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Purpose: Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling
is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration
or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments
of low-dose CT data in the presence of electronic noise background.
Methods: The authors first studied the statistical moment properties of detected signals in CT trans-
mission domain, where the noise of detected signals is considered as quanta fluctuation upon elec-
tronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the
mean–variance relationship of the detected signals in CT sinogram domain, wherein the image for-
mation becomes a linear operation between the sinogram data and the unknown image, rather than
a nonlinear operation in the CT transmission domain. To get insight into the derived new formula
by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT
scanner at five different mAs levels from 100 down to 17.
Results: The results demonstrated that the electronic noise background is significant when low-mAs
(or low-dose) scan is performed.
Conclusions: The influence of the electronic noise background should be considered in low-dose
CT imaging. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4722751]
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I. INTRODUCTION

Low-dose x-ray computed tomography (CT) is clinically de-
sired. It can be achieved by delivering less x-ray energy to
the patient via lowering the x-ray tube mAs or kVp val-
ues in data acquisition.1, 2 However, the quality of low-dose
CT images would be severely degraded due to excessive x-
ray quanta fluctuation and system inherent electronic noise
background in the acquired data,3, 4 if there is no adequate
noise treatment in processing the data for image reconstruc-
tion. Accurate statistical modeling of the data is a funda-
mental issue for low-dose CT imaging via either statistics-
based sinogram restoration2, 5–7 or statistical iterative image
reconstruction.8–10 For a clinical x-ray CT detection system,
the quanta noise is introduced as x-ray flux being generated
from the x-ray source and propagates along as the x-ray flux
traversing the patient, while the electronic noise is intrinsic to
the detection system.11, 12

The two principal sources of causing the CT data noise,
i.e., the photon counting statistics and the electronic noise
background, have been investigated individually.4, 11, 12 For

polychromatic x-ray generation, the signal statistics fol-
lows the compound Poisson distribution.13 While the math-
ematical formula of the compound Poisson distribution has
been explicitly derived,13 its manipulation seems numerically
intractable14 and encounters more severe challenges if the
electronic noise background is included. To consider the elec-
tronic noise background, the x-ray source is usually assumed
approximately as monochromatic and the signal statistics is
then described by the Poisson distribution.5, 6, 9 For a clin-
ical x-ray CT detection system, the electronic noise back-
ground follows a normal distribution,4, 6, 12 where the mean
and variance reflect the dark current and readout noise of
electronics, respectively. For low-dose CT imaging, the elec-
tronic noise background has been conjectured as an impor-
tant factor affecting the image quality.4, 15 This work extends
the previous study16 to consider explicitly the electronic noise
background. Because the variance of data measurements is
an important factor and determines the relative weight for
each measurement in either statistics-based sinogram restora-
tion or statistical iterative image reconstruction,5–10 this work
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focuses on the variance analysis, where a mean–variance re-
lationship with inclusion of the electronic noise background
is derived and validated and the contribution of the electronic
noise to the data variance is measured.

The remaining sections of this paper are organized as fol-
lows. In Sec. II, we first briefly describe the previously gained
knowledge on the noise properties of low-dose CT measure-
ments and then present a statistical moment analysis on the
measurements in CT transmission domain. Based on the anal-
ysis, we develop a new noise model to reflect the relation-
ship between the mean and variance of the measurements in
CT sinogram domain. Finally, to validate the presented noise
model and get insight into the associated parameters, experi-
mental design for data acquisition is outlined. In Sec. III, ex-
perimental results are reported, followed by discussion and
conclusion in Sec. IV.

II. METHOD

II.A. Statistical model of CT transmission data

Previous investigations have revealed the two principal
sources from which the CT transmission data noise arises, i.e.,
x-ray quanta noise and system electronic noise. The quanta
noise is due to the limited number of x-ray photons collected
by the detector and the electronic noise is the result from
electronic fluctuation in the detector photodiode and other
electronic components.4, 12 For polychromatic x-ray genera-
tion and ignoring the beam hardening effect, the acquired CT
transmission data by energy integrating detection can be de-
scribed by a statistically independent compound Poisson dis-
tribution plus a statistically independent Gaussian or normal
distribution. By the mathematical notations in Refs. 5–7, the
transmission data can be expressed as

I = compound Poisson(λ,�) + Normal
(
me, σ

2
e

)
, (1)

where the functional form of compound Poisson (λ, �) is
given in Ref. 13, notation � represents the x-ray energy spec-
trum, and parameter λ is the average number of x-ray pho-
tons having traversed the patient, i.e., the expectation value
of the number of photons, and is a measure of the radiation
intensity collected by the detector. Given the mAs and kVp
setting and body size, λ reflects the radiation dosage level.
Normal(me, σ

2
e ) denotes the normal distribution of the elec-

tronic noise with mean me and variance σ 2
e . In modern CT

systems, the mean me of the electronic noise, arising from the
detector dark current, can be determined immediately before
each scan by sampling the signals in unexposed detectors over
some time interval.7, 12 The variance σ 2

e of the electronic noise
can be estimated from the sample variance of a series of dark
current measurements. If a detector element is indexed by i,
then all the three parameters, (λ, me, σ 2

e ) in Eq. (1) shall have
a subscription of i, i.e., ( λi, me, i, σ 2

e,i). With the assumption
of monochromatic x-ray generation, Eq. (1) reduces to

I = Poisson(λ) + Normal
(
me, σ

2
e

)
. (2)

Equation (2) represents a noise model of the CT transmis-
sion data, ignoring the polychromatic nature of x-ray gener-
ation and other measurement errors. An analysis on the sta-

tistical moment properties of this noise model is given in
Sec. II.B.

