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Abstract: The genetic analysis of quantitative or complex traits has been based mainly on statistical quantities such as 
genetic variances and heritability. These analyses continue to be developed, for example in studies of natural populations. 
Genomic methods are having an impact on progress and prospects. Actual relationships of individuals can be estimated 
enabling novel quantitative analyses. Increasing precision of linkage mapping is feasible with dense marker panels and 
designed stocks allowing multiple generations of recombination, and large SNP panels enable the use of genome wide 
association analysis utilising historical recombination. Whilst such analyses are identifying many loci for disease genes 
and traits such as height, typically each individually contributes a small amount of the variation. Only by fitting all SNPs 
without regard to significance can a high proportion be accounted for, so a classical polygenic model with near 
infinitesimally small effects remains a useful one. Theory indicates that a high proportion of variants will have low minor 
allele frequency, making detection difficult. Genomic selection, based on simultaneously fitting very dense markers and 
incorporating these with phenotypic data in breeding value prediction is revolutionising breeding programmes in 
agriculture and has a major potential role in human disease prediction. 
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INTRODUCTION 

 The explanation of how traits could be both continuously 
distributed and yet depend on particulate inheritance was 
resolved within a few years of the Mendelian rediscovery. 
The model of effects of multiple genetic loci and the 
environment contributing to the phenotype accounts 
straightforwardly for the typically Gaussian phenotypic 
distribution of continuous traits, the observed correlations 
among relatives, inbreeding depression and heterosis, 
continuing responses to artificial selection, and evolutionary 
change. Analyses and predictions have been based almost 
entirely on phenotypic observations and their interpretation 
in terms of measures such as components of genetic variance 
and covariances, heritability, dominance, and changes in 
frequency of many genes [1-3]. Many of the principles and 
ideas developed can also be used more broadly to include 
pedigree and phenotypic data on all complex traits, such as 
discrete value traits describing presence or absence of 
disease that do not show simple Mendelian inheritance but 
may be described by, for example, a threshold model, or 
continuous traits such as survival time that do not have 
Gaussian distributions. 
 Research in recent decades has provided both direct and 
indirect evidence of the location and effects of individual 
loci affecting quantitative traits and, for a limited number of 
loci, knowledge of the causative change in the DNA. 
Progress has, however, been restricted by many factors. 
These include the inability to disentangle the effects of  
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closely linked genes through limitations in amount and type 
of data, the difficulty of following the metabolic trail from a 
base substitution to a change in the trait, and the potential 
interactions among genes at the metabolic and phenotypic 
level. The rapid advance in genomic methods and other high 
throughput ‘-omic’ methods has both fuelled the recent 
developments and provides the opportunity for more. The 
advances are not restricted just to mapping and analysing 
individual loci but involve an increasing integration of 
molecular and statistical methods. With dense genetic 
markers used throughout the whole genome, the genetic 
covariances among relatives can be partitioned among 
genomic regions and incorporated into classical statistical 
analyses developed for phenotypic data to predict offspring 
performance in plant and animal improvement programmes 
and in the prevention of human disease. Nevertheless there is 
still a long way to go. 
 Quantitative genetic understanding and application are 
also being informed by progress in the analysis, 
interpretation and utilisation of solely phenotypic data, 
facilitated by developments in statistical methods and 
computing power and by the availability of pedigree 
information in natural populations from long term records or 
genetic markers. Lest it be thought that, in the genomic era, 
quantitative genetic methods have been replaced rather than 
supplemented, I shall discuss these first.  
 This review is from the perspective of a quantitative 
rather than molecular geneticist, concerned more with 
understanding the output of processes affect the phenotype 
rather than on what the processes are. It is not intended to be 
comprehensive. There is an expanding compendium in the 
work of Walsh and Lynch [3], and many recent reviews of 
some or most of the topics [e.g. 4-7]. Other topics are 
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discussed in more detail elsewhere in this volume; for 
example the genetic analysis of complex traits with discrete 
phenotypes such as disease risk is a major focus of human 
genetics [8] but important in many other situations. Genomic 
approaches have many applications in population genetics 
which in turn inform the analysis, interpretation and 
utilisation of quantitative genetic variation. These include 
inferences about population structure, such as genetic 
distance, inbreeding level and effective size in both natural 
and domesticated species. Although these essentially 
population genetic analyses at the level of individual loci 
impact in turn on predictions of, for example, maintenance 
of variation and opportunities for long term genetic change 
for polygenic traits, I shall not pursue them further here 
except in some situations where they relate directly to the 
architecture of quantitative genetic variation.  

ANALYSIS OF VARIATION AND COVARIATION 
 The basic descriptors of the phenotypic variability of 
quantitative traits have not changed greatly over recent 
decades, subsequent to the adoption of the ‘animal model’, 
led by Henderson, which generalises the description of the 
variances and covariances of all members of the population 
[2, 9-11]. Although widely used in the livestock context, it 
applies to all species, and is merely a linear model of each of 
the fixed effects (e.g. years) and random genetic and non-
genetic effects contributing to each individual’s phenotype 
for one or more traits, combined with a series of matrices 
defining the covariances of effects of individuals in the 
population. For example the covariance of breeding values is 
the product of the relationship matrix (usually denoted A) 
and the additive genetic variance of the trait or covariance of 
a pair of traits. Although usually used in the context of the 
infinitesimal model of very many unlinked additive genes of 
small effect, it can also include discrete effects due to the 
genotype at individual loci.  
 In situations typical of most natural populations or 
livestock the data are highly unbalanced, and methods for 
parameter estimation have been developed that have become 
more powerful as computing speed has increased. Currently 
most use is made of residual/restricted maximum likelihood 
(REML), facilitated by the availability of general packages 
such as ASREML ([12], http://www.vsni.co.uk/downloads/ 
asreml/). Bayesian methods are increasingly being 
employed, enabled by Markov Chain Monte Carlo Methods 
(MCMC) methods [9], and general packages are becoming 
available (e.g. Bugs or Jags, http://www-ice.iarc.fr/~martyn/ 
software/jags/). The Bayesian methods provide posterior 
distributions of parameters rather than just modes as in 
REML, and an integrated estimation, prediction and model 
selection machinery. The accompanying MCMC methods 
are readily generalised to deal with non-normal data, for 
example where an unspecified number of QTL can be fitted 
simultaneously. Nevertheless, the Bayesian methods make 
much greater computational demands.  
 The appeal of the animal model lies in its inclusivity, 
conceptual simplicity and flexibility: basically the phenotype 
is expressed as the sum of fixed effects, such as year, and 
random effects such as breeding value (i.e. sum of additive 
genetic effects), maternal genetic and common sib 
environment. The random effects are defined by their 

