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PURPOSE. To describe an algorithm and software application
(APP) for 100% optic nerve axon counting and to compare its
performance with a semi-automated manual (SAM) method in
optic nerve cross-section images (images) from normal and
experimental glaucoma (EG) nonhuman primate (NHP) eyes.

METHODS. ON cross sections from eight EG eyes from eight
NHPs, five EG and five normal eyes from five NHPs, and 12
normal eyes from 12 NHPs were imaged at 100·. Calibration
(n ¼ 500) and validation (n ¼ 50) image sets ranging from
normal to end-stage damage were assembled. Correlation
between APP and SAM axon counts was assessed by Deming
regression within the calibration set and a compensation
formula was generated to account for the subtle, systematic
differences. Then, compensated APP counts for each validation
image were compared with the mean and 95% confidence
interval of five SAM counts of the validation set performed by a
single observer.

RESULTS. Calibration set APP counts linearly correlated to SAM
counts (APP ¼ 10.77 þ 1.03 [SAM]; R2 ¼ 0.94, P < 0.0001) in
normal to end-stage damage images. In the validation set,
compensated APP counts fell within the 95% confidence
interval of the SAM counts in 42 of the 50 images and were
within 12 axons of the confidence intervals in six of the eight
remaining images. Uncompensated axon density maps for the
normal and EG eyes of a representative NHP were generated.

CONCLUSIONS. An APP for 100% ON axon counts has been
calibrated and validated relative to SAM counts in normal and
EG NHP eyes. (Invest Ophthalmol Vis Sci. 2012;53:2951–2959)
DOI:10.1167/iovs.11-9274

Glaucoma and other optic neuropathies collectively repre-
sent a leading cause of blindness around the world. Thus,

a great deal of laboratory research aims to determine their key
pathophysiological mechanisms and to develop new treatment

strategies. For many of these studies, the most direct and
important outcome measure will be the number of axons
remaining in the optic nerve. However, counting ON axons
can be time consuming and error-prone, the latter especially if
sampling techniques are employed.1–12 Study authors pub-
lished a series of papers3,4 in which orbital ON axon counts
were performed in nonhuman primate eyes using a semi-
automated manual count method. In this technique, a
randomized sample of the total ON area (8% for normal, 20%
for experimental glaucoma nerves) was imaged and counted.3,4

This is extremely labor intensive and prone to sampling error.
The purpose of the present study is to describe an automated
algorithm for counting axons in 100% of the orbital ON cross-
sectional area and to validate its results against SAM counts.

Achieving 100% ON axon counts is important for glaucoma
research to improve the accuracy of axon loss estimates at any
stage of glaucomatous disease and, more importantly, to allow
for accurate estimates of regional loss within the orbital ON,
thus enhancing the ability of all experimental glaucoma models
to test core hypotheses regarding the mechanisms of
glaucomatous damage. Furthermore, having a complete axonal
map of the orbital ON is essential to fully understand complex
structure-function relationships.13–16

Potts et al. reported the first automated axon counts
covering 100% of orbital ON cross sections in two normal
rhesus monkey and two normal human eyes.17,18 However, the
method employed in that report was extremely labor intensive,
in part due to the imaging and computer technology available
at the time. Since those initial reports, a variety of manual or
semi-automated techniques for estimating the total number of
orbital ON axons have been employed to characterize the
degree of orbital ON axon loss within experimental glaucoma
models in a variety of animal species.1,2,7,11,12,19–24 Similar
methods have also been used to estimate total axon number
and size distributions within normal and glaucomatous human
cadaver eyes.9,10,18,25,26 All such methodologies require the
acquisition of high magnification images by light or electron
microscopy to identify and count normal axons. The cross-
sectional area sampled in these methods typically ranges from
3% to 20%. To achieve an estimate for the total orbital ON axon
count, the axon densities from the small subset of sampled
areas are averaged and extrapolated to the total cross-sectional
area of the ON.

The nature and magnitude of the inaccuracies that can
result from strategies that sample less than 100% of the orbital
ON cross section to estimate the total ON axon count have
been evaluated and discussed.4 Nevertheless, sampling meth-
odologies have been employed because, up to now, it has been
impractical to count 100% of the ON cross-sectional area. At
100X magnification, the typical number of images required to
cover an average NHP or human ON ranges from 3000 to 7000;
and a trained human observer is required to manually adjust
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intensity thresholds and other parameters for every image in
order for existing image analysis software to effectively detect
and count normal axons. Due to improvements in technology
such as automated microscope stages and image acquisition
software with auto-exposure and autofocus capabilities, the
acquisition of a large number of high-quality images across an
entire ON cross section is achievable in a relatively short
period of time. The following sections describe the method-
ological approach and demonstrate the results of the study’s
automated strategy for counting ON axons.