II.B. Statistical moment analysis of CT transmission
data

In statistics, given a random variable X, the moment gen-
erating function is defined as φX(t) = E[etX], where E[.] in-
dicates the expectation operation.17 It is well-known that the
moment generating function for the sum of independent ran-
dom variables is just the product of the individual moment
generating functions.17 Thus, for the CT measurement model
of Eq. (2), let I = X + Y, where the random variables X and
Y are independent from each other and follow the Poisson
and Gaussian distributions, respectively, we have the follow-
ing moment generating functions:

(1) For the Poisson statistics, Poisson(λ), with parameter
λ > 0, the moment generating function of X is

φX(t) = exp{λ(et − 1)}. (3)

(2) For the Gaussian statistics, Normal(me, σ
2
e ), with pa-

rameters (me, σ
2
e ), the moment generating function of

Y is

φY (t) = exp

{
met + σ 2

e t2

2

}
. (4)

(3) For the mixture distribution, Poisson(λ)
+ Normal(me, σ

2
e ), the moment generating func-

tion of I = X + Y can be calculated by

φI (t) = φX+Y (t) = E[et(X+Y )] = φX(t)φY (t)

= exp

{
λ(et − 1) + met + σ 2

e t2

2

}
. (5)

According to the properties of the generating function, we
have the following results:

E[I ] = φ′
I (0) = λ + me, (6)

E[I 2] = φ′′
I (0) = (λ + me)2 + (

λ + σ 2
e

)
, (7)

E[I 3] = φ′′′
I (0) = (λ + me)3 + 3(λ + me)

(
λ + σ 2

e

) + λ,

(8)

where the superscript notation " ′ " reflects the derivative op-
erator. Furthermore, the second and third center moments of I
can be calculated as

E[(I − EI )2] = E[I 2] − (E[I ])2 = λ + σ 2
e , (9)

E[(I − EI )3] = E[I 3] − 3(E[I 2])(E[I ]) + 2(E[I ])3 = λ.

(10)

Equations (6) and (9) indicate the mean and variance of the
measurement I, respectively. Equations (6)–(10) will be used
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TABLE I. Order analysis of different terms in Eq. (17) under conditions of different ratios λ/σ 2
e .

λ/σ 2
e = O(100) λ/σ 2

e = O(101) λ/σ 2
e = O(102) λ/σ 2

e = O(103) λ/σ 2
e = O(104) λ/σ 2

e = O(105)

T̃2/T̃1 O(100) O(10−1) O(10−2) O(10−3) O(10−4) O(10−5)
T̃3/T̃1 O(10−2) O(10−2) O(10−3) O(10−4) O(10−5) O(10−6)
T̃4/T̃1 O(10−3) O(10−3) O(10−5) O(10−7) O(10−11) O(10−13)

in Sec. II.C. For simplicity purpose, the expectation operation
E[.] will be replaced by E hereafter.

II.C. Variance analysis of the transmission data in CT
sinogram domain

According to the results of the above statistical moment
analysis, the mean and variance of I in Eq. (2) can be written
as follows:

EI = λ + me and Var(I ) = λ + σ 2
e . (11)

Based on the Lambert–Beer’ law, the measurement p of the
line integral along an attenuation path can be approximately
calculated by

p = ln
I0

I
= ln(I0) − ln(I ), (12)

where I0 represents the radiation intensity prior to arrival at
the body and can be measured by system calibration, e.g., by
air scans. Therefore, I0 is usually treated as a nonrandom fac-
tor. According to the Appendix at the end of this paper, by the
use of the relationship of Eq. (12) and the three-order Tay-
lor expansion about the functions ln (x) and ln 2(x) at the ex-
pectation point of EI, the variance of measurement p can be
expressed as follows:

Var(p) = Var(ln(I )) ≈ (ln′(EI ))2Var(I )

− (ln′′(EI ))2Var2(I )

4
+T = Var(I )

(EI )2
−Var2(I )

4(EI )4
+ T ,

(13)

where

T =
(

(ln2(EI ))′′′

3!
−2

(
ln(EI )+ ln′′(EI )

2!
Var(I )

)
ln′′′(EI )

3!

−
(

ln′′′(EI )

3!

)2

E(I − EI )3

)
E(I − EI )3. (14)

According to Eq. (11), Var(p) in Eqs.(13) and (14) can be
expressed as

Var(p) = λ + σ 2
e

(λ + me)2
+ −(

λ + σ 2
e

)2

4(λ + me)4

+
(

−λ

(λ + me)3
+ λ

(
λ+σ 2

e

)
3(λ + me)5

− λ2

9(λ + me)6

)
. (15)

In reality, in order to reduce the effect of detector dark current,
the mean me of the electronic noise is often calibrated to be
zero.7, 12 Thus, the variance of the line-integral measurement

in Eq. (15) with me = 0 can be written as

Var(p) = λ + σ 2
e

λ2︸ ︷︷ ︸
T1

+ −(
λ + σ 2

e

)2

4λ4︸ ︷︷ ︸
T2

+
(

− 1

λ2
+

(
λ + σ 2

e

)
3λ4

− 1

9λ4

)
︸ ︷︷ ︸

T3

. (16)

Based on the rational function expansion,18 Var(p) in the
three-order Taylor expansion (16) can be further expressed as

Var(p) = 1

λ︸︷︷︸
T̃1

+ σ 2
e − 5

4

λ2︸ ︷︷ ︸
T̃2

+ − 1
2σ 2

e + 1
3

λ3︸ ︷︷ ︸
T̃3

+ − 1
4

(
σ 2

e

)2 + 1
3σ 2

e − 1
9

λ4︸ ︷︷ ︸
T̃4

. (17)

The difference between the rational function expansion
(17) and the original Taylor expansion (16) is the ordering
along the parameter λ. Since λ reflects the mean radiation
intensity of detected x-ray photons, Eq. (17) might be more
meaningful than Eq. (16) in analyzing the relative importance
of those different terms T̃i (or mean radiation intensity) for
low-dose CT imaging. The first term in Eq. (17) reflects the
variance which is mainly due to the quanta noise or Poisson
statistics. The electronic noise affects the second and higher
terms in the total variance of Eq. (17). Therefore, the signif-
icance of the electronic noise can be measured with respect
to λ. From previous reports,9, 10, 19, 20 λ is in the range of tens
for ultra low-dose scans10 up to thousands for normal-dose
scans.9, 19, 20 In this study, the minimum order of λ was as-
sumed at O(101), i.e., an extremely low count imaging. Using
the first term T̃1 = 1/λ of Eq. (17) as a reference, we per-
formed an order analysis on the other terms in Eq. (17) under
the conditions of different ratios λ/σ 2

e . The results are shown
in Table I.

In the extremely low-dose CT imaging situation, the order
of λ/σ 2

e may approach to O(100), see the second column of
Table I, i.e., the x-ray signal is at the same magnitude as the
electronic noise background. In this case, the second term is
at a similar order as the first term and so it must be consid-
ered. The third and higher terms are at a level more than two
orders lower than the first term and so they may be ignored.
At the low-dose scanning level with λ/σ 2

e at the order O(101),
see the third column of Table I, the second term is only an or-
der lower than the first term and so it shall be considered. The
other terms may be ignored. In other cases from relatively
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TABLE II. Order analysis of different terms in Eq. (16) under conditions of different ratios λ/σ 2
e .