variances and their covariances which, for breeding values, 
are proportional to the relationship among each pairs of 
individuals. The data may be balanced or unbalanced, there 
may be single or multiple traits, and individuals that have 
records and those that do not are both included in the 
relationship matrices. Genotype x environment and age 
effects may appear as fixed and/or random effects, for 
example using random regressions to define different 
genotypic effects of age. Recent developments include the 
incorporation of competition effects, following ideas put 
forward many decades ago but only recently incorporated 
into the standard framework in a form analogous to maternal 
effects. An individual’s phenotype, weight, for example, is 
defined in terms of its own direct genetic and non-genetic 
effects and of indirect influences on it from, say, livestock 
pen-mates or adjacent trees, expressed as the sum of the 
competitive effects of all its contemporaries [13, 14]. 
 Homogeneity of variance, following any necessary 
transformation, is a basic assumption in many analyses in 
quantitative genetics. There has been recent interest in 
assuming genetic heterogeneity in the environmental 
variance, i.e. that the variance of phenotype given breeding 
value depends on the genotype, which is relevant to the 
evolution of variability and to breeding opportunities to 
change product consistency. The expected variance of each 
genotype is expressed in terms of genetic effects that have in 
turn a covariance structure among individuals proportional to 
the relationship matrix [15, 16]. Analysis of data fitting such 
models has been developed using both Bayesian methods 
and others that are cruder but computationally less 
demanding (reviewed in [17]). Whilst a small, but 
significant, genetic variation in the environmental variance 
has usually been found, as yet there is little understanding of 
the causative effects.  
 Analysis of the animal model using REML, for example, 
provides predictions of the breeding values of individuals 
that have records and of their relatives as yet without records 
or indeed unborn. Similarly, parameter estimates obtained 
from a REML analysis can subsequently be utilised in best 
linear unbiased prediction (BLUP) of breeding values with 
much less computing demands. The animal model provides 
what has become the classical framework for animal 
breeding using quantitative data which, as discussed later, is 
in turn being supplemented by genomic information.  

Quantitative Genetic Analysis in Natural Populations 

 The study of the inheritance and evolution of quantitative 
traits in natural populations has been handicapped by the 
absence of long term pedigrees and often of much 
information on the ecology or population structure of species 
otherwise suitable for study. For example, little is known 
about the life history of Drosophila melanogaster in the wild 
and on the relation between traits in natural populations and, 
for example, breeding success. Analyses in laboratory 
populations based on imposed artificial selection or of 
natural selection in a population cage are unlikely to account 
for all the evolutionary forces acting in nature on fitness and 
contributions to it of individual traits.  
 In recent decades long term recording programmes have 
been established in fully or partially closed wild populations 



198    Current Genomics, 2012, Vol. 13, No. 3 William G. Hill 

spanning multiple generations, for example in blue tits, 
sheep and deer. In these, pedigrees are established by 
identifying individuals at birth with their parents, if 
necessary supplemented by genetic markers to identify 
father, and records taken of multiple traits throughout the 
animals’ life. The animal model enables the data on what is 
an inevitably complex pedigree structure to be handled and, 
in principle, estimates to be obtained of both parameters of 
quantitative traits, such as genetic variances and inbreeding 
depression effects, and of the selection associated with each 
trait [3,18]; for some examples see Proc. R Soc. B, 2008, 
275, 593-750. Whilst the natural selection is on fitness, the 
analysis can enable the selection gradient, the partial 
regression of the trait on fitness as measured by breeding 
success on each trait, to be assessed. Because the analysis 
provides predicted breeding values for each cohort relative to 
the base population (in this case start of recording), genetic 
trends can be estimated and compared with expectations or 
used to estimate environmental change [19].  

 A critical assumption in such analyses is that all the 
information on which selection decisions have been made is 
included in the data set. This may be reasonable in a 
breeding programme or laboratory experiment providing that 
a multi-trait analysis is undertaken, but may not be 
completely met as natural selection cannot be avoided 
completely: for example there may be differential survival 
prior to birth or first recording and consequent bias in 
estimates [20]. In studies of natural populations where the 
aim may be to understand their evolution in terms of what 
selection has actually occurred and on what traits and on 
how much selection response has occurred as a consequence, 
the assumptions become more critical.  