METHODS

Overview of Study Design

First, a calibration study was performed to compare total axon counts

by each method within an initial group of 500 images. These images

were qualitatively classified by a single experienced observer as

normal, mild damage, moderate damage, severe damage, and end-stage

damage in order to balance the total sample with 100 images from each

damage level. Next, a validation study was performed to compare APP

counts with the SAM counts by assessing whether the APP counts fell

within the range of repeated SAM counts. For this experiment, SAM

counts were repeated five individual times on a separate group of 50

images representing a similar, broad range of damage (10 images per

damage group). The APP counts were compared with the mean SAM

counts and with the range of SAM recount variability (95% confidence

interval). Finally, to demonstrate the overall strategy for 100% ON axon

counting, APP axon counts, image composites, and density maps were

generated for the total ON area of the normal and experimental

glaucoma eye of a single representative NHP.

Optic Nerve Tissues

ON tissues from 17 normal and 13 experimental glaucoma eyes from a

total of 25 previously studied NHPs (19 rhesus, six cynomolgus,

ranging in age from 4 to 19 years at the time of sacrifice) were included

in this study. All animals were treated in accordance with the ARVO

Statement for the Use of Animals in Ophthalmic and Vision Research.

Before induction of experimental glaucoma in any NHP, its eyes were

deemed normal if they passed a complete ocular examination by an

experienced observer, which included slit lamp examination, dilated

fundoscopy, ON stereo-photographic evaluation, and tonometry.

Unilateral chronic IOP elevation was induced following laser damage

to the trabecular meshwork leading to glaucomatous damage to the ON

head as detected by confocal scanning laser tomography as previously

described.27 ONs were either perfusion- or immersion-fixed with either

4% paraformaldehyde or 6% glutaraldehyde (depending upon individ-

ual study protocols) at the time of sacrifice.

After enucleation, three longitudinal cuts (one superior and two

nasal) were made in the orbital ON, which was then transversely cut 3–

6 mm posterior to the sclera (measured along the superior surface of

the nerve and cut perpendicular to its longitudinal axis) and stored in

either 4% paraformaldehyde or 6% glutaraldehyde for further process-

ing. A 500-lm piece was removed from the cut end using a vibratome

(Leica VT 100S; Leica Microsystems Inc., Deerfield, IL) and each ON

piece was post-fixed in 4% osmium tetroxide and embedded in epoxy

resin. ON cross sections (1-lm thick) were cut using an ultramicro-

tome (RMC Ultramicrotome MT6000; Boeckeler Instruments Inc.,

Tucson, AZ), stained with p-phenylenediamine, and mounted on glass

slides.4

Image Acquisition of 100% of Each ON Cross
Section

Images covering 100% of the ON cross section were automatically

captured under oil immersion with a 100· objective (Leica PL Fluotar

NA ¼ 1.3) using an inverted light microscope (Leica DM IRB; Leica

Microsystems Inc.), imaging software (Bioquant imaging system,

NOVA, R&M Biometrics, Inc., Nashville, TN) and a computer-

controlled (X-Y-Z) stage (Applied Scientific Instrumentation, Inc.,

Eugene, OR). Each acquired image was 640 · 480 pixels (W x H)

covering an area of 1412 lm2. To ensure full ON cross-sectional

coverage, images were captured with a 15% overlap in both x and y

directions. This overlap was necessary to overcome the small

misalignment between the main axis of the camera and the stage

(1–5 lm) over large distance spans.

While the acquisition software has auto-exposure functionality,

the upper exposure limit is controlled by a user-selected value that

must be optimized for the entire ON so as to minimize the number of

under- or overexposed images. Special consideration was also given

to finding auto-exposure and illumination settings that enhanced the

myelin’s contrast with the surrounding neural area, allowing the

autofocus mechanism to converge on the myelin’s plane rather than

on debris or other background noise that might be present within the

field of a given image. Each image was saved in Bioquant’s BIF format,

which contains the image’s x, y coordinates relative to a user-selected

center.