λ/σ 2
e = O(100) λ/σ 2

e = O(101) λ/σ 2
e = O(102) λ/σ 2

e = O(103) λ/σ 2
e = O(104) λ/σ 2

e = O(105)

T1/T̃1 O(100) O(100) O(100) O(100) O(100) O(100)
T2/T̃1 O(10−1) O(10−1) O(10−1) O(10−1) O(10−1) O(10−1)
T3/T̃1 O(10−1) O(10−1) O(10−1) O(10−1) O(10−1) O(10−1)

low-dose to normal-dose imaging, i.e., the order of λ/σ 2
e is

higher than O(101), (see the fourth and higher columns in
Table I), the second and higher terms (i.e., the electronic noise
background) may be ignored.

Assuming that the ratio Ti/T1 (i = 2, 3, 4 ) is less than the
order of O(10−2) for low-dose CT imaging, we obtain a new
approximation of Var( p) in Eq. (17) with consideration of the
electronic noise background as follows:

Var(p) = 1

λ
+ σ 2

e − 1.25

λ2
. (18)

where the constant term “−1.25” may vary slightly when dif-
ferent order Taylor expansion is used.

For comparison purposes, we performed a similar ordering
analysis using the original Taylor expansion form of Eq. (16).
Since λ indicates the mean radiation intensity, then T̃1 = 1/λ

was used as the reference (i.e., the case of ignoring the elec-
tronic noise background). The results are shown in Table II.
It can be observed that both the second and third terms in Eq.
(16) may have noticeable contributions to the total variance if
assuming that the ratio Ti/T̃1 (i = 1, 2, 3 ) would be less than
the order of O(10−2) in low-dose CT imaging. In other words,
if Eq. (16) is used for CT image reconstruction, the second
and third terms in Eq. (16) shall be included for all dose level
imaging. The inclusion of these two terms can introduce sig-
nificant computing complexity for the image reconstruction
task.

Considering the different expansion properties in Eqs. (16)
and (17), we selected the rational function expansion of
Eq. (17) for the following studies. For the low-dose CT im-
age reconstruction in the ratio range Ti/T1 (i = 2, 3, 4 ) of less
than the order of O(10−2), we conjecture that the variance of
Eq. (18) shall be considered.

By the Lambert–Beer’ law, the mean λ of the transmission
datum and the mean p̄ of the line-integral measurement p can
be approximately expressed as11

λ = I0 exp(−p̄). (19)

Considering the use of Bowtie attenuating filtration on the
x-ray flux and system calibration operations among all detec-
tor elements or bins,12 the incident radiation intensity I0 will
no longer remain constant for all detector bins. For a detector
bin i, Eq. (19) then becomes

λi = I i
0 exp(−p̄i). (20)

Thus, Var( pi) of Eq. (18) for each detector bin i can be ex-
pressed as

σ 2
pi

= Var(pi) = 1

λi

+ σ 2
e,i − 1.25

λ2
i

= 1

λi

(
1 + σ 2

e,i−1.25

λi

)

= �i exp(p̄i)
(
1 + �i exp(p̄i)

(
σ 2

e,i − 1.25
))

, (21)

where �i = 1/I i
0. Considering the polychromatic nature of

x-ray generation and system calibration, �i may no longer be
exactly equal to 1/I i

0, but can be measured by repeated scans.
Obviously, if ignoring the electronic noise background in
Eq. (2), the variance estimation by Eq. (21) would reduce to a
similar one as that in Ref. 2. Validation of the new mean–
variance relationship (21) with inclusion of the electronic
noise background at different mAs levels and study of its as-
sociated parameters (�i, σ 2

e,i) are performed by the following
experimental design. The main goal in the experimental stud-
ies is to estimate the parameters {�i, σ 2

e,i} and analyze their
roles in the data variance σ 2

pi
.

II.D. Data acquisition

Experimental phantom data were acquired using a clinical
CT scanner (Siemens SOMATOM Sensation 16 CT scanner).
An anthropomorphic torso phantom (Radiology Support De-
vices, Inc., Long Beach, CA) was used as shown in Fig. 1.
The phantom was scanned repeatedly 150 times by a cine
mode at a fixed bed position, i.e., each time the scanner ro-
tated 360o or a full circle around the phantom while the bed
position remains the same. Each of the repeated scanning of
150 times was set at a specific mAs level. A total of five dif-
ferent mAs values were used from 100 down to 17, i.e., 100,
80, 60, 40, and 17 mAs. By each mAs value, the tube voltage
was set as the same as 120 kVp. In other words, the phan-
tom was scanned at five different mAs levels; and at each
mAs level, the scanner rotated around the phantom 150 times.
The parameters of scanning geometry were as follows: (1)
Each rotation included 1160 projection views evenly spaced
on a circular orbit. (2) Each view contained 672 data ele-
ments each from one of the 672 detector bins. (3) The distance
from the detector arrays to the x-ray source was 1040 mm.
(4) The distance from the rotation center to the x-ray source
was 570 mm. (5) The space of each detector bin was
1.407 mm.

In modern CT systems, the CT transmission measurements
are usually calibrated and outputted as scaled line-integral
measurements or sinograms, {p̂i}. In order to match the
physics meaning of the line integrals {pi} in the sinogram do-
main [i.e., the Lambert–Beer’ law of Eq. (19)] and also to give
a reasonable estimation about the parameter λi in Eq. (20),
according to the calibrated output of sinograms as described
in Ref. 16, the outputted sinograms in this study were scaled
by a scaling factor 2294.5, which relates to the number of
bits stored in the computer. In other words, the stored dig-
ital number and the physical line integral are related by
p̂i = 2294.5pi . In Sec. III, we will focus on the experimental
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FIG. 1. Illustration of an anthropomorphic torso phantom (a), an acquired dataset in sinogram format from one slice of the 16 detector rows (b), and a CT image
reconstructed by a filtered back-projection (FBP) method from the sinogram dataset (b).

studies of the relationship between the mean and variance of
Eq. (21).

III. RESULTS

To estimate the two parameters (�i, σ 2
e,i) in Eq. (21), we

first calculated the sample mean p̄i and variance σ 2
pi

using the
150 samples of the scaled outputted sinograms or the physical
line-integral measurements {pi} from each channel i in one of
the 16 detector rows at each mAs value. Since each rotation
contained 1160 projection views, there were a total of 1160
calculated pairs (p̄i ,σ 2

pi
) for each channel i for each mAs level.

