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Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images
are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a
short-scan angular range. However, the variation in the central angle from one time frame to the
next in gated short scans has been shown to create detrimental partial scan artifacts when performing
quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence
of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image
noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking arti-
facts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruc-
tion (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution
problem and can also lead to radiation dose reduction in the context of CT MPI.
Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal
myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations
of Poisson noise were added to projection data at each time frame to investigate the spatial distribu-
tion of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction
algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were mea-
sured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two
low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quanti-
tative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV),
and first moment transit time (FMT), were measured for two ROIs and compared to reference values
obtained from a high-dose scan performed at 500 mA.
Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise.
This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phan-
tom study, the level of noise was shown to vary by as much as 87% within a given image, and as much
as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise
pattern was shown to correlate with the source trajectory and the object structure. In contrast, images
reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller un-
expected noise fluctuations in the temporal direction when a short scan angular range was used. In
the numerical phantom study, the noise varied by less than 37% within a given image, and by less
than 20% between different time frames. Also, the noise standard deviation in SIR images was on
average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative
perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was
used instead of FBP to reconstruct images.
Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This
nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction
in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and
thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement
in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical
reconstruction framework to perform low-dose dynamic CT MPI. © 2012 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4722983]
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I. INTRODUCTION

Cardiovascular disease is the leading cause of death in the
world. One of its manifestations in the heart, coronary artery

disease (CAD), often results in acute myocardial infarction
(MI) or angina pectoris. In past decades, the morbidity and
mortality from CAD has been reduced in part due to the
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development of revascularization therapy.1, 2 However, if the
ischemic region extends beyond certain limits, or if a coro-
nary stenosis is not hemodynamically significant, percuta-
neous coronary intervention (PCI) offers minimal improve-
ments in outcomes. Myocardial perfusion imaging (MPI)
often enables a noninvasive assessment3 of CAD prior to
PCI, which is desirable for patient selection.4 The simultane-
ously high temporal and spatial resolution of multi-detector
computed tomography (MDCT) makes this modality a prime
candidate for MPI.5–23 The method can also offer CT an-
giography (CTA) simultaneously with MPI,16, 24 enabling an
assessment of both coronary anatomy and function from a
single scan. This is another compelling advantage of CT MPI
in the clinical environment. However, several existing issues
impede the application of CT MPI in practice. Technical is-
sues remain to be overcome in CT MPI in order to achieve
quantitative perfusion measurements. Furthermore, radiation
dose is an important concern due to repeated CT scans over
the same anatomical region.

In CT MPI, many time frames are acquired while an iod-
inated contrast agent is administered through intravenous in-
jection. To mitigate cardiac motion artifacts that may obscure
the definition of the myocardium, cardiac CT images are often
reconstructed from a selected set of projection view angles to
comprise a so-called short-scan angular range, viz., 180◦ plus
the fan-beam angle. The reconstructed image series can then
be analyzed to yield quantitative measurements of myocardial
perfusion such as the myocardial blood flow (MBF), myocar-
dial blood volume (MBV), and mean transit time (MTT).25, 26

However, the selected projection data must be acquired
within the same relatively static cardiac phase, which is often
selected at the end of diastole.27–29 Due to the need for a high
temporal resolution, rapid sequential scanning is necessary,
and empirically, the start angle of the short-scan range is
generally not constant between time frames. Indeed, the
nonsynchronicity between the gantry rotation and the cardiac
contraction causes a shift in the short-scan central angle
over the duration of the entire MPI data acquisition. This
variation has been shown to lead to partial scan artifacts
(PSA), which significantly compromise the accuracy of
quantitative MPI.30–33 Recently, variations in beam hardening
and scatter distribution have been suggested as potential
causes for PSA and corresponding correction methods have
been proposed.30–33

In addition to the PSA effects, which often compromise
quantitative capability in CT MPI, radiation dose is another
serious concern. Admittedly, the ionizing radiation dose im-
parted to patients during a dynamic perfusion scan can be
high because of the long scan time required to properly sam-
ple the contrast enhancement curve.34, 35 Alternative acquisi-
tion schemes have recently been proposed to reduce radiation
doses in CT MPI.36–39 However, these methods often invoke
the use of projection view angle undersampling and thus re-
quire hardware modifications of the scanner. A more typical
strategy consists of minimizing the dose by reducing the tube
current during the scan. However, this leads to fewer photons
reaching the detector and, consequently, to a lower signal-
to-noise ratio (SNR). Images reconstructed using filtered

backprojection (FBP) from low mAs projection datasets have
high noise levels. A possible method to mitigate the noise is
to use a statistical image reconstruction (SIR) (Refs. 40–42)
method. This strategy does not require a modification of the
scanner hardware. It has a great potential for clinical use de-
spite the fact that the image reconstruction time for a single
image volume remains long.

