
PROCEEDINGS Open Access

Algorithms: simultaneous error-correction and
rooting for gene tree reconciliation and the gene
duplication problem
Pawel Górecki1*, Oliver Eulenstein2

From 7th International Symposium on Bioinformatics Research and Applications (ISBRA’11)
Changsha, China. 27-29 May 2011

Abstract

Background: Evolutionary methods are increasingly challenged by the wealth of fast growing resources of
genomic sequence information. Evolutionary events, like gene duplication, loss, and deep coalescence, account
more then ever for incongruence between gene trees and the actual species tree. Gene tree reconciliation is
addressing this fundamental problem by invoking the minimum number of gene duplication and losses that
reconcile a rooted gene tree with a rooted species tree. However, the reconciliation process is highly sensitive to
topological error or wrong rooting of the gene tree, a condition that is not met by most gene trees in practice.
Thus, despite the promises of gene tree reconciliation, its applicability in practice is severely limited.

Results: We introduce the problem of reconciling unrooted and erroneous gene trees by simultaneously rooting
and error-correcting them, and describe an efficient algorithm for this problem. Moreover, we introduce an error-
corrected version of the gene duplication problem, a standard application of gene tree reconciliation. We
introduce an effective heuristic for our error-corrected version of the gene duplication problem, given that the
original version of this problem is NP-hard. Our experimental results suggest that our error-correcting approaches
for unrooted input trees can significantly improve on the accuracy of gene tree reconciliation, and the species tree
inference under the gene duplication problem. Furthermore, the efficiency of our algorithm for error-correcting
reconciliation is capable of handling truly large-scale phylogenetic studies.

Conclusions: Our presented error-correction approach is a crucial step towards making gene tree reconciliation
more robust, and thus to improve on the accuracy of applications that fundamentally rely on gene tree
reconciliation, like the inference of gene-duplication supertrees.

Background
The wealth of newly sequenced genomes has provided us
with an unprecedented resource of information for phyloge-
netic studies that will have extensive implications for a host
of issues in biology, ecology, and medicine, and promise
even more. Yet, before such phylogenies can be reliably
inferred, challenging problems that came along with the
newly sequenced genomes have to be overcome. Evolution-
ary biologists have long realized that gene-duplication and
subsequent loss, a fundamental evolutionary process [1],

can largely obfuscate phylogenetic inference [2]. Gene-
duplication can form complex evolutionary histories of
genes, called gene trees, whose topologies are traditionally
used to derive species trees. This approach relies on the
assumption that the topologies from gene trees are consis-
tent with the topology of the species tree. However, fre-
quently genes that evolve from different copies of ancestral
gene-duplications can become extinct and result in gene
trees with correct topologies that are inconsistent with the
topology of the actual species tree (see Figure 1). In many
such cases phylogenetic information from the gene trees is
indispensable and may still be recovered using gene tree
reconciliation.

* Correspondence: gorecki@mimuw.edu.pl
1Institute of Informatics, University of Warsaw, Warsaw, 02-097, Poland
Full list of author information is available at the end of the article

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

© 2012 Górecki and Eulenstein; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:gorecki@mimuw.edu.pl
http://creativecommons.org/licenses/by/2.0

Related work
Gene tree reconciliation is a well-studied method for
resolving topological inconsistencies between a gene tree
and a trusted species tree [2-7]. Inconsistencies are
resolved by invoking gene-duplication and loss events
that reconcile the gene tree to be consistent with the
actual species tree. Such events do not only reconcile
gene trees, but also lay foundation for a variety of evolu-
tionary applications including ortholog/paralog annota-
tion of genes, locating episodes of gene-duplications in
species trees [8-10], reconstructing domain decomposi-
tions [11], and species supertree construction [8,12-14].
A major problem in the application of gene tree recon-