INCORPORATION OF GENOMIC INFORMATION 
IN QUANTITATIVE GENETIC ANALYSES 

Inferring and Using Pedigree Relationship  

 In many analyses of natural populations adequate 
pedigree information remains a limitation: the dam may be 
known from recording at birth or hatch but not the sire, or 
there may be extra-pair mating. There are also equivalent 
circumstances in breeding programmes, for example with 
multiple sire mating pens in poultry. Identification of more 
distant relatives may also be desired, for example to obtain 
estimates of parameters from covariances of relatives which 
do not share any common environment, or to identify the 
ancestry of non-pedigreed individuals low in a multiplication 
pyramid found to have commercially desirable properties 
such as extreme leanness or disease resistance.  
 Whilst micro-satellite markers have mainly been used, 
with SNP panels it is becoming possible to use higher 
density markers to establish more distant and complex 
relationships. Pemberton [21] discusses methods and 
principles for identifying relationship and recently Powell et 
al. [22] suggested using as a reference point the current 
population rather than an ancestral one that depends on depth 
of pedigree. Software packages are available for parentage 
identification that can allow for genotyping errors, for 
example CERVUS ([23]; http://www.fieldgenetics.com/ 
pages/aboutCervus_Using.jsp,) and COLONY ([24]; 

http://www.zsl.org/science/research/software/colony,1154,A
R.html).  

Utilisation of Actual Relationship and Inbreeding 

 Pedigree relationship describes the expected proportion 
of genes shared by relatives and similarly for pedigree 
inbreeding coefficient. Due to Mendelian segregation and 
linkage, the actual (or realised) proportion of genome shared 
identical by descent differs by chance from pedigree 
expectation (other than for offspring and parent). For 
example, for human full sibs the standard deviation of actual 
relationship is approximately 3.9% about the mean of 50%; 
and for more distant relatives, its coefficient of variation 
rises rapidly: for example for second cousins, the mean is 
3.12% and SD 1.20% [25]. 
 Genomic methods enable the actual sharing to be 
estimated from the genotypes at individual loci regardless of 
location in the genome. These include PLINK ([26]; 
http://pngu.mgh.harvard.edu/~purcell/plink/) and an 
alternative algorithm to remove bias by incorporating 
sampling error dependent on the number of loci [27]. 
Alternatively the actual sharing of genomes along the 
chromosome can be identified with programs such as 
BEAGLE ([28], http://faculty.washington.edu/browning/ 
beagle/beagle.html). Inbreeding coefficients can be estimated 
similarly. 
 Actual relationship can be employed in analysis of 
quantitative genetic data. Thus common environmental 
effects of human full sibs can be eliminated by a regression 
of the variance between them in the trait on the proportion of 
genome shared by the pair [29, 30]. The estimate of 
heritability of height in the larger study [30] was 86%, very 
similar to those obtained previously by conventional 
between-family methods such as comparing correlations of 
MZ and DZ twins. Further, the estimate of dominance 
variance was non-significant, and an analysis fitting 
chromosomes one at a time as ordinary or partial variables 
gave similar values, indicating there was little epistasis of 
genes on different chromosomes for human height. There 
was a strong linear relationship between chromosome length 
and variance explained. Similar analyses could be done to 
estimate effects of inbreeding by regressing performance on 
actual identity by descent within families.  
 In animal model analyses within populations the pedigree 
relationship or inbreeding coefficient can be replaced by the 
actual relationship; which should increase precision and also 
enables direct calculations for pairs of distant relatives where 
pedigree is not known but becomes irrelevant. As discussed 
later, actual relationship, computed from dense markers, is 
also used in breeding value prediction, and termed the 
genomic relationship matrix. 

THE GENETIC ARCHITECTURE OF QUANTITA-
TIVE TRAITS - APPROACHES 

 Many questions in quantitative genetics, for example 
‘what is the predicted response to selection in the next 
generation’ can be answered from measures such as 
heritability without any knowledge either of the underlying 
quantitative aspects of the genetic architecture, such as the 
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number of genes and the distribution of their effects on the 
trait, their interactions with other genes and their frequency, 
or of more basic factors such as how do the trait genes act 
and how are they controlled. These are of course major 
issues, and in this discussion I shall concentrate attention on 
the first of these unknowns, the effects at the level of the trait 
and how this is being informed by genomic methods, rather 
than mechanisms of action. 
 A direct approach is to use random mutagenesis. 
Insertional mutagenesis is particularly powerful in that it 
leaves a signal such that the target gene can be mapped 
directly. It has, for example, been used very successfully by 
Mackay and collaborators [e.g. 31] to identify genes 
affecting many quantitative traits and to estimate their direct 
and pleiotropic effects. Mutational studies do not, however, 
necessarily identify genes that are contributing to population 
differences or to standing variation within a population or 
species.  

Linkage Mapping 

 Until large numbers of microsatellite markers became 
available, mapping of QTL was essentially impossible 
except in some laboratory species. Subsequently, and with 
the introduction of interval mapping by maximum likelihood 
[32] or regression [33], extensive resources have been put 
into QTL mapping, initially using inbred line crosses or 
backcrosses but then developed to include composite 
mapping, fitting multiple loci, and family analysis in random 
mating populations [2, 34]. Package software programs are 
available, e.g. QTL Cartographer (http://statgen.ncsu.edu/ 
qtlcart/WQTLCart.htm) and GridQTL (http://www.gridqtl. 
org.uk/index.htm). 
 The major limitation of linkage studies using F2s or 
backcrosses is the inability to do fine scale mapping. 
Insufficient density of markers to detect recombination was 
initially a limitation, now it is just numbers and proximity of 
recombination events. This can be overcome by 
incorporating more generations of recombination, for 
example an advanced intercross from the F2. Recombinant 
inbred lines (RIL) by selfing or full sib mating of a two-way 
cross also allow more accumulation of recombination. Also 
importantly, the lines so obtained are stable and therefore 
data can be collected over repeated generations and in 
different laboratories, enabling a large number of specialised 
traits to be analysed on the same stock. Thus the 
collaborative cross in the mouse was founded from eight 
inbred lines initially interbred to form an equal 8-way cross 
and from which RIL have been developed ([35]; 
http://mouse.ornl.gov/projects/collabcross.html). As the 
founder inbred lines have been densely mapped, genomic 
regions can be traced back to progenitor lines and many 
generations of recombination prior to fixation. In contrast an 
alternative mouse resource has been developed based on 
maintaining a heterozgygous closed stock; but, as it was also 
founded from crosses of inbred lines, recombinants can be 
traced back to small regions [36]. 
 There have been many RIL established in plants. For 
example in Arabidopsis an advanced intercross was 
undertaken before undertaking the inbreeding to increase the 
opportunity for recombination [37]. In maize the NAM RIR 