Selection of Representative Images for the
Calibration and Validation Studies

ON images from a total of 17 normal eyes and 13 eyes with

experimental glaucoma were reviewed by a trained observer and

assigned a damage grade (i.e., normal, mild, moderate, severe, end-

stage) based on a qualitative estimate of the number and condition of

the axons within each image. Representative images from each group

are shown in Figure 1 below. All selected images for the calibration and

validation studies were deemed to be of ‘‘countable’’ quality and no

attempt was made to select only high-quality images. The images used

in the calibration and validation studies were in some instances taken

from the same ON cross sections; however, all images used in each

study were unique.

Automated Axon Counting Method and Software
Application

The study’s current approach to ON axon counting is the result of

work that has evolved initially from a method that was optimized for

normal ONs28,29 to one that was designed to count axons in damaged

ONs.30,31 However, these previous algorithms proved to be too

complex or often failed to perform satisfactorily on images with

moderate levels of axonal damage. To address these two issues, an APP

was developed that, given an image, provides an estimate of the

number of ‘‘normal’’ axons (i.e., axons with normal morphological

characteristics as outlined below) regardless of the overall axonal

damage level present in the image. Other parameters such as axon size

and shape were also obtained. The APP is written in Java and currently

utilizes the ImageJ32 package for shape analysis and filtering. For details

on the algorithm and other software utilized in developing the APP,

please refer to Appendix 1.

Semi-Automated Manual Axon Counts

Within the subset of images selected for the calibration and validation

studies (see Fig. 1), an experienced operator counted the normal axons

present in the images using the Bioquant imaging system.3,4 The steps

performed by the operator were similar to the ones done by the APP.

First, a hard threshold was applied to the images to produce the binary

maps. Depending on the quality of the stain, illumination, or level of

damage in the images, the operator may have had to manually ‘‘clean’’

the resulting binary maps by removing areas that were clearly not

axons and by closing gaps in valid myelin to recover axons that were

otherwise lost.
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Once images were cleaned, a shape filter was applied to remove

shapes that were clearly not axons. This was, again, an iterative manual

task that required direct user intervention in order to determine the

proper shape filter parameters and to indicate when all non-axon

shapes were successfully removed.

Calibration Study—Determining the Relationship

of the APP to SAM Axon Counts within a

Representative Group of 500 Images

The purpose of this study was to directly compare total axon counts by

each method within a group of images that were considered to be

normal or that qualitatively demonstrated mild, moderate, severe, or

end-stage levels of axonal damage (see Fig. 1). Because of the

qualitative nature of the classification, some overlap between damage

levels will undoubtedly exist. To account for this overlap and to still

provide a large enough sample, 500 images (n¼ 100 for each damage

level) were selected. Output data for each image was the total number

of normal axons counted by the APP and SAM. The relation between

APP and SAM counts was assessed by Deming regression,33 which

assumes equal variances for both methods under the null hypothesis

that the two methods are equivalent. A Bland-Altman plot was

generated to assess agreement between both methods. A small bias

was found (as described in the Results section) and accounted for in

the validation study as described in the section that follows.

FIGURE 1. Representative 100· images by damage grade used in the calibration and validation studies. (A) Normal. (B) Mild. (C) Moderate. (D)
Severe. (E) End-stage. See Methods section for further description.
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Validation Study—Comparison of Compensated
APP to SAM Counts within a Second Representative
Group of n ¼ 50 Images with Multiple (5) SAM
Counts

In order to validate the algorithm, compensated APP axon counts were

compared with the mean and range of repeatability (95% confidence

interval) derived from five separate repeat SAM counts. For this

validation study, a separate group of 50 representative images was

used. The images in this group were considered to be normal (n¼ 10)

or that qualitatively demonstrated mild (n ¼ 10); moderate (n ¼ 10);

severe (n ¼ 10); or end-stage (n ¼ 10) levels of axonal damage. SAM

counts were performed on all 50 images by the same operator (GC) on

five separate occasions at least 1 week apart. Correlation between the

APP and SAM counts was assessed by Deming regression as outlined

above. APP counts for each image were then compensated using the

equation resulting from the linear regression of the difference versus

average axon counts from the calibration set (see Fig. 3). The number

of images for which the compensated APP counts fell outside of the

95% confidence interval of the SAM counts was recorded and the

potential reasons for disagreement were assessed.