In this paper, in addition to the known partial scan arti-
facts, we demonstrate a new challenge for quantitative CT
MPI measurements: spatial noise nonuniformity. This effect
may result in unexpectedly high image noise regions and
streaking artifacts being present in some time frames, partic-
ularly in low-tube current studies. Specifically, in images re-
constructed using FBP, the noise spatial distribution depends
on the source trajectory from frame-to-frame and on the struc-
ture of the object being imaged. When multiple realizations
of noise are generated for a given time frame, and the result-
ing values in each pixel are compared across noise realiza-
tions, a strong gradient in the noise standard deviation can be
observed across the entire image. Moreover, this spatial dis-
tribution of noise tends to fluctuate from frame-to-frame de-
pending on the source trajectory relative to the object being
imaged. Consequently, a region which had a low noise for
a certain rotation range can have a much greater noise level
once a shift has occurred. This effect can have serious con-
sequences in CT MPI measurements. A scan protocol de-
signed to minimize the ionizing radiation received by the pa-
tient should aim at maintaining a high enough SNR to enable
quantitative evaluation of the MBF. However, due to spatial
variations in the noise level, a tube current deemed adequate
for a given short-scan central angle can result in an inadequate
noise level, as the source trajectory varies from frame-to-
frame. The accuracy of perfusion measurements could there-
fore be reduced. Furthermore, when the tube current is re-
duced to very low levels, noise streaks are often observed in
images. While the presence of these streaks depends mostly
on high attenuation structures in the object, their orientation
and severity depends also on the scan central angle. These ef-
fects could be particularly significant if one attempts to obtain
a quantitative perfusion map.

We demonstrate here that the spatial noise nonuniformity
can be significantly mitigated provided that a SIR scheme is
used.43 In the SIR framework, the expected noise present in
the projection data is integrated into the image reconstruc-
tion process. This method mitigates the structured gradient
observed in the noise distribution of FBP images, as well as
variations in noise level between time frames. Specifically,
projection data are weighted by the reciprocal of their noise
variance to penalize their contributions in the final recon-
structed image. As a result, the structured noise distribution
of images reconstructed with FBP is mitigated when using
SIR. Furthermore, when using the FBP algorithm, a distance
weighting is needed in the backprojection operation. In con-
trast, no such distance-dependent weighting factor is required
in the SIR framework. The absence of this factor results in a
noise distribution without a strong view angle dependence at a
given time frame. It thus reduces the potential impact of shifts
in source trajectory between different time frames. As a result
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SIR provides a potential cure for the noise spatial nonunifor-
mity in CT MPI observed when the conventional FBP recon-
struction is used.

The layout of the paper is as follows. In Sec. II, we briefly
review the FBP algorithm and discuss how the short-scan FBP
image reconstruction leads to a nonuniformity in the spatial
noise distribution. In Sec. III, the SIR algorithm that is sug-
gested to alleviate the problem is presented. The projection
datasets used in this study are presented in Sec. IV. The re-
sults are given in Sec. V and the discussion and conclusions
are in Sec. VI.

II. FILTERED BACKPROJECTION

The short-scan FBP formula used to reconstruct image
f(x, y) from fan-beam projection dataset g(β, γ ) is the
following:44, 45

f (x, y) = −1

2π2

∫ β0+π+γm

β0

dβ
R

L(x, y, β)2

∫ γm/2

−γm/2
dγw(β, γ )

× cos(γ )Hramp[sin(γ − γ0)]g(β, γ ), (1)

where L(x, y, β) the distance between the image point (x, y)
and x-ray focal spot position (R cos β, R sin β) and is calcu-
lated as follows:

L(x, y, β) =
√

(x − R cos β)2 + (y − R sin β)2.

The initial angle γ 0 is used to denote the detector element
position through the following equation:

cos γ0 = R − x cos β − y sin β

L(x, y, β)
.

R is the x-ray source to isocenter distance, β0 is the initial
angular gantry position, γ m is the full fan angle, and w(β, γ )
is a weight necessary to account for redundancy from doubly
measured projections.46 Hramp is the ramp filter kernel.