lines were founded from crosses of 25 diverse inbred lines to 
a common reference parent [38], and together these represent 
a broad based population for analysis.  

Genome Wide Association Studies (GWAS) 

 Linkage disequilibrium (LD) in a population reflects 
many generations of formation by drift and loss by 
recombination and the consequent association between 
markers and QTL has the potential for much finer mapping 
than do linkage studies, indeed for finding the causal genes 
or mutations and the responsible nucleotide difference 
(QTN). LD is minimised by sampling from the species as a 
whole or from large populations within it. Indeed for humans 
there is no opportunity to make specific populations and in 
the study of disease it is necessary to collect large numbers 
of affected individuals. Genome wide association studies 
(GWAS) have therefore become the method of choice and 
have been highly successful in identifying QTL in many 
species of animals and plants, with particularly intensive 
study of height and disease susceptibility in humans. 
Because many GWAS studies comprise samples from the 
population as a whole, they reflect natural genetic variation 
in quantitative traits such that inferences can be drawn about 
its architecture. 

 The power of GWAS is limited by numbers of 
individuals on which records are available, on the marker 
density, and on the rate at which LD diminishes with map 
distance. As in all QTL mapping approaches, power also 
depends on the size of QTL effects relative to the 
environmental variation, so for lowly heritable traits it is 
harder to detect QTL contributing the same proportion of the 
genetic variation. Studies are most efficient if a large number 
of traits can be recorded on the same individuals, for 
example by treating ‘affecteds’ for one disease as ‘controls’ 
for many others, and the data on height come as a by-product 
of disease studies. Precision is increased as more SNP 
markers are used, ultimately with complete sequence, which 
is necessary if LD falls very rapidly with map distance as in 
D. melanogaster. In dairy cattle, for example, the samples 
may comprise progeny tested bulls and their genotypes are 
analysed along with progeny mean phenotype, with data 
being collected in breeding programmes to utilise genomic 
selection (see below). In mice it has been suggested that 
commercially available outbred strains are suitable for 
GWAS analysis [39], and some specially constructed 
populations are also suitable for GWAS studies, such as 
those in mice [36] and maize [38]. 

 In species where lab stocks can be maintained, an 
alternative is to establish lines from individuals sampled 
from the source population. Mackay and colleagues have 
therefore established the Drosophila Genetic Reference 
Panel using 192 iso-female lines (i.e. an inbred line formed 
from a single family) and complete genome sequencing of 
the line can be undertaken (http://service004.hpc.ncsu.edu/ 
mackay/Good_Mackay_site/DBRP.html). Similarly humans 
are also being fully sequenced in the human genome project, 
and if phenotypic data on them are collected these too will 
provide information through GWAS.  
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THE GENETIC ARCHITECTURE OF QUANTITA-
TIVE TRAITS – FINDINGS  

 The extensive effort devoted to mapping has led to the 
identification of many QTL in many species and, in some 
cases, to the identification of the gene and the lesion. For 
example, in June 2011, 4682 QTL were listed on 376 
different traits from 274 publications for cattle 
(http://www.animalgenome.org/cgi-bin/QTLdb/BT/index), 
1747 were listed for maize, and 8646 for rice 
(http://www.gramene.org/db/qtl/qtl_display). These QTL are 
not necessarily all unique, however, and some so poorly 
mapped or comprising multiple QTL as to be of no practical 
value. Some of the many genes subsequently identified are 
of major importance. To take just a single trait, muscle 
development, the myostatin gene has impact in livestock and 
humans, including ‘double muscling’ in cattle [40], and the 
callipyge gene in sheep has led to the uncovering of new 
pathways for gene action [41]. 
 In QTL mapping studies there is a considerable risk of 
detecting false positives, particularly if significance tests are 
done at low stringency. To keep the risk of type I errors to 
low levels requires very big data sets, and hence those used 
in GWAS studies have become increasingly large, often 
employing metapopulation analyses. These do not guarantee 
that the detected effect is localised to a single region, but 
may be influenced by effects at one or more others in high 
LD. Even so, proof of existence of a QTL requires cross 
validation, by replication in independent samples or, better, 
populations, and ultimately by direct identification of the 
genetic lesion concerned and showing its effect directly in a 
prospective study.  
 Much of the effort has been expended in identifying 
individual QTL in crops and livestock with a view to 
utilising them in breeding programmes by marker assisted 
introgression or selection. In view of the greater importance 
of inbreds and their crosses in crop plants than farm 
livestock, it is not surprising that the techniques have been 
much more important in the former, albeit not having 
fulfilled all the initial optimism for improvement 
programmes in either plants [42, 43]) or animals [44].  
 The shape of the distribution of trait gene effects impacts 
on the number likely to be identified and their contribution to 
genetic variation or disease susceptibility. If few with large 
effects contribute much of the variation, it is both easy to 
detect them (high power, located far apart on the genome) 
and to utilise them effectively. Otherwise the tasks are 
harder, and become increasingly so the more genes that are 
involved: not only are genes/QTL of small effects missed, 
increasingly so as significance levels are raised as more 
markers are used in whole genome studies, but the effects of 
those detected may be overestimated (‘Beavis effect’). 
Rather than asking how many genes affect a trait, it is 
arguably more meaningful to assume that all genes affect all 
traits and the relevant unknown is the distribution of their 
effects. It is then reasonable to assume the shape is such that 
there are increasingly few of increasingly large effect, and 
then try to estimate this rate of decline and how long is the 
tail, despite knowing only a small segment of the 
distribution. There is some information on distributions of 
mutant effects in laboratory species [45], but that on 