A set {p̄i}, i = 1, 2, 3, . . . , 672, makes up a projection view for
a detector band. All the 1160 projections on this detector band
around the phantom make up a sinogram. Figure 1(b) shows
an example of such a sinogram. A presentation in sinogram
format of the variance images {σ 2

pi
} is shown in Fig. 2 for

different mAs levels.
Comparing the variance image at 100 mAs level with that

at 17 mAs level, the effect of the electronic noise background
is noticeable by the following observations. Since the elec-
tronic noise is relatively uniform across all detector bins, the
data variance image shall be less uniform at 100 mAs level
than that at 17 mAs level. This is observed in the figure. At
100 mAs level, the variance shall be smaller at less attenuated
areas and remains nearly the same at heavily attenuated areas
where the electronic noise dominates. This is also observed in
the figure. One of the heavily attenuated areas in the sinogram
representation is at the bins from 200 to 500 and views from
200 to 400 and another area is at the bins from 200 to 500 and
views from 750 to 950.

In the previous study,16 the mean–variance relationship in-
volves one parameter for each detector bin i, i.e., �i, and so
this parameter at each bin i was first calculated from the cor-
responding pair (p̄i , σ 2

pi
) and then averaged over the 1160

views. In this work, there are two parameters {�i, σ 2
e,i} in

the variance estimation model (21), and the previous method
is no longer applicable. Therefore, we took an alternative ap-
proach of estimating the parameters �i and σ 2

e,i by fitting the

1160 paired data for each bin i. Each set {�i} or {σ 2
e,i} can

be plotted as a curve along the bin index, i = 1, 2, 3,. . . ,
672, i.e., across the field-of-view (FOV). In the parameters
fitting experiments, the MATLAB function “lsqcurvefit” was
used together with the “trust-region-reflective method.” To
ensure computing accuracy, the associated optimization set-
tings were as follows: (1) the termination tolerance on the
function value was 1 × 10−6; (2) the termination tolerance
on the variable was 1 × 10−6; and (3) the maximum iteration
is 400. To perform the goodness-of-fit for evaluating the pre-
sented model (21), we used the sum of squares due to error
(SSE), the coefficient of determination (or R-square), and the
root mean squared error (RMSE).

Figure 3 shows the fitted parameter factors {�i} in Eq. (21)
from the 150 repeatedly measured samples at the five dif-
ferent mAs levels. The curves in Fig. 3(a) were fitted from
the variance estimation model (21) without considering the
electronic noise background (i.e., set σ 2

e,i = 0). These curves
are similar, as expected, to those in Ref. 16. Some variations
from those curves in Ref. 16 can be seen because of the use
of different mean–variance relationship formulae and differ-
ent implementations of the calculation procedure. The sim-
ilarity at higher mAs levels (≥40) indicates the domination
of the Poisson statistics of the quanta noise where including
or ignoring the electronic noise does not make a noticeable
difference. The noticeable difference at the low mAs level,
e.g., 17 mAs indicates the influence of the electronic noise
(i.e., the difference occurs because of the electronic noise pre-
sented in the acquired data, but was ignored in the calcula-
tion procedure). The above observations from Fig. 3(a) with
comparison to the results in Ref. 16 can also be seen with
comparison to Fig. 3(b). The curves in Fig. 3(b) were fitted
from the variance model (21) with consideration of the elec-
tronic noise. Those curves at higher mAs levels (≥40 ) are
similar in shape to that in Fig. 3(a), indicating the domina-
tion of the Poisson statistics at relatively higher dose imag-
ing cases. The curve at 17 mAs level is noticeably different
from that in Fig. 3(a), indicating the influence of the electronic
noise.
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FIG. 2. The sinogram presentation of variance images calculated from the 150 repeated samples of the scaled outputted sinogram for each channel i in one of
the 16 detector rows at each mAs value. From (a) to (e), the corresponding mAs value is 17, 40, 60, 80, and 100, respectively.

To more clearly see the difference between Figs. 3(a) and
3(b), we plotted the curves by continuous lines in Figs. 3(c)
and 3(d). These continuous lines compare the fitted {�i}
with/without considerations of the electronic noise in model
(21) at 17 mAs and 100 mAs, respectively. The most differ-
ent line segment ranges from bin 200 to bin 500, concurring
with the heavily attenuated area in Fig. 2. In summary, it is
observed that the shapes of {�i} curves from the variance
model (21) are similar at all the mAs levels in the presence
of electronic noise, see Fig. 3(b). This is expected, because of
�i ≈ 1/I i

0, that (1) each curve shall be symmetric from left
to right to reflect the symmetrical effect of the Bowtie filtra-
tion and (2) the amplitude of each curve shall increase from
center toward both sides to reflect the inverse proportional re-
lationship between �i and I i

0 (or the Poisson characteristics).

It is further observed that the difference of the fitted {�i}
with/without consideration of the electronic noise in model
(21) is noticeable in the low-dose imaging case of 17 mAs
level, see Fig. 3(c). This difference demonstrates that in low-
dose CT imaging, the electronic noise can have a noticeable
influence for ideal singoram estimation and image reconstruc-
tion. At the normal-dose level with mAs value of 100, the sim-
ilarity in Fig. 3(d) demonstrates that the electronic noise back-
ground can be ignored. This experimental observation con-
curs with the current practice in x-ray CT applications at the
normal-dose level. By comparing Fig. 3(a) with Fig. 3(b) for
this phantom/body size, the electronic noise may be ignored
at a mAs level greater than 40.

The above graphical observations from Fig. 3 can be doc-
umented by quantitative validation measures. For example,
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FIG. 3. An illustration of the fitted factor {�i} in model (21) from 150 repeated measurements at the five different mAs levels: (a) the fitted results from the
variance estimation model (21) without considering the electronic noise (i.e., set σ 2

e,i = 0); (b) the fitted results from the variance estimation model (21) with
consideration of the electronic noise; (c) a comparison of the fitted {�i} with/without consideration of the electronic noise in model (21) at 17 mAs level; and
(d) a comparison of the fitted {�i} with/without consideration of the electronic noise in model (21) at 100 mAs level.

Table III shows the corresponding coefficients of determi-
nation with 95% confidence bounds and the goodness-of-fit
for fitting model (21) at the detector bin 300 and bin 450.
It can be seen that in all the cases, the goodness-of-fit mea-
sures with consideration of the electronic noise are better than
those without considering the electronic noise in model (21).
Another example is the consistency measure between the fit-
ted parameters {�i} with and without considering the elec-
tronic noise in model (21) at different mAs levels. This mea-
sure is usually given by the Lin’s concordance correlation
coefficients.21 Table IV shows the results of this measure. It
can be seen that the Lin’s concordance coefficients increase
as the mAs level increases from 17 to 100, and all the lower
bounds of the 95% confidence interval of the correlations are
larger than 0.9, except in the case of 17 mAs. This consis-
tency measure indicates that the difference is significant at
17 mAs level with and without considering the electronic
noise in model (21), and suggests that the influence of elec-
tronic noise at lower mAs level must be considered.