Due to the use of the distance weight L(x, y, β), it is well
known that the noise distribution in FBP image reconstruc-
tion is not uniform.47–51 Indeed, the filtered projection data are
multiplied by a weight inversely proportional to the square of
the distance between the source and the image point. If a pro-
jection datum is contaminated by a high level of noise, then
the image voxels along the corresponding ray will also suf-
fer from a high noise level or even streaks in extreme cases.
However, not all the voxels along the ray will be subject to the
same increase. The ones closest to the source will suffer more
due to the distance term, which increases the relative weight
given to its noisy datum. For the full-scan angular range, this
distance weighting factor will result in a higher noise level at
the periphery of the image, but a lower noise level near the
center. For a short-scan range, the view angle distribution is
not symmetric. We thus expect that the voxels closest to the
source will generally display a higher noise level.

In the context of CT MPI, the left ventricle (LV) and the
right ventricle (RV) are transiently filled with blood contain-
ing a high concentration of iodinated contrast agent. This high
x-ray attenuation medium is expected to result in a higher
noise level in the associated projections. Based on the pre-
vious discussion, the noise level is also expected to increase

TABLE I. Numerical simulation parameters.

Parameter Value

Scan time 50 s
Number of time frames 50
Gantry rotation period 0.5 s
Time sampling period 1 s
Number of view angles (short scan) 668
Fan angle 54.9◦

Short-scan gantry angular range 234.9◦

Heart rate (HR) 62 bpm
Photon fluence 106 photons/detector element

in a particular myocardial region when the short-scan range
results in a reduced average distance between that region and
the source.

III. STATISTICAL IMAGE RECONSTRUCTION

In contrast with the FBP algorithm, the SIR framework
is based on maximum a posteriori estimation. In this frame-
work, the image is reconstructed by solving the following op-
timization problem:40–42

f̂ = arg max
f

P (f, g), (2)

where P(f, g) is the joint probability of having an image f
with a measured the projection dataset g. It can be shown that,
for transmission tomography,40–42, 52 this probability can be
approximately maximized by solving

f̂ = arg min
f

[(Af − g)TD(Af − g) + λJ (f)], (3)

where A is a model of the forward projection operation, the
matrix D = diag(d1, d2, . . . ) is diagonal and its elements are
that of vector d. d contains the reciprocal variance of the cor-
responding projection data, dk = σ gk

−2. The variance of a
given measurement can be obtained from the corresponding
projection data,

σ 2
gk

∼= 1

Ike−gk
, (4)

where Ik is the incident fluence without an object present.
In other words, the variance of a projection datum is equal
to the inverse of the number of counts registered by the

TABLE II. In vivo dataset parameters.

Parameter Scan 1 Scan 2 Scan 3

Scan time 50 s 50 s 50 s
Gantry rotation period 0.4 s 0.4 s 0.4 s
Average time sampling period 0.86 s 0.89 s 1.00 s
Number of view angles (short scan) 642 642 642
Fan angle 54.9◦ 54.9◦ 54.9◦

Short-scan gantry angular range 234.9◦ 234.9◦ 234.9◦

Mean heart rate (HR) 69 bpm 67 bpm 60 bpm
Tube potential 120 kVp 120 kVp 120 kVp
Tube current 25 mA 50 mA 500 mA
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(a) FBP frame 4 (b) FBP frame 8 (c) FBP frame 28 (d) FBP frame 36

(e) FBP std. dev. frame 4 (f) FBP std. dev. frame 8 (g) FBP std. dev. frame 28 (h) FBP std. dev. frame 36

(i) SIR frame 4 (j) SIR frame 8 (k) SIR frame 28 (l) SIR frame 36

(m) SIR std. dev. frame 4 (n) SIR std. dev. frame 8 (o) SIR std. dev. frame 28 (p) SIR std. dev. frame 36

A

B
C

D

FIG. 1. Reconstructions of the numerical phantom at different time frames. (a)–(d) Phantoms were reconstructed using FBP. (e)–(h)Maps of the standard
deviation in the FBP reconstruction. (i)–(l) Phantoms were reconstructed using SIR. (m)–(p) The standard deviation maps calculated from SIR reconstructions.
The noise is generally more uniform and of lower level in SIR images than in FBP reconstructions. The noise in SIR images has a negligible dependence on
the source trajectory. The line segments superposed on the FBP reconstructions represent the short-scan source trajectory. The ROIs in (a) were used for the
measurement of enhancement curves (Fig. 2). The display range was set to [0, 0.03] mm−1 for the reconstructions.

corresponding detector element. The function J(f) is a regu-
larizing term. In the work presented here, the total variation53

(TV) is used as a regularizer.52 To focus the investiga-
tion to the effect of the data consistency term, the regu-
larization parameter λ is set to a low level. This measure
also avoided the reconstruction of images with the overly
smooth texture often associated with images obtained via
TV minimization. An in-depth investigation of the behav-
ior of the algorithm with respect to variations in λ is desir-
able but out of the scope of this paper. The nonlinear conju-
gate gradient method is used to solve the SIR minimization
problem.54