segregating populations has, until very recently, been 
limited. A critical problem is to have a sufficiently powerful 
design that information can be obtained on QTL with effects 
of fractions of a standard deviation on the trait or that 
contribute well under 1% of the variance. Therefore the 
ability to distinguish between different long tail distributions, 
for example symmetric ones such as the reflected gamma, t 
or a mixture of normals is very poor. The large GWAS 
studies being undertaken with very dense SNP panels are 
providing some new insights, and I shall concentrate on 
these.  

Findings from GWAS 

 The most comprehensive published GWAS data on a 
quantitative trait are for human height. From a 
metapopulation analyses of data from studies comprising 
over 180000 individuals, 180 QTL for height have been 
identified, each with high statistical stringency (P < 5 ×10-8) 
[46]. Many had previously been identified in more than one 
independent study. None of the SNPs individually accounts 
for more than 0.11% of the phenotypic variance in height 
and the estimated homozygote differences are typically 
under 1cm, compared to a phenotypic SD of about 7cm. To 
clarify, the variance contributed is that associated with the 
SNPs in LD with the gene or genes; this may be an 
underestimate of actual variance contributed because of 
imperfect LD or an overestimate in that it may account for 
multiple contributing sites. Although the heritability 
estimated from analyses of data on relatives is about 80%, 
together the 180 loci account for only just over 10% of the 
variance. Even if all unidentified common variants of similar 
effect sizes were identified, the authors estimate they would 
increase this figure to only about 16% [46, 47]. Of the QTL 
found, several (more than expected at random) were 
associated with genes characterized by abnormal skeletal 
growth. Several loci were identified which, on the basis of 
expression and other studies, are also strong candidates for 
growth genes. Thus it is reasonable to assume that all or 
most are in or near real trait genes. When SNPs near 
orthologous genes were tested in a cattle population, 
significantly more were associated with stature than would 
be expected by chance, indicative of common effects across 
species [48]. 
 These results are closely mirrored by extensive studies of 
flowering time in maize. Using almost one million plants 
from a set of 5000 RIL from the NAM population (see 
above), Buckler and colleagues [38] found no evidence of 
any QTL of large effect, but many of smaller effects shared 
among families, with no substantial epistatic interactions. 
They note, however, that these results differ from those 
found in Arabidopsis and rice, both naturally self pollinated. 
 The extensive GWAS studies for many human complex 
diseases or other quantitative traits have identified 
contributing QTL but, despite using data sets of thousands of 
individuals, as for height all have failed to account for a high 
proportion of variance in the trait. This has sparked off a 
highly publicised debate on where is the ‘missing 
heritability’ [49]. Several explanations have been proposed 
[e.g. 50], typically related to the contributor’s expertise. 
These include rare variants, structural variants (e.g. 
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duplications/deletions), epistatic effects, parent-of-origin 
effects, rare variants, transgenerational effects, epigenetic 
effects and biases in the estimate of the overall heritability.  
 The high estimate of heritability for height, for example, 
comes consistently from different kinds of studies (e.g. see 
above using genomic relationship). None of the other 
potential causes can be ruled out, and rare variants with a 
large effect in trait units contribute little to the segregating 
variance. Nevertheless the basic explanation seems a simple 
one: that the GWAS studies have not yet captured most of 
the variation because there are numerous QTL of 
increasingly small effect or extreme frequency such that they 
are not detected with the SNP panels used at the power 
levels available in stringent significance tests.  
 This is directly confirmed by GWAS studies undertaken 
by Yang, Goddard, Visscher and colleagues [51,52]. By 
taking densely mapped individuals which were not closely 
related to minimise environmental confounding and effects 
not directly associated with fitted SNPs, they assessed the 
amount of variation accounted for by all SNPs (over 580000 
in the larger study [52]) without regard to whether or not 
they were statistically significant. Some 45% of the variation 
in height is accounted for, i.e. four times that by the ‘top’ 
180 loci already identified [46]. It seems reasonable to 
assume that the remaining half or so of the genetic variance 
is due to QTL which are poorly marked, having insufficient 
LD with the SNPs. Similar analyses of body mass index and 
two metabolic measures [52] and of individuals affected by 
schizophrenia [53] showed that, although individual QTL 
accounting for only a small proportion of variance have been 
identified, fitting multiple SNPs simultaneously accounts for 
much more. Using a population in which there more highly 
related individuals, including some parents and sibs, almost 
all the genetic variation in height was accounted for by 
fitting SNPs [54]. In this analysis the SNPs were also, in 
effect, establishing the pedigree relationships and therefore 
LD well outside that associated with individual markers in 
the population as a whole. 
 The contributions of each chromosome can also be 
obtained in the GWAS analysis fitting all SNPs. This 
showed that the contribution for height is closely related to 
the length of the individual chromosomes [52] and therefore 
corresponds with an earlier analysis in which variation 
within full sib families was analysed [30]. These studies also 
showed a linear relationship between chromosome length 
and the number of individual significant loci for height 
discovered in GWAS analyses, together indicating a fairly 
random scatter across the chromosomes of genes affecting 
height.  