Figure 4 shows the fitted parameter factor {σ 2
e,i} in model

(21) at five different mAs levels, where the median value of
each fitted {σ 2

e,i} is shown by the horizontal lines. To get in-
sight into these fitted results about {σ 2

e,i}, we look back to
Figs. 2 and 3.

At the 17 mAs level, we have observed from Figs. 2(a)
and 2(e) that the electronic noise plays a significant role in
the data (or total) noise. Thus, we expect that at the 17 mAs
level, the system calibration on the detected signals for the
outputted sinograms would not alter too much the electronic
noise variance. In other words, the fitted {σ 2

e,i} at low mAs
level would reflect more closely to the actual variance of the
electronic noise than that at high mAs level. Therefore, the
fitted {σ 2

e,i} are relative-uniformly distributed among all de-
tector bins, see Fig. 4(a), concurring with the expectation, and
the median value is around 10, agreeing with the previously
reported values.4, 7, 11, 12

At 40 and higher mAs levels, the electronic noise plays
less and less role in the total data noise, and the nonstationary
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TABLE III. The coefficients of determination with 95% confidence bounds and the goodness-of-fit for fitting model (21) at the detector bin 300 and bin 450
using the 150 repeated measurements at the five different mAs levels.

Coefficients of determination
(with 95% confidence bounds) Goodness-of-fit

mAs level Detector bin
Considering

electronic noise �i σ 2
e,i SSE R-square RMSE

17 300 Yes (1.999, 2.121) × 10−5 (6.162, 8.202) 1.006×10−2 0.9718 2.947 × 10−3

No (2.686, 2.747) × 10−5 – 1.476 × 10−2 0.9587 3.568 × 10−3

450 Yes (2.778, 2.938) × 10−5 (12.40, 17.24) 1.906 × 10−3 0.9686 1.283 × 10−3

No (3.511, 3.577) × 10−5 – 2.439 × 10−3 0.9598 1.451 × 10−3

40 300 Yes (8.342, 8.839) × 10−6 (14.07, 19.06) 1.604 × 10−3 0.9734 1.177 × 10−3

No (1.091, 1.113) × 10−5 – 2.192 × 10−3 0.9636 1.375 × 10−3

450 Yes (1.379, 1.446) × 10−5 (11.01, 18.06) 3.303 × 10−4 0.9714 5.341 × 10−4

No (1.559, 1.584) × 10−5 – 3.586 × 10−4 0.9689 5.562 × 10−4

60 300 Yes (6.188, 6.471) × 10−6 (6.668, 10.78) 5.036 × 10−4 0.9791 6.594 × 10−4

No (6.958, 7.065) × 10−6 – 5.485 × 10−4 0.9773 6.879 × 10−4

450 Yes (9.193, 9.615) × 10−6 (8.13, 17.43) 1.307 × 10−4 0.9718 3.359 × 10−4

No (9.950, 10.10) × 10−6 – 1.356 × 10−4 0.9708 3.421 × 10−4

80 300 Yes (4.334, 4.583) × 10−6 (10.54, 18.14) 3.869 × 10−4 0.9688 5.780 × 10−4

No (4.961, 5.054) × 10−6 – 4.161 × 10−4 0.9664 5.992 × 10−4

450 Yes (6.884, 7.218) × 10−6 (5.008, 17.65) 8.110 × 10−5 0.9674 2.646 × 10−4

No (7.298, 7.416) × 10−6 – 8.253 × 10−5 0.9668 2.669 × 10−4

100 300 Yes (3.536, 3.703) × 10−6 (10.61, 18.09) 1.732 × 10−5 0.9777 3.867 × 10−4

No (3.944, 4.008) × 10−6 – 1.956 × 10−5 0.9748 4.108 × 10−4

450 Yes (5.490, 5.736) × 10−6 (1.991, 16.21) 4.403 × 10−5 0.9711 1.950 × 10−4

No (5.726, 5.812) × 10−6 – 4.427 × 10−5 0.9710 1.954 × 10−4

nature of Poisson noise becomes noticeable. In these cases,
the second term (σ 2

e,i − 1.25) in Eq. (21) approaches to neg-
ligible, as compared to the first term. Therefore, the fitted
{σ 2

e,i} would be affected more and more by the contribution
of the first term (i.e., the Poisson noise). In other words, the
fitted {σ 2

e,i} would be less uniformly distributed as the mAs
value increases. The nonuniform distribution shall happen in
the range from bin 200 to bin 500, concurring with the heavy
attenuation area in Fig. 2. Considering that median value can
rule out the interference of the extreme values, Fig. 4(f) shows
the tendency of the median values of electronic noise at all
channels about five mAs levels. It can be seen that median
value decreases as the mAs value increases. To be seen be-
low, the amplitude of the median value variation is small as
compared to the first term in Eq. (21).

To get more insight into the results about the electronic
noise in the total data noise in Fig. 4, we performed an-
other analysis. The results are shown in Fig. 5. The top
row shows the mean number of the transmitted photons (i.e.,
λi = I i

0 exp(−p̄i)) and the variance of the electronic noise

(i.e., σ 2
e,i) along one projection view at 17 mAs level. The bot-

tom row shows the results at 100 mAs level. The other rows
show the results at other mAs levels. The left column shows
the results across all the detector bins. The right column
shows the zoomed-up image of the left column for those bins
from 250 to 400 where heavy attenuation occurs, referring to
Fig. 2.

It is clearly seen that at the 17 mAs level, the mean num-
ber of the transmitted photons (which is equal to the variance
of the transmitted data of Poisson statistics) and the variance
of the electronic noise are at the same order in the heavily at-
tenuated area between bin 250 and bin 400. However, at the
100 mAs level, the domination of the Poisson noise is clearly
seen, while the electronic noise remains at the same order as
that at 17 mAs level.

Putting Figs. 4 and 5 together, the left column of Fig. 5
shows the global picture of both variances of the Poisson
noise and the electronic noise, while Fig. 4 and the right col-
umn of Fig. 5 show the zoomed or local picture of the Poisson
and electronic noises. From the global picture, it is clear that

TABLE IV. Lin’s concordance coefficient between the fitted parameters �i at the detector bins from 200 to 500 with and without considering the electronic
noise in model (21) at different mAs levels.