IV. METHODS AND MATERIALS

IV.A. Numerically simulated dataset

The first projection dataset used in this study was gener-
ated numerically. Contrast arrival and washout in the LV and
then in the myocardium were simulated. Regions of healthy
and infarcted cardiac muscles were simulated to have differ-
ent contrast enhancement dynamics. The infarct zone had a
slower enhancement with lower amplitude when compared to
the healthy tissue. The parameters pertaining to the simulation
are given in Table I. A heart rate (HR) of 60 bpm would
have resulted in perfect synchronicity with the gantry rotation.
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Non-cardiac muscle ROI

(a) TAC reconstructed using FBP (b) TAC reconstructed using SIR

(c) Standard deviation reconstructed using FBP (d) Standard deviation reconstructed using FBP

FIG. 2. Dynamic contrast enhancement curves in the noncardiac muscle ROI [A in Fig. 1(a)]. Also plotted is the relative noise standard deviation as a function
of time in the same region. Notice that the level of noise-induced fluctuations in the enhacement curved match the trend observed in the relative noise standard
deviation plots. SIR offers less temporal variations in noise and a lower level than FBP. The noise level simulated an incident fluence of 106 photons/detector
element.

The short-scan range would have been constant between dif-
ferent time frames. The perturbation by 2 bpm generated a
20◦-shift in the scan range between each time frame. This
enabled the systematic evaluation of the effect of various
gantry rotation ranges. The x-ray beam was simulated to be
monochromatic in this study to avoid beam hardening as a
confounding factor. Scatter distribution was not considered in
this study either.

Poisson noise was added to each projection datum with an
incident flux of 106 photons per detector element. This value
was selected to obtain an image noise level similar to that of
a low-tube current CT scan. The flux was assumed to be con-
stant across all detector elements, i.e., Ik = I0 ∀ k ∈ [1, NaNc]
where I0 is the incident flux, Na is the number of view angles,
and Nc is the number of detector elements. The noise was sim-
ulated using a pseudorandom number generator, namely, the
poissrnd command in the numerical software package MAT-
LAB (MathWorks, Natick, MA).

All scans were reconstructed using FBP with a Shepp-
Logan filter at a voxel dimension of (1 mm)2. The same voxel
size was used for SIR reconstructions.

In order to evaluate the noise standard deviation at vari-
ous voxels in the image, a Monte Carlo simulation was con-
ducted. Fifty noise realizations were generated for the projec-
tion dataset at each time frame. Each projection dataset was
reconstructed using FBP and SIR. The standard deviation was
estimated for each voxel, thus yielding a map of the noise
level for each time frame. The standard deviation at voxel i
was calculated using the following formula:

σi =
√√√√ 1

Nins − 1

Nins∑
n=1

(fi,n − f̄i)2, (5)

where

f̄i = 1

Nins

Nins∑
n=1

fi,n. (6)

The summations are over the various instances of the noise.
Nins is the number of noise realizations. Nins = 50 in this study.
These maps are used to compare the spatial uniformity of the
noise for each algorithm.
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FIG. 3. Dynamic contrast enhancement curves in the myocardium ROI [B in Fig. 1(a)]. Also plotted is the relative noise standard deviation as a function of
time in the same region. Notice that the level of noise-induced fluctuations in the enhacement curved match the trend observed in the relative noise standard
deviation plots. SIR offers less temporal variations in noise and a lower level than FBP. The noise level simulated an incident fluence of 106 photons/detector
element.

IV.B. In vivo porcine dataset

The other datasets used in this study were in vivo myocar-
dial perfusion scans of a 59 kg male swine. The study was
approved by the Institutional Animal Care and User Commit-
tee (IACUC) at the University of Wisconsin-Madison. The
acquisition was done on a GE Discovery CT scanner (GE
Healthcare, Waukesha, WI). The scan parameters are given
in Table II. For each acquisition, a total of 53 ml of iodix-
anol contrast agent with 320 mg of iodine/ml (Visipaque 320,
GE Healthcare, Waukesha, WI) followed by 85 ml of saline
solution was injected at a rate of 10 ml/s via an 8 Fr pigtail
catheter positioned in the vena cava. The animal was under
mechanical ventilation, which was suspended at the end of
expiration during scanning. The scans were performed in cine
mode and started before the beginning of the injection. The
time delay was slightly different between various scans. In or-
der to match the temporal range between the different scans,
some of the initial and final time frames were not used in the
perfusion analysis.