EXPLAINING VARIATION WITHIN POPULATIONS  

Population Genetics Background 

 The simplest model for maintenance of variation is a 
balance between genetic drift and mutation; although an 
oversimplification it is a useful reference point. The 
frequency density of alleles (ancestral or mutants) is then 
proportional to 1/[p(1 – p)], i.e. U-shaped. Assuming two 
alleles at a locus, the heterozygosity and genetic variance for 
an additive gene are proportional to p(1 – p), and therefore 

they have a uniform distribution over the allele frequency 
range from 0 to 1. Most mutations affecting a trait are likely 
to be deleterious with respect to fitness, either through 
pleiotropic effects on other traits or directly on that trait, for 
example if there is an intermediate optimum, and 
consequently they are usually lost quickly from the 
population [55]. Hence their frequency distribution is likely 
to be more extreme than for neutral mutants and the 
distribution of heterozygosity and thus variance for 
quantitative traits is also likely to tend to be U shaped. These 
predictions have several practical consequences in 
quantitative genetics both in QTL detection and in partition 
of variation. 
 Typically, a high proportion of the genetic variance 
obtained in conventional partitions of phenotypic variance is 
additive, and for abdominal bristle number in D. 
melanogaster, for example, it is essentially all additive 
(reviewed [56]). This does not imply, however, that the gene 
action is additive. If the gene frequency distribution is U-
shaped, at most loci one genotype is likely to be so 
infrequent that almost all the genotypic variance is accounted 
for by the additive variance, whatever the degree of 
dominance. Similarly for pairs of loci, where only three 
genotypes, e.g. AABB, AABb and AaBB, are likely to be 
frequent if the a and b alleles are rare, epistasis can 
contribute little of the variance [56]. This is essentially a 
statistical rather than biological argument. Hence the 
knowledge that many major genes are known to be dominant 
and the findings of substantial epistasis in some QTL 
mapping experiments based on inbred crosses (review [57]) 
are not incompatible with the high proportions of additive 
genetic variance typically found from analysis of 
resemblance among relatives in segregating populations. 
 In GWAS, power of detection of a QTL with effect a on 
the trait is proportional to r2a2, where r2 is the squared LD 
correlation between QTL and marker alleles. The expected 
value of r2 depends not only on the closeness of the two but 
on their relative frequencies. Thus if a high proportion of 
trait genes have lower minor allele frequency than do the 
SNPs, many trait QTL are likely to be missed in GWAS 
studies, whether they are oriented at finding individual QTL 
[46] or fitting all SNPs to account for the variance [51, 52]. 
Thus increasingly dense marker panels with wider SNP 
frequency distributions should enable rather more variation 
to be detected. Detection of non-additive gene action in QTL 
analysis is less powerful than for additivity because 
dominance requires demonstrating a non-linear regression 
and two locus epistasis a two factor interaction, and it 
depends on higher order terms than r2.  

Analysis and Implications of Continued Selection 
Response  

 Artificial selection in a closed population can lead to long 
continued response. Notably, the Illinois maize selection 
experiment for high and low oil content in the kernel has 
continued for over 100 generations (= years) and, although 
low lines have reached plateaux (at almost 0% oil), the high 
lines have continued to respond and, for example, there was 
abundant variation present around generation 50 as 
evidenced by responses to reverse selection [58]. Such 
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continuing responses have been seen in other experiments 
[59]. These results indicate that many genes must be 
affecting the trait, initially segregating and perhaps 
subsequently others arising by mutation, for with few loci 
contributing to the variation fixation would occur and 
response be attenuated. Linkage analysis of an advanced 
intercross (to reduce LD) of high and low lines made at 
generation 70 revealed that at least 50 QTL contributed to 
the divergence in oil content, that there was a strong 
correlation between their effects in pure line and crosses, and 
none of the effects exceeded 2% of the divergence [60].  
 With the availability of dense markers it is possible to 
track changes in frequency and selective sweeps, albeit 
distinguishing selection and drift is not simple. Johansson et 
al. [61] analysed long term broiler weight selected lines and 
found divergences between them at over 100 regions of the 
genome, a large proportion of which were likely selective. 
Previous analyses of F2 crosses of the same high and low 
lines had revealed some epistatic QTL with large effect, but 
analysis of the response indicates many loci were involved. 
It has been suggested that selection lines in breeding 
programmes of plants should be regularly monitored for 
marker gene frequency changes to identify associated QTL 
[62]. 
 The indications are that broiler poultry still retain 
considerable variation as heritability for body weights 
remain around their ‘traditional’ 25%, despite over 50 
generations of intensive and effective selection for growth 
and evidence from SNP analyses that variation was lost from 
native populations in the early periods of domestication prior 
to that [63]. These results also point to a highly polygenic 
architecture.  
 Unsurprisingly, in view of the long continued responses 
to selection, we find from the GWAS and selection response 
analyses based not just on F2s that a very large number of 
genes are influencing the trait. Further, these studies do not 
detect substantial amounts of non-additivity and we do not 
expect much non-additive variance in any case in 
segregating populations [56]. Whilst this might be 
disappointing for those looking for genes of large effect, 
perhaps emboldened by initial F2 linkage analyses where 
significant effects are expected to be overestimated, for 
quantitative geneticists and breeders it is also nice to know 
that the multi-locus models they have used may be adequate 
representations of the real world. Hence it is not surprising 
that the infinitesimal model usually (but not invariably) does 
quite a good job of describing data and predicting breeding 
outcomes over multiple generations [64]. For example, the 
model fitted well to results from 20 generations of a 
selection experiment in mice for a measure of fat content 
where a four fold divergence was obtained between high and 
low lines [65], although that was not consistent across all 
other lines selected for different traits. From a plot of long 
term (50 generation) vs. first generation response for 
experiments in D. melanogaster, an infinitesimal model 
fitted almost as well as those developed with multiple loci of 
varying effects under models of maintenance of genetic 
variance, in each case taking account of selection in 
generating linkage disequilibrium [66]. This indicates that 
the pattern of selection response is not very informative 