ciliation is its high sensitivity to error-prone gene trees.
Even seemingly insignificant errors can largely mislead
the reconciliation process and, typically undetected, infer
incorrect phylogenies (e.g., [7,15]). Errors in gene trees
are often topological errors and rooting errors. Topologi-
cal error results in an incorrect topology of the gene tree
that can be caused by the inference process (e.g. noise in
the underlying sequence data) or the inference method
itself (e.g. heuristic results). This problem has been
addressed for rooted gene trees by ‘correcting the error’;
that is, editing the given tree such that the number of
invoked gene-duplications and losses is minimized
[16,17]. However, most inference methods used in prac-
tice return only unrooted gene trees (e.g. parsimony and
maximum likelihood based methods) that have to be
rooted for the gene tree reconciliation process. Rooting
error is a wrongly chosen root in an unrooted gene tree.
Whereas rooting can be typically achieved in species
trees by outgroup analysis, this approach may not be pos-
sible for gene trees if there is a history of gene duplica-
tion and loss [7]. Other rooting approaches like midpoint
rooting or molecular clock rooting assume a constant
rate of evolution that is often unrealistic. However, root-
ing problems can be bypassed by identifying roots that
minimize the invoked number of gene duplications and
losses [7,16-19].
In summary, even small topological error or a slightly

misplaced root can incorrectly identify enormous numbers
of gene duplications and losses, and therefore largely mis-
lead the reconciliation process. Therefore, gene tree recon-
ciliation requires gene trees that are free of error and

correctly rooted at the same time [5]. However, as pre-
vious work has incorporated topological error-correction
only separately from correctly rooting gene trees into the
reconciliation process [16,18], this process can still be
misled.

Our contribution
We address the problem of reconciling erroneous and
unrooted gene trees by error-correcting and rooting
them at the same time. Solving this problem efficiently is
a crucial step towards making gene tree reconciliation
more robust, and thus to improve on the accuracy of
applications that rely on gene tree reconciliation like the
construction of gene-duplication supertrees. We intro-
duce the problem and design an efficient algorithm that
facilitates a much more precise gene tree reconciliation,
even for large-scale data sets. Our algorithm detects and
corrects errors in unrooted gene trees, and thus we avoid
the biologists’ difficulty and uncertainty of handling erro-
neous gene trees and correctly rooting them. The pre-
sented experimental results suggest that our novel
reconciliation algorithms can identify and correct topolo-
gical error in unrooted input gene trees, and at the same
time root them optimally.
Our algorithm is designed to search for the correct and

rooted tree of a given unrooted tree in local search neigh-
borhoods of the given tree. The size of these neighbor-
hoods is described by a positive integer k that allows to
fine-tune the search. While in theory k can be large it is
assumed that gene trees have only small topological
error, which typically can be captured by small values of
k. For a fixed but freely choosable integer k the runtime
of our algorithm is O(lk + max(n, m)), where n and m is
the size of the gene tree and species tree respectively, and
l is the number of edges in the gene tree that potentially
contain an error (such edges will be called weak). Thus,
for a small error, which is expressed by k = 1, our algo-
rithm runs in linear time. Our experiments show that
error-correction runs of the algorithm for k = 3 are still
possible even for trees with large number of weak edges
(e.g., l = 200) on a standard workstation configuration.
Further, we address the problem of constructing

rooted supertrees by reconciling unrooted and erro-
neous gene trees with assigned weak edges, a key

Figure 1 Rooted reconciliation. An lca-mapping M from the gene tree G into the species tree S and the corresponding embedding. M is
shown for the internal nodes of G .

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 2 of 11

problem in illuminating the role and effect of gene
duplication and loss in shaping the evolution of organ-
isms. We introduce the problem and develop an effec-
tive local search heuristic that makes the construction of
more accurate supertrees possible and allows a much
better postulation of gene duplication histories. Our
experimental results demonstrate that our approach is
effective in identifying gene duplication histories given
erroneous gene trees and producing more accurate
supertrees under gene tree reconciliation.

