hybridization,
the membrane was stringently washed and exposed to X-ray
film for autoradiography. The relative GhCDKA transcript
levels were determined by the ratio of radioactive intensity
of hybridized band of the 1.2 kb GhCDKA mRNA to the
EtBr stained 28S rRNA using the program of Scion Image
for Windows (Scion Corporation). The GhCDKA transcript
level was also determined by RT-PCR. First strand cDNA,
labeled by [α-32P] dCTP, was synthesized with SuperScript II
reverse transcriptase (Invitrogen) using oligo-dT primer and
total RNA (2 μg) isolated from flowers, leaves, roots, and 5,
10, and 15 DPA fibers. An equal amount of the synthesized
first strand cDNA (based on scintillation counting) from
different samples was serially diluted to 1x, 5x, 10x, 20x with
sterile distilled water and used as template for PCR amplifi-
cation with primers CDKC-2 and CDK5-1. Five microliters
of the PCR products was analyzed by electrophoresis in a 1%
agarose gel.

For Western analysis, 70 μg of total protein extracted
from cotton flowers, leaves, and fibers (5, 10, 15, and 20
DPA) with a modified method of Barent and Elthon [19] was
vacuum dried and resuspended in SDS-PAGE sample buffer
(12 mM Tris-HCl, pH 6.8, 5% (v/v) glycerol, 0.4% (w/v) SDS,
1% (v/v) β-mercaptoethanol, 0.02% (w/v) bromophenol
blue). The samples were heat denatured, separated by 12%
SDS-PAGE, and transferred onto a nitrocellulose membrane.
Immunodetection of the GhCDKA protein was carried out
with an ECL Western blotting system (GE Healthcare) using
rabbit anti-PSTAIRE (Santa Cruz Biotechnology) as primary
antibody and anti-rabbit IgG-horseradish peroxidase conju-
gate (GE Healthcare) as secondary antibody.

2.4. SNP Analyses and Chromosomal Location of the GhCDKA
Gene. Genomic DNAs were extracted from young leaves
of CMD-01 (TM-1, G. hirsutum), CMD-02 (3–79, G. bar-
badense), CMD11 (G. tomentosum), CMD-3 (G. arboreum),
and CMD-5 (G. raimondii) using a DNeasy Plant mini kit
(Qiagen). These Gossypium genotypes have been widely used
for the screening and preliminary characterization of cotton
microsatellite markers [20]. The genomic DNA samples
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were amplified by pfu DNA polymerase with two primers
(CDKP3, 5′-GGCTGGTTATGTTGTGGTAGTACTG-3′

(nt-913 to -889)); and CDKP4, 5′-GTGCAGCTCCACCAG-
ACGAGAAG-3′ (nt-1 to -23)) designed from 5′-flanking
region upstream of the start codon ATG of the GhCDKA
gene. The amplified PCR products were gel purified, cloned,
and then sequenced. The sequence of DES 119 (G. hirsutum)
was then aligned with those of TM-1 (G. hirsutum), 3–79 (G.
barbadense), and CMD11 (G. tomentosum) using the Clustal
method (DNASTAR software) for SNP identification.

The chromosomal location of the CDKA gene was deter-
mined by following the overall strategy of Liu et al. [21] using
hypoaneuploid chromosome substitution stocks (BC0F1)
and a euploid BC5F1S1 chromosome substitution line of TM-
1 disomic for the chromosome 16 of G. barbadense [22]. The
monotelodisomics included telosomes 1Lo, 2Lo, 2sh, 3Lo,
3sh, 4sh, 5Lo, 6Lo, 7Lo, 7sh, 9Lo, 11Lo, 14Lo, 15Lo, 15sh,
16sh, 16Lo, 18Lo, 18sh, 20Lo, 22sh, 25Lo, and 26sh, where
Lo = long arm and sh = short arm. Monosomes included
chromosomes 1, 2, 3, 4, 6, 7, 9, 10, 12, 17, 18, 20, 23, and 25.
Each interspecific hybrid is expectedly heterozygous for all
polymorphisms between the two parents, except those ren-
dered hemizygous by the monosome- or telosome-defined
deficiency. At hemizygous loci, the G. hirsutum allele is
expectedly absent and only the G. barbadense allele is present.
The telosomes expectedly lack all or most of the opposing
arm, for example, an F1 plant monotelodisomic for 6Lo will
be hemizygous for G. barbadense polymorphisms in the short
arm distal to the telosome breakpoint. We used cytologically
identified BC5-derived inbred euploid backcross substitution
line for chromosome 16 of G. barbadense in G. hirsutum in
lieu of an available monosomic BC0F1 plant. The disomic
chromosome substitution line is euploid but has one pair of
chromosome 16 from G. barbadense line 3–79, whereas the
other 25 chromosome pairs are largely or completely derived
from TM-1.