As outlined in the discussion of SIR, the statistical weights
from matrix D can be determined based on the counts
recorded by the detector. In this case, counts data were ob-
tained from the manufacturer of the scanner used for the
study. To evaluate whether the effect varied with noise level,
scans at three tube current settings were acquired: 25 mA,
50 mA, and 500 mA. A 30-min waiting period was observed
between the different scans to allow for contrast agent clear-
ance. Images reconstructed from the 500 mA scan had a high
SNR and were used as a reference. All scans were recon-
structed using FBP with a Shepp-Logan filter at voxel dimen-
sion of (1.25 mm)3. The same dimension was used for the SIR
reconstructions. The slice thickness was set to 1.25 mm.

The noise standard deviation was measured within ROIs
for the in vivo dataset. In that case, the formula used was the
following:

σROI =
√

1

NROI − 1

∑
i∈ROI

(fi − f̄ROI)2, (7)

Medical Physics, Vol. 39, No. 7, July 2012



4085 Lauzier et al.: Noise non-uniformity in CT MPI 4085

Left ventricle ROI

RIS gnisu detcurtsnocer CAT )b(PBF gnisu detcurtsnocer CAT )a(

(c) Standard deviation reconstructed using FBP (d) Standard deviation reconstructed using FBP

0 10 20 30 40 50
0.02

0.022

0.024

0.026

0.028

0.03

0.032

Time (s)

A
tte

nu
at

io
n 

co
ef

fic
ie

nt
 (

m
m

−
1 )

 

 

Short−scan FBP with noise
Programmed value

0 10 20 30 40 50
0.02

0.022

0.024

0.026

0.028

0.03

0.032

Time (s)

A
tte

nu
at

io
n 

co
ef

fic
ie

nt
 (

m
m

−
1 )

 

 

Short−scan SIR with noise
Programmed value

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

x 10
−3

Time (s)

N
oi

se
 s

ta
nd

ar
d 

de
vi

at
io

n 
(m

m
−

1 )

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

x 10
−3

Time (s)

N
oi

se
 s

ta
nd

ar
d 

de
vi

at
io

n 
(m

m
−

1 )

FIG. 4. Dynamic contrast enhancement curves in the left ventricle ROI [C in Fig. 1(a)]. Also plotted is the relative noise standard deviation as a function of
time in the same region. Notice that the level of noise-induced fluctuations in the enhacement curved match the trend observed in the relative noise standard
deviation plots. SIR offers less temporal variations in noise and a lower level than FBP. The noise level simulated an incident fluence of 106 photons/detector
element.

where the summation is over different voxels. NROI is the
number of voxels in the ROI, f̄ROI is the mean voxel value
in the ROI. Note that the measurements obtained using this
definition might be influenced by the local noise correlation.
This must be kept in mind when evaluating the results.

IV.C. Reconstruction algorithms implementation

Both FBP and SIR were implemented using the C++ pro-
gramming language using the Intel Integrated Performance
Primitives libraries (Intel Corporation, Santa Clara, CA). The
programs were executed on a workstation equipped with a
Core 2 Quad CPU Q6700 at 2.66 GHz (Intel Corporation) and
8 GB of RAM. The calculations were performed using 32 bits
floating point arithmetic. The implementation of the FBP al-
gorithm was done in house. The manufacturer’s implementa-
tion was not used to ensure full control on the reconstruction
parameters.

The computation time of FBP was on average 30 s, while
that of SIR was 8 min. 120 conjugate gradient iterations

were applied to minimize the SIR objective function. Note
that the execution was fully sequential. FBP, as well as the
forward- and backward-projection operations used in SIR can
also be implemented using general purpose graphical process-
ing units (GPU) programming languages; these architectures
enable speed up by more than 100-fold. Even using such an
implementation, FBP remains more computationally efficient.

IV.D. Quantitative perfusion metrics

In order to evaluate the effect of reconstruction algorithms
on quantitative perfusion metrics, three quantities were mea-
sured from the time attenuation curves measured in various
ROIs from the in vivo dataset. These metrics are the normal-
ized upslope (NUS), the MBV, and the first moment transit
time (FMT).