Duplication-loss model
We introduce the fundamentals of the classical duplica-
tion-loss model. Our definitions are mostly adopted
from [18]. For a more detailed introduction to the dupli-
cation-loss model we refer the interested reader to
[2,5,10,20].
Let ℐ be the set of species consisting of N > 0 ele-

ments. The unrooted gene tree is an undirected acyclic
graph in which each node has degree 3 (internal nodes)
or 1 (leaves), and the leaves are labeled by the elements
from ℐ. A species tree S is a rooted binary tree with N
leaves uniquely labeled by the elements from ℐ. In some
cases, a node of a tree will be referred by “cluster” of
labels of its subtree leaves. For instance, a species tree
(a, (b, c)) has 5 nodes denoted by: a, b, c, bc and abc. A
rooted gene tree is a rooted binary tree with leaves
labeled by the elements from ℐ. The internal nodes of a
tree T we denote by int(T).
Let S = 〈VS , ES 〉 be a species tree. S can be viewed as

an upper semilattice with + a binary least upper bound
operation and ⊤ the top element, that is, the root. In
particular for a, b ∈ VS , a <b means that a and b are
on the same path from the root, with b being closer to
the root than a. We define the comparability predicate
D(a, b) = 1, if a ≤ b or b ≤ a and D(a, b) = 0, when a
and b are incomparable. The distance function r(a, b) is
used to denote the number of edges on the unique
(non-directed) path connecting a and b.
We call distinct nodes a, b ∈ VS siblings when a + b

is a parent of a and b. For a, b ∈ VS let Sb(a, b) be the
set of nodes defined by the following recurrent rule: (i)
Sb(a, b) = ∅ if a = b or a and b are siblings, (ii) Sb(a,
b) = {c} ∪ Sb(a + c, b), if a <b or a + c <a + b; here c is
the sibling of a, and (iii) Sb(a, b) = Sb(b, a) otherwise.
By L(a, b) we denote the number of elements in Sb(a,

b). Observe that L(a, b) = r(a, b) - 2 · (1 - D(a, b)). Let
M : VG → VS be the least common ancestor (lca) map-
ping, from rooted G into S that preserves the labeling
of the leaves. Formally, if v is a leaf in G then M(v) is
the node in S labeled by the label of v. If v is internal
node in G with two children a, b, then M(v) = M(a) +
M(b). An example is depicted in Figure 1.

In this general setting let us assume that we are given a
cost function ξ : VG × VS → R which for all nodes
a ∈ VS , a ∈ VS assigns a real ξ(v, a) representing a contri-
bution to node a which comes from v when reconciling G
with S . Having ξ we can define k(v) =

∑
a
ξ (v, a) to be

a total contribution from v in the reconciliation of G with

S . We call � a contribution function. Finally, σ =
∑

v k (v)
is the total cost of reconciliation of G with S .
Now we present examples of cost functions that are

used in the duplication model. We assume that if v is
an internal node in G then w1 and w2 are its children.
The Duplication cost function is defined as follows: ξD(v,
a) = 1 if v ∈ int (G) and M(v) = M(wi) = a for some i,
and ξD(v, a) = 0 otherwise. The Loss cost function: ξL(v,
a) = 1 if v ∈ int (G) and a Î Sb (M(w1), M(w2)), and ξL

(v, a) = 0 otherwise. It can be proved that if v ∈ int (G)
then �D(v) = D(M(w1), M(w2)) and �L (v) = L(M(w1), M
(w2)) (in both cases 0 if v is a leaf).
The Duplication cost function is defined as follows: ξD

(v, a) = 1 if v ∈ int (G) and M(v) = M(wi) = a for some i,
and ξD(v, a) = 0 otherwise. Loss cost function: ξL(v, a) =
1 if v ∈ int (G) and a Î Sb(M(w1), M(w2)), and ξL(v, a) =
0 otherwise. It can be proved that if v ∈ int (G) then �D

(v) = D(M(w1), M(w2)) and �L(v) = L(M(w1), M(w2)) (in
both cases 0 if v is a leaf).
Observe that a node v ∈ VG is called a duplication

[4,13] if �D(v) = 1. Moreover, �L(v) = l(v), where l(v) is
the number of gene losses associated to v. It can be
proved that sD and sL are the minimal number of gene
duplications and gene losses (respectively) required to
reconcile (or to embed) G with S . Please refer to [18]
for more details. The example of an embedding is
depicted in Figure 1.