95% confidence interval of
mAs level Sample size N Lin’s concordance coefficient concordance coefficient

17 301 0.6340 (0.5611, 0.6970)
40 301 0.9504 (0.9382, 0.9603)
60 301 0.9836 (0.9795, 0.9869)
80 301 0.9901 (0.9875, 0.9921)
100 301 0.9912 (0.9890, 0.9930)
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FIG. 4. An illustration of the fitted factor {σ 2
e,i} in model (21) from 150 repeated measurements at the five different mAs levels and the median value of the

fitted {σ 2
e,i} (a)–(e); and the fitted curve with an exponential functional from the calculated five median values (f).

at the heavily attenuated areas, the data quality is severely af-
fected at all mAs levels from 17 up to 100. From the local
picture, the different roles of the Poisson noise and the elec-
tronic noise in the total data noise are seen. At higher mAs
levels (≥60 ), the electronic noise background can be distin-
guished from the x-ray photon counts and, therefore, it may be
corrected by subtraction or simply be ignored. At lower mAs
levels, the electronic noise contaminates the photon counts.

In such cases, it shall be considered via modeling of the data
statistics.

In addition to the observations in the global and local pic-
tures, we also noted from Fig. 4(f) the decreasing of the me-
dian value of the electronic noise as the mAs level increases.
While the decreasing of the median value as the mAs level
increases is observable, the change is so small as compared
to the changing of the Poisson noise variance as mAs level
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FIG. 5. Number of transmitted photons and electronic noise along one projection view at different mAs levels of (a) −17, (c) −40, (e) −60, (g) −80, and (i)
−100. Pictures (b), (d), (f), (h), and (j) show the details for those detector bins between 250 and 400 at the different mAs levels, respectively.
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FIG. 5. (Continued).

increases. If this changing of the overall variance level of the
electronic noise is not ignorable, it can be incorporated via
Eq. (21) into a statistical image reconstruction.

So far, we have presented a global picture of Fig. 2 to show
the effect of the electronic noise background in the sinograms,
showed the effect of the Bowtie filtration on the variance of
the sinogram data in Fig. 3, and revealed the relative influence
of the electronic noise at five different mAs levels by Figs. 4
and 5. In the following, we report the experimental studies on
the effect of the electronic noise {σ 2

e,i} on the linearity of the
{�i} and on the variance estimation of Eq. (21).

The similarity of {�i} curves for different mAs levels can
be further seen by plotting the paired points {�i, 100, �i, mAs},
where {�i, 100} are the {�i} values at the 100 mAs level while
{�i, mAs} are the values at a lower mAs level. Figure 6 shows
the plots of the paired points at the five different mAs lev-
els with/without consideration of the electronic noise back-
ground. A linear relationship can be observed for each of the
four (17, 40, 60, and 80) mAs levels, similar to the results in

Ref. 16. The slope of the four lines in each of the two cases
(i.e., with and without consideration of the electronic noise)
was determined by linear fitting and the results are shown by
the four points at 17, 40, 60, and 80 mAs in Fig. 7.

Essentially, all the four slope values are closely represented
by the corresponding ratios of {�i, mAs/�i, 100}, see Fig. 6.
A noticeable difference between Fig. 6(a) (without consid-
ering the electronic noise) and Fig. 6(b) (with consideration
of the electronic noise) can be seen at the lower left cor-
ners of the figures for low mAs levels of 17 and 40. This
observation further indicates that the electronic noise shall
be considered at the low mAs levels for low-dose CT imag-
ing. The relationship between the ratio of {�i, mAs/�i, 100} and
the mAs values can be described by a reciprocal function as
shown in Fig. 7. It illustrates that when the mAs level is not
greater than 40, the difference between the two cases, i.e.,
considering electronic noise and without consideration of the
electronic noise, becomes noticeable. In other words, when
the mAs level is less than a threshold, the influence of the
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FIG. 6. Illustration of a linear relationship between factors {�i} at 100 mAs level and at other lower mAs levels from the variance estimation model (21).
(a) is from model (21) without considering the electronic noise (i.e., set σ 2

e,i = 0) and (b) is from model (21) with consideration of the electronic noise.
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electronic noise should be considered in such a low-dose CT
imaging.

To further show the difference between the two cases
with/without consideration of the electronic noise, we first di-
rectly calculated the variance of the acquired sinogram data
from the repeated scans at 17 mAs level. The plots of the
mean–variance of the line-integral measurements at two dif-
ferent bins are shown by the circles in Fig. 8 as an exam-
ple. We then calculated the mean–variance curves based on
the variance model (21) with consideration (the solid lines)
and without consideration (the dotted lines) of the electronic
noise. From this figure, it can be observed that the results
from both the repeated scans and the theoretical model (21)
with consideration of the electronic noise agree with each
other better than the results without considering the electronic
noise. To quantitatively measure the consistency between the
variances of the line-integral measurements from the repeated
scans and the predicted variances from the theoretical model
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FIG. 8. Plots of the mean–variance of the line-integral measurements at two different detector bins from the repeated scans and from the analytical formulas
(21) with and without considering the electronic noise. (a) is the result at bin 300 and (b) is the result at bin 450.
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TABLE V. Quantitative evaluation of the consistency between the variances
of the line-integral measurements from the repeated scans and the predicted
variances from the theoretical model (21) at two different detector bins with
and without considering the electronic noise.

Detector Considering
bin electronic noise SSE R-square RMSE

300 Yes 1.393×10−2 0.9662 3.464 × 10−3

No 4.336×10−2 0.7612 6.114 × 10−3

450 Yes 2.176×10−3 0.9583 1.370 × 10−3

No 6.004×10−3 0.8296 2.275 × 10−3

(21) at two different detector bins with and without consid-
ering the electronic noise, we calculated the associated SSE,
R-square, and RMSE as shown in Table V. Both the graphical
observation and the quantitative consistency measure further
indicate the importance of considering the electronic noise
background for low-dose CT imaging.

IV. CONCLUSION AND DISCUSSION

In our previous work,1, 2, 10, 16 a nonlinear relationship be-
tween the mean and variance of the measurements in the sin-
goram domain was presented without consideration of the
electronic noise background. In this experimental study, we
extended our previous mean–variance model in the sinogram
domain to include the electronic noise background for low-
dose CT imaging.