Automated Whole ON (100%) Normal Axon Counts
in Both Eyes of a Single Representative NHP with
Unilateral Early Experimental Glaucoma

To demonstrate the utility of the study’s automated 100% optic nerve

axon counting strategy, ON cross sections from both the normal eye

and the experimental glaucoma eye of a single NHP were imaged (as

described in the image acquisition section above) yielding a set of

5000þ images per ON. All images were then counted by the APP at an

average rate of 4 images/minute. For every counted image, an

individual output file was generated as well as an output image

highlighting the centroid of all recognized axons. No compensation of

the automated counts was performed in these images (see the

Discussion section).

A global summary file containing the image coordinates, axon

count, average size, and density for all counted images was created for

each nerve. The global summary file was used by two final

applications. The first application generated a composite of the optic

nerve cross sections by placing scaled (1/10) thumbnails of every

image in a large canvas at the appropriate x, y coordinates. The second

application generated a composite in which each scaled image was

colorized according to its axon density value defined to be the axon

count divided by the total image area (axons that resided in the overlap

areas were included in the density calculation for each image but not in

the final counts). The assignment of superior, inferior, nasal, and

temporal to each optic nerve cross section was accomplished by

matching the superior and nasal cuts within that image to the same

three cuts in the optic nerve stump of the digital 3D optic nerve head

reconstruction of that eye (as previously described).4

RESULTS

The Table reports the mean 6 SD and range of axon counts by
each method for the normal, mild, moderate, severe, and end-
stage images used in the calibration and validation studies,
respectively. These data confirm that the five damage groups
represent a broad range of axon numbers and that the range is
similar in both studies, though the mild, moderate, and severe
damage groups appear to have a slightly lower axon count (i.e.,
to be more severely damaged), on average, in the validation
study set.

Calibration of APP to SAM Counts within an Initial
Group of 500 images

The APP counts were plotted versus SAM counts for all 500
images in Figure 2. The relationship between APP (ordinate)
and SAM counts (abscissa) for these 500 images was APP ¼
10.77 þ 1.03 (SAM) with an R2 of 0.94 (P < 0.0001, Deming
regression). These data indicated that there was close
correlation between APP and SAM counts in images from
normal NHP eyes as well as through the complete range of mild
to end-stage glaucomatous damage.

A Bland-Altman plot (Fig. 3) demonstrated an average
difference of 16.7 axons (APP > SAM) that decreased slightly as
the number of axons per image decreased. The limits of
agreement extended from -28 to þ61 axons.

Validation of the APP Calibration to SAM Counts
within a Second Group of 50 Images with Multiple
Repeats (5) of SAM Counts

The relationship between uncompensated APP counts and the
mean of five repeated SAM counts for these 50 images was APP
¼ 12.03þ 1.03 (SAM) with an R2 of 0.96 (P < 0.0001, Deming
regression). These data indicated that in a separate group of 50
images with glaucomatous axonal damage (normal to end-

FIGURE 2. APP versus SAM counts in 500 images. The correlation
produced an R2¼0.94 (P < 0.0001). The relation of APP to SAM counts
established by Deming regression is defined by the formula APP ¼
10.77þ 1.03 (SAM) and shown by the solid line.

FIGURE 3. Bland-Altman plot for the 500 calibration images. The
dashed lines represent the 95% limits of agreement between the APP
and SAM (-28 and 61). The solid black line represents the linear
regression defined by the equation y ¼ 10.36þ 0.03x; R2 ¼ 0.01.
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stage), there was again close correlation between the APP and
SAM counts. Similar to the first group of 500 images, APP
counted on average 12 more axons per image than the SAM
with this difference declining for images with fewer axons.
After APP counts were compensated (by the regression from
data in Fig. 3), the mean 6 SD of the SAM counts (190 6 100)
was not significantly different from the mean 6 SD of the APP
counts (191 6 99) for the group of 50 images used in this
validation set (paired, two-sided t-test [P¼ 0.71]). Compensat-
ed APP counts are plotted versus the mean of five SAM counts
for each of the 50 images in Figure 4.

Figure 5 shows the compensated APP counts from the
validation study plotted relative to the mean and 95%
confidence interval of the five SAM counts sorted by rank.
APP counts fell within the 95% confidence interval of SAM
counts in 42 of the 50 images (84%). In the remaining eight
images, six had APP counts that fell outside of the 95%
confidence interval by a margin of 12 axons or less. The mean
6 SD difference between the APP and SAM counts for the 50
validation study images was 1.15 6 18.7 axons. The 95%
confidence interval for this difference ranged from -35 toþ38
axons. The two remaining images (#5 and #19) differed more
substantially, which can be attributed to their relatively poor
image quality (see Fig. 6).