about the architecture. An understanding of what underlying 
genetic changes have contributed to the change in the 
selected trait or traits requires an analysis at the molecular 
level. In view of the positive linkage disequilibrium between 
lines generated by selection among contributing QTL, 
however, interpretation of e.g. linkage mapping experiments 
among high selected vs. low or control lines lacks power 
[64], unless for example, many generations of recombination 
are first incorporated [e.g. 60]. Analysis of changes in 
frequency during selection or of selective sweeps [e.g. 61] is 
likely to be more informative. 

Pleiotropy 

 QTL mapping using line crosses is not a definitive 
method to detect pleiotropy as it is difficult to disentangle it 
from close linkage of genes each affecting only one of the 
traits. GWAS is rather more definitive in that much smaller 
pieces of the genome can be isolated and with some degree 
of certainty pleiotropic effects detected. A more direct 
approach is via mutation of individual genes, with insertional 
mutagenesis most convenient for subsequent analysis 
because the genetic lesion can be detected directly.  
 Many studies have been undertaken in D. melanogaster 
by Mackay, who reported [e.g. 31] that of the P element 
insertion mutations screened, 22% affected abdominal bristle 
number, 23% sternopleural bristle number, 41% starvation 
stress resistance, 5.6% olfactory behaviour, 22% wing shape, 
37% locomotor startle response, and 35% aggressive 
behaviour. These indicate substantial pleiotropy.  
 In contrast, in two large studies of mutants, less 
pleiotropy was found [67]. In one, 253 morphological traits 
were recorded in each of 2449 haploid lines of S. cerevisiae 
mutant for a different gene and the mean number of traits 
affected in each line was 21.6 and the median was 7. In 
another, for 4905 genes and 308 traits in mice, the mean was 
8.2 and median 8. Thus Wagner and Zhang [68] concluded 
that pleiotropy was limited. As high thresholds were set to 
avoid false positives, however, the chance of false negatives 
seems high and some of these results could be obtained even 
if all genes affected all traits, to varying but correlated 
extent. In view of the vast potential number of traits and high 
genetic correlations found among many of them, pleiotropy 
must be widespread and it would seem better, at least in 
principle if hard in practice, to fit and to validate models 
incorporating a joint distribution of effects of each gene on 
each trait.  

Maintenance of Variation in Quantitative Traits 

 Whilst applications of genomics have demonstrated 
clearly that many loci contribute to variation in quantitative 
traits, they have not yet resolved one of the so far intractable 
problems: explaining the magnitude of variation seen in 
natural or domesticated populations. For example the 
coefficient of variation is typically around 10% for juvenile 
growth rate, lower for mature size, and higher for 
reproductive rate. Heritability is typically 25% for juvenile 
growth rate, higher for mature size and lower for 
reproductive rate. It is simplistic to argue that the heritability 
of fitness associated traits such as reproductive rate is low as 
it is under stronger natural selection, because the CV of such 
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traits is high, such that a standardised measure, the genetic 
coefficient of variation (evolvability), shows a much 
narrower range. 
 Although there has been extensive analysis and 
discussion of what determines the level of genetic variation 
in populations (and a more limited one on what determines 
levels of the environmental variance, which itself must also 
be under genetic control), there is no clear resolution. There 
must be a trade-off between gain of variation from mutation 
(which adds a new heritability of typically 0.1% per 
generation) and loss by genetic drift and by most modes of 
selection. Basically it is hard to explain why levels of both 
genetic and environmental variation are as high as they are 
[3, 7, 17, 66, 69, 70]. The challenge is therefore to work out 
how the detailed genomic and other data becoming available 
can be used to address such basic problems in quantitative 
genetic problems.  
ANIMAL AND PLANT IMPROVEMENT; PREDIC-
TION OF DISEASE RISK 

 The availability of dense genomic markers is 
revolutionising the methods being used in animal breeding 
and is increasingly so in plant breeding and in disease 
prediction in humans. The principles and methods for 
‘Genomic selection’ were proposed in 2001 for livestock by 
Meuwissen, Hayes and Goddard [71]. The basic idea is to fit 
all the markers and assume they are associated through LD 
with a random effect on the trait, sampled from defined 
distribution(s). Thus, for example, young dairy bulls or 
cockerels that have no phenotype for milk or egg production 
respectively from the same full sib family can be 
differentiated and extra information added on comparisons 
of animals in different families. This enables increased 
accuracy of selection and reduction in or elimination of 
progeny testing with reduced generation interval, according 
to the situation relevant to the breeding system and structure. 
Similarly the risk of some complex genetic disease of a 
young individual or foetus can be predicted from the 
incidences in and genetic similarity to adult relatives. 
 One simple view is to regard the predictor as simply that 
of improving estimation of the weighted proportion of 
genome or actual relationship (GBLUP) shared by relatives, 
which is equivalent to assuming effects of all SNPs are 
sampled from the same distribution, in essence an 
infinitesimal model (with linkage). The alternative proposed 
by Meuwissen et al. [71] is to assume some loci have larger 
effects than others, undertaken by assuming a mixture 
distribution of marker associated effects, or no effect, i.e. 
zero variance. This topic has generated extensive discussion 
and analysis [e.g. 72, 73]. GBLUP is conservative, in that it 
treats all regions of the genome equally, and has been 
adopted in dairy cattle evaluation in the USA, for example 
[74].  
 An essential component of assessment of methods of 
genomic prediction is some form of cross validation, 
whereby predictions of breeding values from a training set 
are checked by realisations on individuals which were not 
included in the initial predictions, the validation set. For 
example data from the most recent years can be excluded 
from the analyses leading to the predictions.  