Based on the presented statistical moment analysis of the
measurements in the transmission domain via the Taylor ex-
pansion approximation of a continuous function, the variance
of the sinogram data at a specific detector bin can be deter-
mined by four physical quantities, as shown in formula (15):
(i) the line integral (i.e., p̄i) of the attenuation coefficients
along the x-ray path i; (ii) the incident photon number (i.e.,
1/�i); (iii) the mean (i.e., me) of the electronic noise; and (iv)
the variance (i.e., σ 2

e ) of the electronic noise. In modern CT
systems, some parameters in the mean–variance model (15)
can be measured as part of the standard routine calibration
operation. For example, from our systematic studies using the
repeated measurements in Ref. 16 and above, it can be ob-
served that parameter �i primarily depends on both the in-
cident photon number (or the mAs level) and the shape of
the Bowtie attenuating filter across the FOV, as shown in Fig.
3, and therefore can be estimated from measurements of air
scans. Another parameter in the mean–variance model (15),
i.e., the mean me of the electronic noise, arising from the
detector dark current, can be determined immediately before
each scan by sampling the signals in those unexposed detec-
tors over some time interval.6, 7, 12 From Figs. 4 and 5, it can
be observed that another parameter, i.e., the variance σ 2

e of
the electronic noise, reduces slightly as the mAs value in-
creases, and can be determined by the exponential relation-
ship of Fig. 5(f). In practice, the variance σ 2

e of the electronic
noise may be estimated from the sample variance of a series
of dark current measurements.6, 7 Given the above four phys-
ical quantities, Eq. (15) provides a theoretical means to esti-

mate the variance, which reflects the relative importance of
each measurement for various data processing tasks, for ex-
ample, a statistical image reconstruction task in the sinogram
domain.10

In the special case where the mean of the electronic noise
is calibrated to zero, we obtained the mean–variance model
(21), which reflects the ground-truth for an accurate statisti-
cal modeling of the low-dose CT data in the sinogram domain.
Based on Eq. (21), the sinogram variances can be predicted
accurately from the corresponding transmission data acquired
at a specific mAs level. Figures 3–5 illustrate that, because the
mean and variance relationship of Eq. (21) includes explicitly
the electronic noise background, the difference between the
two cases with and without considering the electronic noise
at a mAs level, e.g., lower than 60 mAs for the phantom body,
is visually noticeable. This observation on the difference be-
tween the two cases indicates that inclusion of the electronic
noise is needed for low-dose CT imaging.

The observation that the variance σ 2
e of the electronic noise

reduced slightly as the mAs value increased seems contradic-
tory to our intuition that the variance should be independent
from the mAs level. This intuition is based on the assump-
tion that the detection system is perfectly linear in the con-
cerned energy and count rate ranges. In general, the detection
system is made by the manufacturer to do so. If the assump-
tion does not hold, then the dependence would be reflected
by the small variation of Fig. 4(f). If the assumption holds,
then the dependence may be due to several factors in the data
calibration. For example, both Ii and I i

0 in their relationship
of Ii = I i

0 exp(−pi) of Eq. (12) contain the electronic noise.
If the scanner calibration uses a different way to handle the
electronic noise in Ii than that in I i

0, the outcome may af-
fect the intuition. By common perception, I i

0 is treated as a
parameter (nonstatistical). Therefore, the outcome may affect
the intuition. Another factor which may affect the intuition is
the calibration or correction for the beam hardening. Since the
energy spectrum of I i

0 is altered by the body attenuation, the
energy spectrum of Ii becomes unknown. Using the energy
spectrum of I i

0 to correct for the beam hardening on Ii may af-
fect the intuition. Another factor may be the calibration for mi

= 0. It is very interesting to see that by fixing the electronic
noise variance at the level found at 17 mAs [i.e., Fig. 4(a)],
the fitting on the Gamma parameter {�i} remained almost the
same (no noticeable difference) as that in Fig. 3. The same
outcome was also observed when fitting the Gamma parame-
ter {�i} by using the mean–variance level from the five mAs
levels. Based on these fitting experiments, we would conjec-
ture that the fitting on {σ 2

e } is relatively sensitive to the error
in the measured data. This may be another factor affecting
the intuition. Despite these influencing factors, the slight de-
crease of variance σ 2

e as mAs level increases is so small as
compared to the amplitude of the signals at those mAs lev-
els. So the small change will not affect the conclusion of this
experimental work.

It is expected that the gained knowledge on the noise
properties of the low-mAs sinogram data in this experimen-
tal work would assist the development of a statistical image
reconstruction algorithm in currently available CT scanners
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to achieve low-dose CT clinical applications, such as that in
Ref. 15. In the reconstruction algorithm development, since
the relationship between the mean and variance is no longer
linear, a Poisson model for the sinogram data is no longer
valid. Other statistical models are needed. Without an explicit
expression to describe the sinogram data statistics, the penal-
ized weighted least squares approach10 can be a choice with
accuracy up to the second order statistical moment. Searching
for an adequate expression to describe the sinogram statistics
remains a research topic, and our recent exploratory study in-
dicates that the information divergence theory can be a poten-
tial choice to describe the sinogram statistics.22
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APPENDIX: VARIANCE ANALYSIS OF A FUNCTION
OF ONE RANDOM VARIABLE

Suppose x ∈ X is a random variable and f( · ) is a smooth
function, ∀ε > 0 and ∃c > 0, applying three-order Taylor ex-

pansion at point EX, we can have

f (x) = f (EX) + f ′(EX)(x − EX) + f ′′(EX)

2!
(x − EX)2

+ f ′′′(EX)

3!
(x − EX)3 + f ′′′(ξ )

4!
(x − EX)4, (A1)

where ξ ∈ [EX − c, EX + c] and c is a constant. Equation
(A1) holds for all x ∈ [EX − c, EX + c] because the Taylor ex-
pansion works for a function in a bounded closed interval. In
our case, only the first four terms were considered in the Tay-
lor expansion because these four terms are sufficient for data
analysis. Including more terms can be conducted straightfor-
wardly if needed. The expectation of f(x) for the first four
terms can be expressed as

Ef (X) ≈ f (EX) + f ′′(EX)

2!
Var(X)

+f ′′′(EX)

3!
E(X − EX)3. (A2)

Similar to the Taylor expansion of function f(x), the expansion
of f 2(x) can be written as

f 2(x) ≈ f 2(EX) + 2f (EX)f ′(EX)(x − EX)

+2((f ′(EX))2 + f (EX)f ′′(EX))

2!
(x − EX)2

+ (f 2(EX))′′′

3!
(x − EX)3. (A3)

The expectation of f 2(x) for the first four terms can be ex-
pressed as

Ef 2(X) ≈ f 2(EX) + [(f ′(EX))2 + f (EX)f ′′(EX)]Var(X)

+ (f 2(EX))′′′

3!
E(X − EX)3. (A4)

The formula for the variance of f(X) then can be expressed as

Var(f (X)) = E(f (X) − Ef (X))2 = E(f 2(X)) − (E(f (X)))2

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f 2(EX) + [(f ′(EX))2 + f (EX)f ′′(EX)]Var(X) + (f 2(EX))′′′