Generation of APP Density Maps and Total ON
Axon Counts for Both Eyes of a Representative
Unilateral Early Experimental Glaucoma NHP

Orbital ON cross sections along with their image composites
and APP density maps are displayed for both the normal and
early experimental glaucoma eye of a representative NHP in
Figure 7. A total of 5768 and 6000 images make up the image
composites for the contralateral control and experimental
glaucoma eyes, respectively. Every image in each of the two
composites was counted by the APP. The total uncompensated
ON axon counts for the normal (1,184,801 axons) and early EG
(1,008,103 axons) eyes indicate a loss of 14.9% in the
glaucomatous eye relative to the contra-lateral control eye.

DISCUSSION

The purpose of this paper was to describe an automated
algorithm and software application for counting axons with
normal morphology across 100% of the cross-sectional area of
the orbital ON, and to assess its performance relative to the
previously published semi-automated method in a representa-
tive sample of images taken from control and glaucomatous
eyes of NHPs with unilateral experimental glaucoma. The
study method proved to be highly correlated to SAM counts in
an initial calibration set of 500 images. It also showed that its
performance was similar to that of an experienced operator in
a validation set of 50 images counted five times each by
demonstrating that its results fell within the operator’s 95% CI
in 42 out of 50 images. Since the images in both sets
demonstrated axonal damage ranging from normal to end-
stage, the results obtained showed that the study method
achieved the requirements set forth at the start of the work: to
develop a simple solution that is applicable to all levels of ON
axonal damage and that is computationally robust and efficient.
It is important to stress that—like any other image processing
algorithm—the performance of the described method depends
entirely on the quality of the input images that is affected not
only by proper exposure and focus settings, but also (and
perhaps more importantly) by proper tissue processing,
sectioning, mounting, and staining.

In terms of performance, it took the system approximately
12 hours to acquire the 11,768 images required to cover 100%
of the cross-sectional areas of one normal (5768 images) and
one EG (6000 images) NHP ON. On the test system used for
this study (MacBook Pro laptop, 2.2 GHz Core2 Duo, 3GB
RAM; Apple, Cupertino, CA), the APP processed an average of
4 images/minute (49 hours for 11,768 images). However, due
to the independent nature of the problem (i.e., each image is
an independent sample), the APP can be easily parallelized,

TABLE. Normal Axon Counts within the Normal, Mild, Moderate, Severe, and End-Stage Images Used in the Calibration and Validation Studies by
Counting Method

Calibration Study Validation Study

t-Test

SAM APP SAM* APP†

Mean 6 SD Range Mean 6 SD Range Mean 6 SD Range Mean 6 SD Range

Normal 308 6 75 129–495 330 6 75 144–512 314 6 69 222–453 311 6 71 202-432 P ¼ 0.63

Mild 291 6 41 232–433 303 6 43 199–418 256 6 66 132–387 252 6 70 126–363 P ¼ 0.61

Moderate 225 6 33 157–309 243 6 35 154–350 182 6 30 124–218 185 6 34 134–226 P ¼ 0.46

Severe 162 6 25 90–236 182 6 33 68–261 106 6 41 50–196 121 6 51 52–236 P ¼ 0.01

End-stage 82 6 20 38–118 94 6 27 44–171 92 6 41 23–160 87 6 40 28–147 P ¼ 0.16

*SAM counts in the validation study are the mean of five separate counting sessions.
†APP counts in the validation study are compensated using the equation for the regression line generated in the calibration study.

FIGURE 4. Validation of the calibration equation between APP counts
and the mean of five SAM counts within a second group of 50 images.
APP counts were compensated using the regression line equation
established by the initial calibration study (Fig. 3) and compared to the
mean of five repeated SAM counts of each image. The solid line
represents the result of the Deming regression; y¼ 2.87þ 0.99x, R2¼
0.97.
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FIGURE 5. Compensated APP counts plotted relative to the mean 695% confidence interval (box¼ one standard deviation, whiskers¼ 95% CI) of
five SAM counts for each of the 50 validation study images. The APP count for each image was compensated using the factor derived from the
regression line of the calibration study (see Fig. 3). Compensated APP counts for 42 of the 50 images fell within the mean 695% CI of five SAM
repeated counts. Of the remaining eight images, six had compensated APP counts that fell outside of the 95% CI by a margin of 12 axons or less and
two images (images #5 and #19, highlighted with arrows above) exhibited a difference greater than 30 axons from the SAM 95% CI, most likely due
to their relatively poor quality.