Introduction to unrooted reconciliation
Here we highlight some results from [18] that are used
for the design of our algorithm. From now on, we assume
that G = 〈VG , EG 〉 is an unrooted gene tree. We define a
rooting of G by selecting an edge e ∈ EG on which the
root is to be placed. Such a rooted tree will be denoted
by Ge , where v* is a new node defining the root. To dis-
tinguish between rootings of G , the symbols defined in
previous section for rooted gene trees will be extended
by inserting index e. Please observe, that the mapping of
the root of Ge is independent of e. Without loss of gener-
ality the following is assumed: (A1) S and G have at
least one internal node and (A2) Me(v*)=⊤; that is, the
root of every rooting is mapped into the root of S (we
may always consider the subtree of the species tree
rooted in Me(v*) with no change of the cost).
First, we transform G into a directed graph

Ĝ = 〈VG , ÊG〉 where ÊG = {〈v, w〉| {v, w} ∈ EG} . In other

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 3 of 11

words each edge 〈v, w〉 in G is replaced in Ĝ by a pair
of directed edges 〈v, w〉 and 〈w, v〉.
Edges in Ĝ are labeled by nodes of S as follows. If

v ∈ VG is a leaf labeled by a, then the edge 〈v, w〉 ∈ ÊG
is labeled by a. When v is an internal node in Ĝ we
assume that 〈w1, v〉 and 〈w2, v〉 are labeled by b1 and b2,
respectively. Then the edge 〈v, w3〉 ∈ ÊG , such that w3 ≠

w1 and w3 ≠ w2 is labeled by b1 + b2. Such labeling will
be used to explore mappings of rootings of G . An edge
{v, w} in G is called asymmetric if exactly one of the
labels of 〈v, w〉 and 〈w, v〉 in Ĝ is equal to ⊤, otherwise
it is called symmetric.
Every internal node v, and its neighbors in Ĝ define a

subtree of ÊG , called a star with a center v, as depicted
in Figure 2. The edges 〈v, wi〉 are called outgoing, while
the edges 〈wi, v〉 are called incoming. We will refer to
the undirected edge {v, wi} as ei, for i = 1, 2, 3.
The are several types of possible star topologies based

on the labeling (for proofs and details see [18]): (S1) a
star has one incoming edge labeled by ⊤ and two out-
going edges labeled ⊤ and these edges are connected to
the three siblings of the center, (S2) a star has exactly
two outgoing edges labeled by ⊤, (S3) a star has all out-
going edges and exactly one incoming edgd labeled by ⊤,
(S4) a star has all edges labelled by top, and (S5) a star
has all outgoing edges and exactly two incoming edges
labeled by ⊤. Figure 2 illustrates the star topologies.
In summary stars are basic ‘puzzle-like’ units that can

be used to assemble them into unrooted gene trees.
However, not all star compositions represent a gene
tree. For instance, there is no gene tree with 3 stars of
type S2. It follows from [18] (see Lemma 4) that we
need the following additional condition: (C1) if a gene
tree has two stars of type S2 then they share a common
edge.
Now we overview the main result of [18] (see Theo-

rem 1 for more details). Let S be a species tree and G
be unrooted gene tree. The set of optimal edges, that is,
candidates for best rootings, is defined as follows:

MinG = {e ∈ EG |σ Mα,β
e is minimal} , where σ

Mα,β
e is the

total cost for the weighted mutation cost defined by

, e is an edge in G and a, b are two positive reals. Then
(M1) if |MinG | > 1 , then MinG consists of all edges
present in all stars of type S4 or S5, (M2) if |MinG | = 1 ,
then MinG contains exactly one symmetric edge that is
present in star of type S2 or S3. From the above state-
ments, (C1) and star topologies we can easily determine
MinG . More precisely, the star edges outside MinG are
asymmetric and share the same direction. Thus, to find
an optimal edge it is sufficient to follow the direction of
non ⊤ edges in Ĝ .
Now we summarize the time complexity of this proce-

dure. It follows from [21] that a single lca-query (that, is
a + b for nodes a and b in S) can be computed in con-
stant time after an initial preprocessing step requiring
O(|S|) time. Other structures like Ĝ with the labeling
can be computed in O(|G|) time. The same complexity
has the procedure of finding an optimal edge in G . In
summary an optimal edge/rooting and the minimal cost
can be computed in linear time. See [18] for more
details and other properties.