3!
E(X − EX)3

−
(

f (EX) + f ′′(EX)

2!
Var(X) + f ′′′(EX)

3!
E(X − EX)3

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2(EX) + [(f ′(EX))2 + f (EX)f ′′(EX)]Var(X) + (f 2(EX))′′′

3!
E(X − EX)3

−
(

f (EX) + f ′′(EX)

2!
Var(X)

)2

−
(

2

(
f (EX) + f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
E(X − EX)3 +

(
f ′′′(EX)

3!
E(X − EX)3

)2
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f 2(EX) + (f ′(EX))2Var(X) + f (EX)f ′′(EX)Var(X) + (f 2(EX))′′′

3!
E(X − EX)3

−
(

f 2(EX) + f (EX)f ′′(EX)Var(X) + (f ′′(EX))2Var2(X)

4

)

−
(

2

(
f (EX) + f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
E(X − EX)3 +

(
f ′′′(EX)

3!
E(X − EX)3

)2
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= (f ′(EX))2Var(X) − (f ′′(EX))2Var2(X)

4
+ T .

,

(A5)
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where

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(f 2(EX))′′′

3!
E(X − EX)3−

2

(
f (EX) + f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
E(X − EX)3 −

(
f ′′′(EX)

3!
E(X − EX)3

)2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
(

(f 2(EX))′′′

3!
− 2

(
f (EX) + f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
−

(
f ′′′(EX)

3!

)2

E(X − EX)3

)
E(X − EX)3. (A6)

a)Author to whom correspondence should be addressed. Electronic mail:
jerome.liang@sunysb.edu

1H. Lu, I. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose CT
projections and noise treatment by scale transformations,” Conf. Record of
IEEE NSS and MIC, San Diego, CA, 3, 1662–1666 (2001).

2T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear
sinogram smoothing for low-dose X-ray CT,” IEEE Trans. Nucl. Sci. 51,
2505–2513 (2004).

3J. Hsieh, “Adaptive streak artifact reduction in CT resulting from excessive
X-ray photon noise,” Med. Phys. 25, 2139–2147 (1998).

4J. Xu and B. M. W. Tsui, “Electronic noise modeling in statistical iterative
reconstruction,” IEEE Trans. Image Process. 18, 1228–1238 (2009).

5P. J. La Riviere, “Penalized-likelihood sinogram smoothing for low-dose
CT,” Med. Phys. 32, 1676–1683 (2005).

6P. J. La Riviere and D. M. Billmire, “Reduction of noise-induced streak
artifacts in X-ray CT through spline-based penalized-likelihood sinogram
smoothing,” IEEE Trans. Med. Imaging 24, 105–111 (2005).

7P. J. La Riviere, J. Bian, P. A. Vargas, “Penalized-likelihood sinogram
restoration for CT,” IEEE Trans. Med. Imaging 25, 1022–1036 (2006).

8I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyen-
ergetic X-ray CT,” IEEE Trans. Med. Imaging 21, 89–99 (2002).

9L. A. Elbakri and J. A. Fessler, “Efficient and accurate likelihood for it-
erative image reconstruction in X-ray CT,” Proc. SPIE 5032, 1839–1850
(2003).

10J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares
approach to sinogram noise reduction and image reconstruction for low-
dose X-ray CT,” IEEE Trans. Med. Imaging 25, 1272–1283 (2006).

11A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs,
NJ, 1983), pp. 88–89.

12J. Hsieh, Computed Tomography Principle, Design, Artifacts and Recent
Advances (SPIE, Bellingham, WA, 2003).

13B. R. Whiting, P. Massoumzadeh, and O. A. Earl, “Properties of prepro-
cessed sinogram data in X-ray CT,” Med. Phys. 33, 3290–3303 (2006).

14G. M. Lasio, B. R. Whiting, and J. F Williamson, “Statistical reconstruc-
tion for X-ray CT using energy-integrating detectors,” Phys. Med. Biol. 52,
2247–2266 (2007).

15J. Wang, S. Wang, L. Li, H. Lu, and Z. Liang, “Virtual colonoscopy screen-
ing with ultra low-dose CT and less-stressful bowel preparation: A com-
puter simulation study,” IEEE Trans. Nucl. Sci. 55, 2566–2575 (2008).

16J. Wang, H. Lu, Z. Liang, D. Eremina, G. Zhang, S. Wang, J. Chen, and
J. Manzione, “An experimental study on the noise properties of X-ray CT
sinogram data in Radon space,” Phys. Med. Biol. 53, 3327–3341 (2008).

17M. R. Sheldon, Introduction to Probability Models, 8th ed. (Academic,
New York, 2003), pp. 64–75.

18W. Rudin, Principles of Mathematics Analysis, 3rd ed. (McGraw-Hill, New
York, 2007).

19J. Beutel, H. L. Kundel, and R. L. Van Metter, Handbook of Medical Imag-
ing: Volume 1. Physics and Psychophysics, SPIE, Monograph, Vol. PM79
(SPIE, 2000).

20A. Ginzburg and C. E. Dick, “Image information transfer properties of X-
ray intensifying screens in the energy range from 17 to 320 keV,” Med.
Phys. 20, 1013–1121 (1993).

21L. Lin, “A concordance correlation coefficients to evaluate reproducibility,”
Biometrics 45, 255–268 (1989).

22J. Ma, Z. Liang, Y. Fan, Y. Liu, J. Huang, H. Lu, and W. Chen, “A study on
CT sinogram statistical distribution by information divergence theory,” pa-
per presented at the IEEE Nuclear Science Symposium and Medical Imag-
ing Conference, Valencia, Spain, 23–30, 2011.

Medical Physics, Vol. 39, No. 7, July 2012

http://dx.doi.org/10.1109/TNS.2004.834824
http://dx.doi.org/10.1118/1.598410
http://dx.doi.org/10.1109/TIP.2009.2017139
http://dx.doi.org/10.1118/1.1915015
http://dx.doi.org/10.1109/TMI.2004.838324
http://dx.doi.org/10.1109/TMI.2006.875429
http://dx.doi.org/10.1109/42.993128
http://dx.doi.org/10.1117/12.480302
http://dx.doi.org/10.1109/TMI.2006.882141
http://dx.doi.org/10.1118/1.2230762
http://dx.doi.org/10.1088/0031-9155/52/8/014
http://dx.doi.org/10.1109/TNS.2008.2004557
http://dx.doi.org/10.1088/0031-9155/53/12/018
http://dx.doi.org/10.1118/1.596998
http://dx.doi.org/10.1118/1.596998
http://dx.doi.org/10.2307/2532051