The NUS has been shown to correlate well with myocar-
dial blood flow.26 However, it is a relative metric. It is defined
as the slope of the time attenuation curve (TAC) in a particu-
lar region (mROI) divided by the slope of the TAC in the left
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FIG. 5. Dynamic contrast enhancement curves in the infarct ROI [D in Fig. 1(a)]. Also plotted is the relative noise standard deviation as a function of time
in the same region. Notice that the level of noise-induced fluctuations in the enhacement curved match the trend observed in the relative noise standard de-
viation plots. SIR offers less temporal variations in noise and a lower level than FBP. The noise level simulated an incident fluence of 106 photons/detector
element.

ventricle (mLV). In this study, both slopes were measured for
time points recorded between the arrival of the contrast agent
in the LV and the peak attenuation subsequently observed. A
linear least-square fitting procedure was applied to yield the
slopes. Formally, the NUS is defined as

NUS = mROI

mLV
. (8)

The MBV quantifies the amount of blood having flowed
through a volume of interest during a particular period of
time. It is measured in units of ml of blood per 100 g of tis-
sue. It is defined as the time integral of the TAC from a given
ROI (cROI(t)) normalized by the time integral of the TAC in
an artery. In this paper, the arterial TAC was measured in the
left ventricle (cLV(t)). The formal definition is as follows:55

MBV =
∫ T

0 (cROI(t) − cROI,0)dt∫ T

0 (cLV(t) − cLV,0)dt
VvoxelNvoxel, (9)

where Vvoxel is the volume of a voxel and Nvoxel is the num-
ber of voxels in 100 g of tissue. We assumed a tissue density
of 1.05 g/ml. In this study, the lower bound of the integral
was defined as the time point when the contrast agent is first
detected in the left ventricle. cROI,0 and cLV,0 are average atten-
uation coefficients in the time frames preceding the contrast
arrival for the ROI TAC and arterial TAC, respectively.

The FMT provides a relative measure of the transit time of
blood in the tissue. It has units of seconds. The formal defini-
tion is as follows:56

FMT =
∫ T

0 (cROI(t) − cROI,0)tdt∫ T

0 (cROI(t) − cROI,0)dt
. (10)

The goal of the evaluation presented in this paper is to
compare the relative accuracy of various algorithms, not to
quantify perfusion in an absolute manner. This explains why
simple perfusion metrics that did not require a deconvolution
of the TAC were selected.
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(a) FBP 25 mA (b) FBP 50 mA (c) FBP 500 mA

(d) SIR 25 mA (e) SIR 50 mA

FIG. 6. Reconstructions of the in vivo porcine datasets at different tube currents. The images were reconstructed using FBP and SIR. The display range was
[−1000, 900] HU.

V. RESULTS

V.A. Numerically simulated dataset

Reconstructions generated using FBP and SIR for four
time frames with different short-scan gantry central angles are
presented in Fig. 1. Maps of the standard deviation were ob-
tained using the described Monte Carlo method. For each time
frame, the source angular range is symbolized by a line seg-
ment. As expected from the discussion presented in Sec. II,
the noise level in each FBP images was generally higher for
voxels closer to the source trajectory. Qualitatively, it is ob-
served that the images reconstructed using SIR have a more
uniform and lower noise spatial distribution with minimal
temporal dependence.

ROIs were selected in various dynamic regions of the
phantom and are illustrated in Fig. 1(a). All ROIs were
4 × 4 voxels in dimension. The mean attenuation coefficient
and the mean noise standard deviation were measured within
each ROI for all time frames. Figures 2–5 show results of ROI
measurements performed respectively in noncardiac muscle,
healthy myocardium, the left ventricle, and the infarct region
of the myocardium. As expected, changes in the noise level
are accompanied by changes in the level of fluctuations ob-
served in the plot of the ROI mean value. ROIs closer to the
edge of the object show a more pronounced nonuniformity ef-
fect than those closer to isocenter. This behavior is expected
since the distance weight shows a large amount of variation
between view angles for points farther from isocenter. In par-
ticular, the infarct was located near isocenter, which mitigated
the variation in the noise level observed in that region. Note
that while the heart is typically in the center of the chest, the

anterior section is usually far from isocenter. It is thus ex-
pected that an infarct situated in the anterior region could have
been subjected to a greater relative variation in noise level.

The noise level varies by up to 110% in the case of ROI
D for images reconstructed using FBP. When using SIR,
the level varies by a maximum of 20% for the same ROI.
The maximal variation is measured as: 2(σ max − σ min)/(σ max

+ σ min) × 100%, where σ max and σ min are the maximum and
minimum noise standard deviations. Furthermore, the vari-
ation in the noise level of FBP images is correlated with
changes in the short-scan central angle. Indeed, the range is
shifted by 20◦ between each time frame. After 18 s, the scan
range had shifted by a full 360◦ and was back at its initial posi-
tion. An 18-s periodic oscillation was observed clearly on all
FBP noise standard deviation plots. Such an oscillation was
not observed on the SIR dynamic curves. Finally, the average
noise level over all time frames was 4.50 × 10−4 mm−1 for
FBP reconstructions while it was 2.27 × 10−4 mm−1 for SIR
images. SIR thus reduced the noise level by half.