 Comparisons of accuracies of prediction under different 
models indicate that for some traits, such as proportion of 
white in the cattle coat, these are highest if there are assumed 
to be a relatively limited number of important genomic 
regions, whereas for milk yield GBLUP is accurate, 
suggesting more dispersed variation [75]. The accuracy of 
selection depends on the degree of LD between the QTL and 
the markers. It is therefore likely to be most accurate within 
populations (breeds) that are closed and of limited effective 
size, and less so when dealing with population mixtures or 
across generations, for example, as has been demonstrated 
[73]. Accuracy can be improved by increasing SNP panel 
size, ultimately by complete sequencing. Technological 
developments have been such that the costs of genome 
sequencing, for example, have reduced dramatically, whilst 
that of obtaining phenotypic data has not. The latter may 
well become limiting in the future.  
 An alternative to genomic prediction fitting an additive 
quantitative genetic model or, exceptionally, dominance also 
within a Mendelian framework is to use non- or semi-
parametric methods. With these any degree of epistatic 
interactions associated with the SNP marked effects can be 
fitted. Additive relationships can also be included for 
infinitesimal effects as in the usual model, but with a 
reproducing kernel Hilbert space regression fitted to the SNP 
associated affects [76]. At its simplest, consider selection of 
sires to breed reduced disease incidence. The training set of 
data comprises a group of genotyped sires each with a 
number of progeny, and SNPs are simply fitted without, for 
example, incorporating relationships [77]. The function of 
the SNPs giving the highest accuracy of prediction using this 
training set is then chosen. It can then be tested by cross 
validation. A feature of this approach is that it incorporates 
all possible epistatic interactions (up to the order of number 
of SNPs) and avoids assumptions about the inheritance 
mechanisms. Predictions incorporating these non-additive 
effects from the markers are not transferable across 
generations, however.  
 Incorporation of genomic prediction has the potential to 
greatly increase rates of genetic improvement of livestock 
and it is rapidly being taken up [73, 74, 78]). Essentially the 
same methodology can be and is being incorporated into 
plant breeding programmes, depending on the breeding 
system [79-80]. Prediction of risk of disease in individual 
humans can be tackled by the same approach [8, 81, 82].  

CONCLUDING REMARKS 

 Our understanding of quantitative genetic inheritance has 
largely been at the phenotypic level, summarised by 
variances and covariances using increasingly sophisticated 
statistical and computing methods. Developments continue 
in this area, notably in previously less well studied areas, 
such as of natural populations. These methods have been 
used successfully in effecting genetic change in livestock 
and plants. As QTL mapping has progressed with 
increasingly dense markers available with genomic 
techniques, now feasible using LD based genome wide 
association studies, so has information about the effects on 
the traits of individual loci accumulated and been utilised in 
marker assisted introgression and selection, to some extent in 
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animal breeding and more in plants. These studies have, 
however, confirmed the multi-locus nature of quantitative 
genetic variation, previously largely inferred but not proven 
from selection and other experiments. At this stage genomic 
methods are therefore having their most impact in breeding 
practice in genomic prediction, expanding what is essentially 
a statistical approach. In view of the complexity of the 
genome and the evidence, unsurprising to most quantitative 
geneticists, that many genes contribute to variation, we must 
appreciate that exact descriptions even at the level of 
numbers of genes, distributions of gene effects and their 
interactions will be very hard to resolve. Fortunately, 
however, we can still make progress without all that detailed 
knowledge by introducing extra information from variation 
at the genome level into our descriptions and predictions. 
 I have not dealt with the area here, but the hope and 
expectation is that techniques from genomics, 
transcriptomics and other ‘omics will increase our 
knowledge of how the genes that affect quantitative traits act 
in the organism to do so, and how they are regulated. Indeed 
these are likely to be informed by quantitative genetic 
approaches: for example transcript abundance is itself a 
quantitative trait. There is a hope that systems biological 
approaches will be fruitful in unravelling the chain from 
gene to phenotype. It seems likely that understanding will 
come first from the study of complex disease where 
understanding individual genes is a priority and it will 
probably be a slow process for continuous traits, for which 
only a few pathways are unlikely to predominate. In due 
course this will help us not only to make better predictions in 
health and breeding but also to understand more about how 
our species have evolved. We now have extensive 
information at the genomic level on species differences for 
example, but little on how the differences in quantitative 
measures such as size, longevity and behaviour have arisen. 
There is plenty to do. 
 We now have the ability to record genomic sequences, 
obtain levels of expression of all genes in different 
environmental circumstances and manipulate the vast 
amounts of detail so as to construct pathways of gene action 
and interaction. The problem is how this information should 
be put together, both to understand how the system works 
and to use it to our benefit in improvement of food 
production, food quality, health, and the environment.  
 Traditionally, and perhaps inevitably in view of the need 
to justify research grants, there has been long running 
optimism about understanding variation in quantitative traits. 
Much of it is still to be realised The quantitative nature of the 
traits and the polygenic influence on them will make this a 
very challenging task. 
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