A SNP primer (5′-GCCCAACTATAGAAATGAAA-3′)
designed based on a single nucleotide differences in the
sequences between the lines among the three Gossypium
species (G. hirsutum, G. barbadense, and G. tomentosum) was
used to screen SNP markers of the genetic stocks with the
ABI Prism SNaPshot multiplex kit following the method of
Buriev et al. [23]. Briefly, the pfu-amplified PCR products
were incubated with SAP and Exo I (5 units of SAP and
2 units of Exo I for 15 μL PCR product) at 37◦C for 1 hr
followed by 75◦C for 15 min. The PCR mixture contained
5 μL of SnaPshot Multiplex Ready Reaction Mix, 3 μL of
purified PCR product, 1 μL of SNP primer (10 μM), and 1 μL
of distilled water. The thermal cycle reaction was carried
out with 25 cycles of 96◦C, 10 sec, 50◦C, 5 sec, and 60◦C,
30 sec. After treated with SAP, 0.5 μL of SnaPshot product
was mixed with 0.5 μL of size standard and 9 μL of Hi-Di
formamide denatured at 95◦C for 5 min and then run onto a
3100 Genetic Analyzer (Applied Biosystems).

3. Results

3.1. Cloning and Characterization of GhCDKA Gene. A
383 bp DNA fragment was amplified by PCR from a 10

DPA cotton fiber cDNA library using two degenerate primers
designed from the conserved ATP-binding and catalytic
domains of plant A-type CDK genes. BLAST searching
in GenBank Databases indicated that the 383 bp cDNA
encoded a protein with extensive homology to plant A-
type CDKs. A full-length fiber CDKA cDNA (1211 bp),
named GhCDKA, was subsequently cloned by 5′ and 3′

RACEs using gene-specific primers designed from the 383 bp
fragment. The GhCDKA gene and its 5′ flanking region
(9675 bp) (Supplementary Figure 1) were cloned by genomic
walking and inverse PCR. GhCDKA encodes a protein of
294 aa with a predicted molecular mass of 34 kDa. The
protein contained three conserved functional domains of
CDK proteins: an ATP-binding domain, a cyclin-binding
domain, and a catalytic domain. The GhCDKA protein also
had the conserved PSTAIRE motif found in A-type CDKs
in the cyclin binding domain. Comparisons of the cDNA
and genomic sequences revealed that the GhCDKA gene
contained 9 exons and 8 introns with 7 introns located
within the coding region and one intron at the 5′UTR region
(Supplementary Figure 1). The GhCDKA gene had the same
number and sizes of exons and the same number of introns
as the Arabidopsis CDKA; 1 gene (AtCDKA; 1, Genbank
GI: 18408695), but the sizes of introns were much larger
than those of Arabidopsis (Figure 1). The alignment of aa
sequences of CDKA proteins from cotton (GhCDKA) and
ten other plant species, including Populus tremula x Popu-
lus tremuloides (PtCDKA), Helianthus annuus (HaCDKA),
Picea abies (PaCDKA), Solanum lycopersicon (LeCDKA;
1), Pinus contorta (PncCDKA), Chenopodium rubrum
(CrCDKA), Helianthus tuberosus (HtCDKA), Antirrhinum
majus (AmCDKA), Nicotiana tobacum (NtCDKA), and
Arabidopsis thaliana (AtCDKA; 1) revealed that GhCDKA
was 91.5–94.2% identical to PtCDKA, PaCDKA, HaCDKA,
LeCDKA; 1, CrCDKA, PncCDKA, HtCDKA, AmCDKA, and
NtCDK and 86.7% identical to AtCDKA; 1 (data not shown).
Phylogenetic analysis of aa sequences of the 11 plant CDKA
proteins indicated that GhCDKA was distant to AtCDKA; 1
but closer to the other nine CDKAs (Figure 2).