Methods
First we describe our algorithm for computing the opti-
mal cost and the set of optimal edges after one nearest
neighbor interchange (NNI) operation performed on an
unrooted gene tree, and then extend it to a general case
with k NNI operations. For the definition of NNI please
refer to Def. 1 and Figure 3.

Algorithm
Now we show that a single NNI operation can be com-
pleted in constant time if all structures required for
computing the optimal rootings are already constructed.
First, let us assume that the following is given: (a) two
positive reals a and b, a species tree S , (b) lca structure
for S that allows to answer lca-queries in constant
time, (c) an unrooted gene tree G , (d) Ĝ with the label-

ing of edges, (e) MinG - the set of optimal edges, and (f)
s - the minimal total weighted mutation cost. As
observed in the previous section (b),(d)-(f) can be com-
puted in O(max(|S|, |G|)) . Now we show that (c)-(f)

Figure 2 Unrooted reconciliation. a) A star in Ĝ . b) Types of edges. c) All possible types of stars. We use simplified notation instead of the
full topology.

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 4 of 11

can be computed in constant time after a single NNI
operation.
NNI operation (c) and the update of lca-mappings (d).
Definition 1. (Single NNI operation) An NNI opera-

tion transforms a gene tree G = ((T1, T2), (T3, T4)) into
G′ = ((T2, T3), (T1, T4)) , where Ti-s are (rooted) subtrees
of G . The edge that connects the roots of (T1, T2) and
(T3, T4) in G is denoted by e0 and called the center
edge. For each i = 1, 2, 3, 4 we assume the following: wi

is the root of Ti, ei is the edge connecting wi with e0 and
ai is the lca-mapping of Ti. Similarly, we define the cen-
ter edge e′

0 and e′
i in G′ .

An NNI operation is depicted in Figure 3 with the
transformation of Ĝ into Ĝ′ . The notation will be used
from now on. Note that there is a second NNI opera-
tion, when G is replaced with ((T1, T3), (T2, T4)). How-
ever, it can be easily defined and therefore it is omitted
here. Observe that the NNI operation (without updating
of lca-mappings) can be performed in constant time for
both trees.
The right part of Figure 3 depicts the transformation

of Ĝ . Observe that the labels of the incoming and out-
going edges attached to each wi in Ĝ do not change
during this operation. Lemma 1 follows directly from
this observation.
Lemma 1. An NNI operation changes only the labels

of the center edge.
We conclude that updating Ĝ requires only two lca-

queries, and therefore can be performed in constant
time.
Reconstruction of optimal edges (e). We analyze the

changes of the optimal set of edges MinG . To this end
we consider a number of cases depending on the rela-
tion between the optimal set of edges and the set of
edges, incident to the nodes of the center edge. Let
CG = {ei}i=0,...,4 .
For convenience, assume that the NNI operation

replaces ei with e′
i as indicated in Figure 3. We call two

disjoint edges from CG semi-alternating if they share a
common node after the NNI operation. In Figure 3 {e1,

e4} and {e2, e3} are semi-alternating. For two edges a
and b that are incident to the same node let ⋆(a, b) be
the set of three edges defining the unique star that con-
tains a and b.
Lemma 2. Assuming that ei is replaced by e′

i after the
NNI operation the set of optimal edges does not require
additional changes if and only if one of the following
conditions is satisfied:(EQ1) MinG ∩ CG = ∅,

(EQ2) MinG ⊇ CG and each pair of semi-alternating
edges contains at least one symmetric edge,