FIGURE 6. Representative images to evaluate the agreement between the APP (red dots) and SAM counts. The images in this figure show instances
where the agreement between the APP and SAM counts varied. (A, B) Poor (images 5 and 19 from Fig. 5, respectively). (C) Fair. (D) Excellent. All
results herein refer to compensated APP and the average of five repeat SAM counts. In these images, the SAM counts were 338, 218, 115, and 297
and the APP counts were 289, 151, 128, and 297 [(A)–(D), respectively]. (A) and (B) have multiple axons that are either very small or poorly
defined, highlighted by the red boxes. Panel C shows an image from an area of severe damage in which the contrast between the myelin border and
the inner axon area is reduced (red boxes). Finally, panel D shows an image with good illumination and high contrast.
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moving it from its single-threaded model to one that uses all
CPU cores available in the computer, to reduce the processing
time required by a factor equivalent to the number of cores
available. The software can also be distributed to different
computers on the network and executed simultaneously to
further improve its performance. The application will be
modified to implement these parallel features.

Combining 100% axon counts with precise alignment of the
orbital ON cross section to the ON head and retina34 should
allow a new level of hypothesis testing regarding structure-
function relationships and the cellular mechanisms underlying
RGC axonal damage. The strategies for within-eye and
between-eye clinical colocalization, as well as for generating
between-eye ON axon density and axon size difference maps,
are under development and will be the subject of future
studies.

The study method has several limitations. First, the ON
tissues used for this report were either perfusion-fixed or
immersion-fixed immediately after sacrifice. While most
experimental models can provide similar levels of tissue
processing, the quality of axon preservation within human
cadaver eyes may not be adequate for this technique without
substantial adjustment of the algorithm. Second, the method
was developed and validated using NHP ON images. For
species with smaller axons, changes need to be made both to
the acquisition system and to the software application in order
to adequately capture images and accurately count optic nerve
axons. Work on a rodent version of the APP will be started in
the near future. Third, study calibration and validation studies
were performed on two separate groups (n¼ 500 and n¼ 50,
respectively) of images from a total of 17 normal and 13
experimental glaucoma eyes from 25 NHPs. The processing of

these ON tissues occurred over a 10-year span and involved
multiple technicians. While it is believed this is a reasonable
representation of the variability inherent within the animals,
eyes, and tissue processing, it is also believed that as the study
method is implemented in other laboratories, similar calibra-
tion studies specific to each laboratory will be required. Finally,
some degree of misalignment between the camera and stage
axes will always occur and its reduction is difficult to attain
particularly at high magnification. At present, the study’s
overlap calculation assumes no misalignment and it is done
purely on the basis of the coordinates of each image. While this
assumption does not introduce any error in the accuracy of
each image density estimate, it can potentially affect the overall
axon count depending on the amount of misalignment, size of
the ON, and size of the axons in the overlap areas. Future
experiments are planned to accurately determine and minimize
the misalignment effects in the study’s method.

It is important to note that the system and method
presented in this manuscript can be easily expanded to other
species. For rodents, for example, changes in the optics and
small software adjustments to accommodate for the smaller
axon size would be required. Also, similar studies as the ones
presented herein would also be necessary to validate the
accuracy of the APP. However, due to the smaller ON size, the
time required to produce validation data (manual counts)
would be greatly reduced and a large dataset could be easily
assembled. The process to expand the software in this
direction is already underway.

Finally, while compensation of the automated axon counts
was required to most fairly compare the performance of the
APP to that of the SAM in the validation study, it is not believed
that the automated counts should be compensated in actual

FIGURE 7. Orbital ON cross-section image stained for myelin (left column), 100· composite image (middle column) and 100· density map (right

column) for both the control (upper row) and early EG (bottom row) eyes of an NHP.34 All images are in right eye configuration and in approximate
clinical orientation (superior [S], inferior [I], nasal [N], and temporal [T] based on the optic nerve cross-section cuts outlined in yellow in the upper

and lower left panels). A total of 5768 and 6000 images at 100· magnification make up the image composites and were counted by APP for the
control and early EG eyes, respectively. The colored density plots (right) are generated from the uncompensated (see Methods section) total axon
count of every image divided by the image area (including the axons that lie in overlap areas). The total uncompensated ON axon counts (excluding
the overlap areas) for the control (1,184,801 axons—upper row) and early EG (1,008,103 axons—lower row) eyes indicate a 14.9% between–eye
difference in this animal.
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scientific application. Doing so would imply that the study
manual counts are the gold standard and, thus, more accurate
than the study’s automated algorithm—something that is
difficult, if not impossible, to determine. Therefore, the results
reported in Figure 7 are raw (uncompensated) automated axon
counts.