3.2. Expression of the GhCDKA Gene. The mRNA abundance
of the GhCDKA gene was analyzed by Northern blot with
total RNA isolated from flowers, leaves, roots, and fibers at
different developmental stages (5, 10, 15, and 20 DPA). The
618 bp DNA fragment corresponding to the C-terminal and
3′-UTR region of GhCDKA cDNA (Supplementary Figure 1)
was amplified by PCR with two primers CDKC-2 and CDK5-
1 and used as a probe for Northern hybridization. Northern
blotting had been performed three times, and the results were
similar as shown in Figure 3(a), a 1.2 kb GhCDKA mRNA
band was detected in all tissues. The GhCDKA transcript
levels were high in 5 and 10 DPA fibers, moderate in 15
and 20 DPA fibers and roots, and low in flowers and leaves.
The GhCDKA transcript level was also determined by RT-
PCR. As shown in Figure 3(b), the amounts of 618 bp PCR
products amplified with the primers CDKC-2 and CDK5-1
were proportional to the first strand cDNA input. The RT-
PCR results indicated that transcript levels of the GhCDKA
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Figure 1: Diagrammatic comparison of cotton GhCDKA gene (a) with Arabidopsis thaliana AtCDKA; 1 Gene ((b), Genbank GI: 18408695).
ATG represents the start codon. TGA and TAG are stop codons. The exons containing the coding regions are boxed (numbers 1–8). The
exons located in the 5′-UTR region are represented by the L boxes. The positions of codons at the 5′ and 3′ ends within exons are indicated.
Intron sizes are indicated under the intron lines.
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Figure 2: Phylogenetic analysis of eleven plant CDKA proteins. The phylogenetic tree was constructed based on amino acidsequences of
11 plant CDKAs using the Clustal method. The eleven CDKA proteins are GhCDKA (Gossypium hirsutum); PtCDKA (Populus tremula x
Populus tremuloides); HaCDKA (Helianthus annuus); PaCDKA (Picea abies); LeCDKA1 (Solanum lycopersicum); PncCDKA (Pinus contorta);
CrCDKA (Chenopodium rubrum); HtCDKA (Helianthus tuberosus); AmCDKA (Antirrhinum majus); NtCDKA (Nicotiana tobacum);
AtCDKA; 1 (Arabidopsis thaliana).

gene were high in 5 and 10 DPA fibers, moderate in 15 DPA
fibers and roots, and low in flowers and leaves. The RT-PCR
result was consistent with Northern analyses.

Total protein isolated from 5, 10, 15, and 20 DPA cotton
fibers, flowers, and leaves was separated by SDS-PAGE,
electroblotted onto a nitrocellulose membrane, and probed
with anti-PSTAIRE antibody. Western analysis showed that
the antibody recognized a 34 kDa protein in all cotton tissues
(Figure 4). The GhCDKA protein was present in a moderate
level in leaves but low in flowers. The GhCDKA protein
in fibers increased from 5 DPA, peaked at 15 DPA, and
decreased from 15 to 20 DPA. The Western and Northern
results suggest that the GhCDKA gene is differentially
expressed and developmentally regulated.

3.3. Identification of SNP in GhCDKA. Analyses of PCR-
amplified products from TM-1 (G. hirsutum), 3–79 (G. bar-
badense), CMD11 (G. tomentosum), CMD-5 (G. raimondii),
and CMD-12 (G. mustellinum) by agarose gel electrophoresis
revealed that the products were 0.9 kb in size and not
discernibly polymorphic (data not shown). Genomic DNA

of CMD-3 (G. arboreum) did not yield an amplified product
with CDKA-specific primers, although this DNA was ampli-
fied with other control primers (unpublished information).

The 0.9 kb 5′ flanking sequence of the CDKA gene ampli-
fied from genomic DNA of CMD-01 (TM-1, G. hirsutum),
CMD-02 (3–79, G. barbadense), and CMD-11 (G. tomen-
tosum), respectively, was aligned with G. hirsutum var. DES
119 (Figure 5) for SNP identification. The incidence of SNP
was about 1% in the -1 to -913 nt region of the CDKA
gene. Specifically, we observed two indels, four transversions
and three transitions type of mutation in the 5′ flanking
sequences of the CDKA gene (Figure 5). Two SNP occurred
between the two G. hirsutum genotypes and six SNP
occurred between G. barbadense and G. hirsutum. Results
suggested that a putative CDKA locus with at least four
different haplotype variants was present in the tetraploid
cotton species.