(EQ3) MinG consists of only the center edge,
(EQ4) MinG ∩ CG = {ei} for some i >0 and the center

is asymmetric after the NNI operation.
Proof: (EQ1) All edges in CG are asymmetric (2 stars

S1). Then, after the NNI operation e′
0 is asymmetric

and (CG′ has 2 stars S1). (EQ2) CG consists of 2 stars
of type S4/S5 and at most two asymmetric edges. It fol-
lows from EQ2 that the asymmetric edges in CG′ cannot
form a star of type other than S5. Together with M1 it
follows that CG′ is optimal. (EQ3) By M1 the center is
symmetric in G . It remains symmetric after NNI. From
C1 and M2, MinG′ consists of the center edge. (EQ4)
Note, that the type of �(e′

i, e′
0) is S1, S2 or S3.

Lemma 3 (NE1). If MinG ⊇ CG and there exists a
pair {ei, ej} of asymmetric semi-alternating edges, then
Min’G = MinG\CG ∪ (CG′ \{e′

i, e′
j}) .

Proof: The type of �(e′
i, e′

j) is S1 or S3 and the other

star has type S4 or S5. By M2 e′
i and e′

j are not optimal.
Lemma 4 (NE2). If MinG ∩ CG = {ei} for some i >0

and the center is symmetric after the NNI operation then
Min’G = MinG\{ei} ∪ �(e′

0, e′
j) .

Proof: In this case e′
0 has two arrows and �(e′

0, e′
i) is

of type S5.
Lemma 5. Assume that MinG ∩ CG = {e0, ei, ej} , where

i ≠ 0,
(NE3) If both ei and ej are symmetric then

MinG′ = MinG\CG ∪ CG′ ,
(NE4) If ej is asymmetric and e′

0 is symmetric then
MinG′ = MinG\CG ∪ �(e′

0, e′
i) .

Figure 3 NNI. A single NNI on G and Ĝ . On the left ei and e′
i (for i = 0, ... , 4) denote edges in G and its NNI-neighbor G′ , respectively. On

the right each node ai denote the labeling of edges in Ĝ . Notation āi denote the lca-mapping of complementary subtrees, for instance,

ā3 = a1 + a2 + a4 , etc. For brevity, we omit each subtree Ti attached to wi in the left diagram.

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 5 of 11

(NE5) If both ej and e′
0 are asymmetric then

MinG′ = MinG\CG ∪ {e′
i} .

Proof: Note that {e0, ei, ej} must be a star in
G · (NE3) � (ei, ej) has type S4 or S5. After the transfor-

mation the two stars �(e′
0, e′

i) and �(e′
0, e′

j) have type S5.

Both are optimal in G′ · (NE4) � (ei, ej) has type S5.

After the transformation �(e′
0, e′

i) has type S5 and

�(e′
0, e′

j) has type S3. Only the first is optimal in

G′ · (NE5) � (ei, ej) has type S5 while the other star in

CG has type S3. After the transformation only e′
i

remains symmetric in CG′ therefore it is the only opti-
mal edge in CG′ .
Computing the optimal cost (f). Observe that from

Lemmas 2-5 at least one optimal edge remains optimal
after the NNI operation. Therefore, to compute the dif-
ference in costs between optimal rootings of G and G′
we start with the cost analysis for the rootings of such
edge.
First, we introduce a function for computing the cost

differences. Consider three nodes x, y, z of some rooted
gene tree such that x and y are siblings and the parent
of them (denoted by xy), is a sibling of z. In other
words we can denote this subtree by ((x, y), z). Then,
the partial contribution of ((x, y), z) to the total
weighted mutation cost can be described as follows:∑

a∈S α ∗ (ξD(xy, a) + ξD(xyz, a)) + β ∗ (ξL(xy, a) + ξL(xyz, a)) .