In summary, based on the results of numerical simulations,
high magnitude fluctuations were observed in the noise level
both within a particular image and between different time
frames. SIR mitigated the spatial variations in the noise level.
SIR also reduced the noise level considerably.

V.B. In vivo porcine dataset

Images were reconstructed using FBP and SIR for all time
frames of the porcine projection datasets at 25 and 50 mA.
The 500 mA dataset was only processed using FBP. Images
reconstructed at the peak contrast concentration in the left
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AW

PM

FIG. 7. Definition of the regions of interest (ROI) used for the perfusion
metric measurements. PM was located near the papillary muscle, while AW
was situated in the anterior wall of the myocardium. Both ROIs were 3 × 5
voxels. The display range for this image was [−1000, 900] HU.

ventricle are shown in Fig. 6. It is possible to notice high noise
regions within images reconstructed using FBP at 25 and
50 mA. These are caused by projections with low counts. A
variation in the noise levels was also observed between dif-
ferent time frames due to both changes in the scan central an-
gle and in the structure of the object following contrast agent
injection. When SIR is used, these high noise projections re-

ceived a low weight in the reconstruction and their deleterious
effect on the image is mitigated. One can thus notice a higher
SNR in images reconstructed using SIR.

TACs were measured in two different ROIs in the image
shown in Fig. 7; the first was located near the papillary mus-
cle (PM), while the second was positioned in the anterior wall
(AW) of the left ventricle. Both ROIs had a dimension of
5 × 3 voxels. TACs measured in the PM ROI are shown in
Fig. 8 and those from the AW ROI are shown in Fig. 9. One
can notice that stochastic fluctuations observed in the TAC
measured from images reconstructed using FBP are mitigated
in SIR reconstructions. The latter curves also show less di-
vergence from the reference TAC measured from the 500 mA
dataset. However, one must note that the scans at different
tube current were acquired at 30-min intervals. This implies
that physiological changes may have occurred in the animal,
which may explain some of the divergence observed.

Figures 8 and 9 also show the standard deviation between
voxels contained in each ROI for each dataset. One can notice
that the fluctuations in the TAC were accompanied by an ele-
vation in the standard deviation for the same ROI. This seems
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FIG. 8. Time attenuation curves (TAC) measured from reconstructions of the in vivo porcine datasets at different tube currents (a, b) and the standard deviation
at different time frames (c, d). Images were reconstructed using FBP and SIR. The ROI were the measurements were performed was located in the papillary
muscle, PM in Fig. 7. Note that in order to optimize the visualization of the data, the range of attenuation coefficient shown is not constant between the different
plots. Also, some divergence from the 500 mA curves might be explained by the fact that a different scan was acquired for each tube current setting.
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Anterior wall ROI
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FIG. 9. Time attenuation curves (TAC) measured from reconstructions of the in vivo porcine datasets at different tube currents. The images were reconstructed
using FBP and SIR. Two ROIs were used for the measurements; their location is shown above. Note that in order to optimize the visualization of the data, the
range of attenuation coefficient shown is not constant between the different plots. Also, some divergence from the 500 mA curves might be explained by the fact
that a different scan was acquired for each tube current setting.

to suggest that the fluctuations were stochastic in nature. This
is further supported by the fact that the SIR algorithm miti-
gated the standard deviation to a large extent. As it was ob-
served for the numerical study, the variation in the noise level
between different time frames was mitigated using SIR. Fur-
thermore, one may notice the presence of a transient increase

in the standard deviation concomitant with the arrival of con-
trast agent in the ventricles. This increase in noise level was
due to the increase in attenuation during that period.

The perfusion metrics defined in Sec. IV.D were com-
puted for each dataset reconstructed using both FBP and SIR.
The results are presented in Table III. In all cases, images

TABLE III. Quantitative metrics of myocardial perfusion measured in images reconstruction using FBP and SIR in the anterior myocardial wall (AW) and in
the papillary muscle (PM) as defined in Fig. 7. Each measurement (f) is presented with the percent deviation from the values calculated from the 500 mA scan
(fref), |f – fref|/fref × 100% in parenthesis. Note that some divergence from the reference might be explained by the fact that a different scan was acquired for each
tube current setting.