3.4. SNP Marker. To develop a primer for a potentially
scorable SNP marker, we targeted a deletion (G) site at
nucleotide position 769 (Figure 5), as it distinguished the
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Figure 3: (a) Northern analysis of GhCDKA expression in different cotton tissues. Ten μg of total RNA from fibers (5, 10, 15, and 20 DPA,
lanes 1–4), flowers (lane 5), leaves (lane 6), and roots (lane 7) was electrophoresed on an agarose gel, transferred onto a nylon membrane,
and hybridized with a 32P-labeled GhCDKA cDNA. Two EtBr-stained rRNA bands indicate that an equal amount of total RNA was loaded
for each sample. The relative GhCDKA transcript levels were determined by the ratio of hybridized intensity of the 1.2 kb GhCDKA mRNA
to the EtBr stained 28S rRNA band using the program of Scion Image for Windows (Scion Corporation). (b) RT-PCR analysis of GhCDKA
mRNA. Total RNA from leaves, flowers, roots, and 5, 10, and 15 DPA fibers was used as template in generating first strand cDNA. Each cDNA
was made 1x, 5x, 10x, and 20x dilutions and used as template for PCR amplification with two GhCDKA gene specific primers: CDKC-2 and
CDK5-1.

1 2 3 4 5 6

GhCDKA

Figure 4: Western blot analysis of GhCDKA. Seventy μg of total
protein was subjected to SDS-PAGE, blotted onto a nitrocellulose
membrane, and probed with anti-PSTAIRE antibody. Proteins
samples are from 5 DPA (lane 1), 10 DPA (lane 2), 15 DPA (lane
3), and 20 DPA (lane 4) fibers, flowers (lane 5), and leaves (lane 6).

3–79 CDKA sequence from those of the other tetraploids.
The sequence of this specific SNP primer was 5′-GCCCAA-
CTATAGAAATGAAA-3′. Two SNPs corresponding to the
TM-1 (G. hirsutum) and 3–79 (G. barbadense) alleles were
identified by the single primer extension technology and
designated here as CDKAcg (black) and CDKAat (green)
(Figure 6). F1 hybrids between TM-1 and 3–79 exhibited
peaks of both alleles, showing codominance. Our results also
detected the presence of CDKAcg allele in G. tomentosum
and the presence of both CDKAcg and CDKAat alleles in
the diploid species of G. raimondii (D5). We did not find
the presence of any other bases except G or T as SNP
markers specific to this SNP primer, suggesting that this locus
was biallelic. We did not find the presence of any CDKA-
specific SNP marker using the genomic DNA of G. arboreum
(A2) species, suggesting the absence of any such locus in
G. arboreum specific to the SNP primer or a major change
in the primer annealing site of this marker in G. arboreum.
This result was concordant with the absence of amplified
products specific to CDKA gene in G. arboreum (A2) species,
confirming the absence of the CDKA gene in G. arboreum
(A2).

3.5. Chromosomal Location. Electropherograms revealed two
peaks and thus heterozygosity for CDKAat and CDKAcg

alleles in all of the hypoaneuploid chromosome substitution
F1 plants, except one (Figure 6). The single exception was
the monotelodisomic Te16sh, which lacks all or most of the
long arm of chromosome 16 and possessed the 3–79 allele,
CDKAat, but lacked the TM-1 allele, CDKAcg . Similar results
were observed for the disomic backcrossed chromosome 16
substitution line CSB 16 showing the presence of only the 3–
79 alleles.

4. Discussion

As a first step toward understanding the mechanisms of fiber
cell division and differentiation, a fiber cDNA, GhCDKA, and
its corresponding gene have been cloned and characterized.
The deduced aa sequence of GhCDKA shows high identity
(more than 86%) to the CDKAs from 10 diverse plant
species. The alignment of the 11 plant CDKAs indicates
that they all contain 294 aa residues (except for 302 aa
in AmCDKA) and their three functional domains (ATP-
binding, cyclin-binding, and catalytic) have identical aa
sequences (data not shown). These results indicate that A-
type CDKs are highly conserved in higher plants. Compar-
isons of the cotton CDKA gene with the Arabidopsis cdc2 A
(CDKA; 1) gene revealed that both genes contain 7 introns
within their ORFs (Figure 1). Although the two CDKA
genes encode proteins with identical molecular mass, the
intron sizes of the two genes are quite different. It will be
interesting to examine whether there are any differences in
transcriptional regulation or RNA splicing between the two
genes. A genome-wide analysis of cell cycle genes indicated
that a single CDKA gene (AtCDKA: 1) exists in Arabidopsis
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Figure 5: Alignment of 5′ flanking sequences of CDKA gene of DES119 (G. hirsutum), TM-1 (G. hirsutum), 3–79 (G. barbadense), and
CMD11 (G. tomentosum) showing the presence of several SNPs. The arrow indicated the position and the direction of the SNP primer
specific to the CDKA gene.