In summary, this study presented a method for fully
automated 100% orbital ON axon counts in NHP ONs. Study
calibration and validation data indicate that its counts are
similar to SAM counts through a wide range of ON damage—
from normal through to end-stage axon loss—in NHP eyes.
While the imaging hardware necessary to implement this
method is expensive, most laboratories already have parts that
can be integrated to produce a solid imaging solution. Due to
its low computational requirements, any recent computer (PC
or Mac) should be capable of running the software, which is
available upon request.
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APPENDIX A

Algorithm. The algorithm consists of the following steps:

1. Read the image and obtain its x, y coordinates. Because
the APP is not designed to work with color images (e.g.,
fluorescently labeled images with multiple labels), only
the green channel is currently used.

2. Create a binary image map. Every pixel in the image is
categorized as either myelin (black) or other (white)
using a fuzzy c-means classifier.1

3. Find all the white pixel clusters using ImageJParticleA-
nalyzer plugin. Every cluster is then filtered based on its
size and circularity measure. Clusters that fall within
myelin boundaries generally meet normal axon require-
ments and are kept. Other clusters representing vessels
and voids in the ON cross section are rejected.

4. Write the results to a comma-delimited output file. Each
line in this file represents a normal axon found in the
image and includes the axon’s centroid, area, and
circularity value.

5. After all images have been counted, a separate utility
gathers all output files from step 4 and produces a total
axon count for the entire ON cross section and average
axon size and density for every image. A scaled
composite of the raw acquired images (composite
image) is then created. An additional composite colored
according to axon density is also produced (density
composite image).

Image Reader. A custom BIF image reader was developed
to support Bioquant’s native BIF format. For TIFF and PNG
images, the APP uses Java’s ImageIO classes to read the input
images and to produce the global composites and density
maps.

Fuzzy C-Means Classifier. The most important task of the
APP is to automatically assign every pixel within the image to
one of two categories: ‘‘myelin’’ or ‘‘other’’ (neural tissue,
vessel, empty area, etc.). This ‘‘membership’’ association is
difficult to obtain using a simple threshold technique because
of image quality issues such as uneven stain uptake, exposure,
and focus across the ON section, which reduce the simple
threshold’s performance. A more robust technique that is less
affected by these factors and that can operate without direct
user intervention is thus necessary. The FCM clustering
method1 is well suited for this task. Using the pixel’s grayscale
value as input, the FCM assigns each pixel a probability of
belonging to either the ‘‘myelin’’ (dark) or ‘‘other’’ (bright)
category. Because the FCM operates on each image indepen-
dently, its results are optimized for each individual image. This
is particularly important in images from areas of moderate axon
damage where there is less contrast between myelin and neural
areas.

ImageJ’s Particle Analyzer. This plugin is a powerful
utility that automatically counts and analyzes groups of
adjacent pixels having the same binary value (particles). In
this case, these particles represent normal axons, the area
enclosed by healthy myelin. The plugin uses the binary map
created in step 2 above to count, calculate the area, and fit an
ellipse to the edge of all particles present in the image. Using
the area and fitted ellipse information, the plugin then filters
out particles that do not meet the supplied area and circularity
criteria. Based on previous work,2 the minimum and maximum
allowed particle size was set to 42 and 4000 square pixels,
respectively. The circularity criteria was set to 0.5 to be able to
retain particles that have an elongated shape in order to
account for axons that appear elliptical in the ON cross
sections due to their natural shape or because they are not
perpendicular to the plane of the cross section.

1. Bezdek JC. Pattern Recognition with Fuzzy Objective Function

Algorithms. Norwell, MA: Kluwer Academic Publishers; 1981.

2. Reynaud J, Cull G, Wang L, Burgoyne CF, Cioffi GA. A new
hybrid algorithm for automated axon counting in normal optic
nerves. Invest Ophthalmol Vis Sci. 2007;48:E-Abstract 3297.
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