NUS MBV (ml/100 g) FMT (s)

Tube current (mA) Algorithm PM ROI AW ROI PM ROI AW ROI PM ROI AW ROI

25 FBP 0.351 (90%) 0.196 (83%) 11.7 (47%) 18.3 (31%) 2.72 (62%) 9.76 (4%)
SIR 0.149 (20%) 0.096 (10%) 17.6 (20%) 15.4 (10%) 8.18 (3%) 9.59 (3%)

50 FBP 0.187 (1%) 0.159 (49%) 14.1 (36%) 16.6 (19%) 9.39 (18%) 8.40 (10%)
SIR 0.178 (4%) 0.129 (21%) 16.4 (25%) 12.8 (9%) 8.67 (9%) 9.52 (2%)

500 (reference) FBP 0.185 0.107 22.0 14.0 7.96 9.35
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reconstructed using SIR agreed more closely with the val-
ues obtained from the 500 mA reference dataset. The only
exception is the NUS at 50 mA, for which the FBP value di-
verged by 1% from the 500 mA and the SIR NUS diverged by
4%. However, these deviations were very low, which could
mean that the difference between these measurements was
not statistically significant. Note also that the PM ROI had
a relatively low standard deviation for the 50 mA dataset
[Fig. 8(d)]. This may explain the limited improvement ob-
served using SIR in that case.

In summary, the conclusions reached using the numerical
phantom experiments were further supported using the animal
dataset acquired in vivo. In particular, the spatial variation in
the noise level and the noise level itself were mitigated us-
ing SIR. Furthermore, some evidence was shown suggesting
that SIR may improve the precision of quantitative perfusion
measurements performed using low-tube current myocardial
perfusion scans.

VI. DISCUSSION AND CONCLUSIONS

VI.A. Limitations and future work

The numerical simulations have some limitations. The
x-ray beam was simulated to be monochromatic and scatter
radiation was not included. This implies that the mechanisms
creating PSA described in the literature, namely, variations in
beam hardening and scatter, were not simulated. While this
could be perceived as a limitation, the restriction to noise-
related fluctuations enabled us to isolate their effect. It would
be interesting in future work to determine the fluence level for
which noise nonuniformities create fluctuations of the same
magnitude as other mechanisms.

Limitations were also present in the study of the in vivo
dataset. In particular, separate scans were acquired at dif-
ferent tube currents and were separated by a waiting period
to allow contrast clearance. This means that potential phys-
iological changes in the animal could have occurred. These
changes could have resulted in some deviation in the perfu-
sion parameters calculated. The results should be interpreted
accordingly. Furthermore, only one animal was used in this
study. In order to establish the statistical significance of the
improvement in the precision and/or accuracy of the perfusion
metrics observed using SIR, it would be desirable to perform
a larger-scale study with multiple subjects. Also, it is possi-
ble that the anatomical differences between the animal model
used in this study and human patients lead to slightly different
noise nonuniformity behavior. An evaluation in a clinical hu-
man dataset might shed some light on this issue in the future.

A few other areas would deserve further investigations in
the future. In the context of quantitative MPI, it would be in-
teresting to evaluate to which extent, if any, PSA correction
algorithms suggested in the literature30–33 can suppress noise
nonuniformity induced fluctuations.

As demonstrated in this paper, the SIR framework can be
used to mitigate the demonstrated noise spatial nonuniformity
and can be used to reduce radiation dose levels. However, as
described in Sec. IV.C, the computation time for SIR is still

substantially longer than that of FBP despite the use of new
computational architecture such as GPU. Computation time is
particularly concerning for CT MPI studies since many time
frames need to be reconstructed.

The results from the in vivo study demonstrated that in
the very low-tube current regime, noise spatial nonuniformity
can manifest itself in the form of streaks. While caused by a
stochastic process—Poisson distributed and electronic noise
in this case—, these streaks caused a systematic error in some
regions of the image. Since the orientation and severity of the
streaks vary depending on the starting and ending view an-
gles, this error depends at least in part on the scan central
angle. Furthermore, it cannot be easily corrected by spatial
averaging due to the high spatial correlation of the streaks. In
this case, the fluctuations in the attenuation coefficient could
show a similar effect to that observed when partial scan arti-
facts are present.

VI.B. Conclusions

Images reconstructed using FBP from short-scan, fan-
beam projections suffer from nonuniform spatial noise dis-
tributions, which tend to fluctuate from frame-to-frame in CT
myocardial perfusion imaging. This nonuniform noise distri-
bution is another mechanism that contributes to source trajec-
tory dependent and frame-to-frame variations in MPI. It was
shown that when SIR was used, the images had a lower and
more uniform noise level in a given time frame, which led to
fewer fluctuations in noise level across time frames. The de-
viation observed between quantitative perfusion metrics mea-
sured from low-dose scans and high-dose scans was mitigated
when SIR was used instead of FBP to reconstruct images.
Since dynamic MPI requires an accurate and predictable eval-
uation of the contrast dynamics, it may be desirable to use a
statistical reconstruction framework for low-dose quantitative
CT myocardial perfusion imaging.
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