thaliana [24]. In contrast, multiple copies of two genes
(LeCDKA1 and LeCDKA2) encoding A-type CDKs have
been found in tomato [25]. Nicotiana tabacum contains a
single copy of the CDKA gene (NtCDKA) and at least one
gene similar to NtCDKA in the genome [26]. In this study,
Southern analysis revealed that one or two copies of the
GhCDKA gene are present in cotton (Gossypium hirstum)
(data not shown). Gossypium hirstum is a tetraploid plant
which contains A and D genomes. Further work is needed
to determine whether the GhCDKA gene is located in the A
or D or both genomes.

The Arabidopsis and rice CDKA genes have been shown
to be expressed not only in dividing tissues of root apex but

also in differentiated tissues, such as, sclerenchyma, pericycle,
and parenchyma of the vascular cylinder [15, 16]. These
results suggest that A-type CDKs are involved not only in cell
division but also in cell differentiation which is important
to the integration of cell division and differentiation in
meristems to produce new organs during plant development.
In contrast, no cdc2 (CDKA) transcripts have been detected
in differentiated adult tissues of chicken and Drosophila
[27, 28]. These findings suggest that plant CDKAs may have
different functions from those of animals. The Arabidopsis
CDKA; 1 gene (AtCDKA; 1) has been shown to participate in
trichome morphogenesis and development [29]. Fiber cells
grown in planta do not divide after initiation; however, some
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Figure 6: The electropherograms of two allelic SNPs, designated here as CDKAcg (black) and CDKAat (green), that corresponded to the
polymorphism between G. hirsutum inbred TM-1 and G. barbadense-doubled haploid 3–79. Genomic dosage profiles are shown for [A]
TM-1; [B] 3–79; [C–E] three hypoaneuploid-interspecific G. hirsutum x G. barbadense F1 hybrids, [C] lacking G. hirsutum chromosome 4
(H4), [D] a monotelodisomic-16sh F1 (Te16SH) lacking most of the long arm of G. hirsutum chromosome 16, [E] a monotelodisomic 16 Lo
F1 (Te16LO) lacking most of the short arm of G. hirsutum chromosome-16; [F] a backcross disomic substitution plant (CSB-16) in which
chromosome 16 of 3–79 has replaced the TM-1 chromosome 16; [G] a G. arboreum (A2 species); and [H] a G. raimondii plant (D5 species).
Electropherograms revealing both peaks that indicate heterozygosity for both parental SNPs, as in the H4 interspecific F1 hybrid, indicate
the locus is not in this chromosome. In contrast, absence of the G. hirsutum SNP CDKAcg from CSB 16 and Te16SH hybrids and its presence
in Te16LO concordantly indicate that the SNP marker is located in the long arm of the chromosome 16.



8 International Journal of Plant Genomics

fiber cells can divide under in vitro conditions [1]. These
observations suggest that fiber cells retain the competence
to divide after initiation. In this study, the GhCDKA gene
has been shown to be strongly expressed in elongated fibers
(Figure 3). Western analysis revealed that the fiber GhCDKA
protein level increased from 5 DPA, peaked at 15 DPA,
and remained at a high level at 20 DPA (Figure 4), which
coincided with primary and secondary cell wall syntheses
during fiber development. The expression analysis results
suggest that GhCDKA may play a role in fiber development.
The low GhCDKA transcript level versus the high amount
of GhCDKA protein in 20 DPA fibers suggests the possible
existence of posttranscriptional regulation of the GhCDKA
gene. In Arabidopsis, the transcript and protein levels of
AtCDKB; 1 (but not AtCDKA; 1) have been shown to
correlate with cell division rate [30].

Duplications through polyploidization and/or segmental
duplication and retrotransposon activity have contributed
extensively to the extant genomes of the Malvaceae, including
those of Gossypium [31–33]. The normal plant cell cycle
process is distinguished by a S phase (a round of DNA
replication) followed by M phase which are separated by
two gap phases (G1 and G2). Previous studies demonstrated
that some plant cells followed a different cell cycle mode
including endoreduplication where cells undergo iterative
DNA replications without any subsequent cytokinesis [34].
Endoreduplication is usually considered to provide a mech-
anism for increasing cell size [35] and involved modulating
the levels of CDKA activity [36, 37]. Cotton fibers are
unique cells and they are differentiated from epidermal
cells of the ovule. Regulation of cell cycle genes during
the very early stages of fiber development triggered some
specific epidermal cells in the ovule to stop cell division and
then elongate into fiber cells. Previous experiments using
5-aminouracil (5-AU), an inhibitor of DNA replication,
demonstrated that cotton fiber cells were arrested at the G1
stage [2]. Our results on Northern blot and RT-PCR analysis
revealed that the GhCDKA transcript was high in 5–10 DPA
fibers and moderate in 15 and 20 DPA fibers. Further studies
are needed to reveal if GhCDKA is a regulator of cell cycle
and DNA endoreduplication in fiber cells. Duplicated loci
pose significant challenges in virtually all aspects of genomics
research, including specific gene mapping in tetraploid
cotton [23]. Locus-specific markers are thus particularly
important for addressing these challenges, and the means to
develop them are crucial to the advancement of structural
genomics. One possible solution for marker development
is to exploit sequence conservation of a specific gene and
identify the gene in a locus-specific manner. The CDK gene
is of special interest because of its possible importance to
cotton fiber development, which entails major modifications
of cell division and growth. Although cotton is clearly of
polyploid origin, agarose gel analyses of amplified PCR
product(s) from diverse taxa of cotton genomic DNAs using
primers from conserved CDKA sequence regions showed no
size polymorphisms. Such a result could be due to uniformity
across duplicated loci or the existence of just one locus. The
predicament had led us to seek SNP markers that could be

used to define cotton CDK gene(s) and alleles in a locus-
specific manner. This approach may be generally applicable
for SNP development in cotton and is of particular value for
genes that are highly conserved.

Deficiency tests with interspecific hypoaneuploid F1s
provide a quick and fairly robust means of localizing
various types of loci to specific chromosomes and arms of
cotton. When we examined the hypoaneuploid F1 hybrids
used here, all but one exhibited a heterozygous banding
pattern of CDKAat and CDKAcg alleles, suggesting that the
CDKA locus was in any of respective chromosomes or
chromosome arms. However, although CDKAat was present
in the monotelodisomic Te16Lo-interspecific hybrid, it was
differentially absent from the quasi-isogenic Te16sh hybrid.
These results concordantly localized the CDKA gene to the
long arm of chromosome 16. In lieu of a monosomic-
interspecific F1 hybrid, we examined DNA from a euploid
disomic backcross (BC5Sn) substitution line, CS-B16 [38].
The disomic chromosome substitution line is euploid but
has one pair of chromosome 16 from G. barbadense line
3–79, whereas the other 25 chromosome pairs are largely
or completely derived from TM-1. Accordingly, CS-B16
is expectedly devoided of TM-1 chromosome-16 alleles,
homozygous for all loci in the alien (3–79) chromosome-16
and also homozygous for TM-1 alleles at nearly all (∼99%)
other loci of the genome. We observed that only the 3–79
CDKAat allele is present in CS-B16, strongly supporting the
finding from the monotelodisomic interspecific F1 plants
that the CDKA gene is located on chromosome 16. Our
results on the chromosomal location of CDKA SNP marker
on chromosome 16 were concordant with the cytogenetic
evidence on the origin of chromosome 16 from an ancestral
D genome diploid species [39].

The identification of SNP markers enables facile tracking
of the CDKA gene in cotton, and this gene has been
successfully mapped in the long arm of chromosome 16. Our
results indicate that single-primer extension technology can
be used to identify SNP markers in cotton genes, including
the 5′-upstream region of the genes and thus facilitate the
mapping and investigation of candidate genes for their effects
on fiber development.

Disclaimer

Mention of trademark or proprietary product does not con-
stitute a guarantee or warranty of the product by the United
States Department of Agriculture and does not imply its
approval to the exclusion of other products that may also
be suitable. The nucleotide sequence of GhCDKA has been
submitted to GenBank and assigned an accession number
EU006765.
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