Assume that x, y and z are mapped into a, b and c
(from the species tree), respectively. It can be proved
from the defnition of ξD and ξL that the above contribu-
tion equals: j(a, b, c) = a * (D(a, b) + D(a + b, c)) + b *
(L(a, b) + L(a + b, c)). Now, assume that a single NNI
operation changes ((x, y), z)) into (x, (y, z)). It should be
clear that the cost difference is given by: Δ3(a, b, c) = j
(c, b, a) - j(a, b, c). Similarly, we can define a cost dif-
ference when a single NNI operation changes ((x, y), (z,
v)) into ((x, v), (y, z)). Assume, that v is mapped into d.
Then, the cost contribution of the first subtree is j’(a,
b, c, d) = j(a, b, c + d) + a * (D(c, d) + b * L(c, d). The
cost difference is given by: Δ4(a, b, c, d) = j’(a, d, b, c)
- j’(a, b, c, d).
Lemma 6. If the center edge is optimal and remains

optimal after the NNI operation then the cost difference
equals Δ4(a1, a2, a3, a4), where ai (for i = 1, 2, 3, 4) is
the mapping as indicated in Figure 3.
As mentioned the above lemma can be proved by

comparing the rootings placed on the center edges in G
and G′ . Lemma 6 gives a solution for cases: EQ2, EQ3,
NE1 and NE3. The next lemma gives a solution for the
remaining cases.
Lemma 7. If for some i >0 there exists an optimal edge

in Ti ∪ {ei} that remains optimal after the NNI operation

(under assumption that ei is replaced by e′
i) then the cost

difference is Δ3(a4, a3, a2) if i = 1, Δ3(a3, a4, a1) if i = 2,
Δ3(a2, a1, a4) if i = 3 and Δ3(a1, a2, a3) if i = 4.
Similarly to Lemma 6 we can prove Lemma 7 by com-

paring the rootings of ei and e′
i .

Error correction algorithm. Finally, we can present
the algorithm for computing the optimal weighted
mutation cost for a given gene tree and its k-NNI
neighborhood. See Figure 4 for details. It should
be clear that the complexity of this algorithm is
O(|G|k + max(|G|, |S|)) . We write that a gene tree has
errors if the optimal cost is computed for one of its
NNI variants. Otherwise, we write that a gene tree
does not require corrections. Please note that it for a
special case of k = 1, this algorithm is linear in time
(see also our preliminary article [22]).

General reconstruction problems
We present several approaches to problems of error cor-
rection and phylogeny reconstruction. Let us assume
that σα,β,k(S, G) is the cost computed by algorithm
from Figure 4, where a, b > 0, k ≥ 0, S is a rooted spe-
cies tree and G is an unrooted gene tree.
Problem 1 (kNNIC). Given a rooted species tree S

and a set of unrooted gene trees, G compute the total
cost

∑
G∈G

σα,β,k(S, G) .
The kNNIC problem can be solved in polynomial time

by an iterative application of our algorithm. Addition-
ally, we can reconstruct the optimal rootings as well as
the correct topology of each gene tree. Please note that
for k = 0 (no error correction), we have the cost infer-
ence problem for the reconciliation of an unrooted gene
tree with a rooted species tree [18].
Problem 2 (kNNIST). Given a set of unrooted gene

trees G find the species tree S that minimizes the total

cost
∑

G∈G
σα,β,k(S, G) .

The complexity of the kNNIST problem is unknown.
However, similar problems for the duplication model
are NP-hard [13]. Therefore we developed heuristics for
the kNNIST problem to use them in our experiments.
In applications there is typically no need to search over

all NNI variants of a gene tree. For instance, a good can-
didate for an NNI operation is a weak edge. A weak edge
is usually defined on the basis of its length, where short
length indicates weakness. To formalize this property, let
us assume that each edge in a gene tree G has length.
We call an edge e in G weak if the length of e is smaller
than ω, where ω is a non-negative real. Now we can
define variants of kNNIC and kNNIST denoted by ω-
kNNIC and ω-kNNIST, respectively, where the NNI
operations are performed on weak edges only. These
straighforward definitions are omitted. Please note that
the time complexity of the algorithm with NNIs limited

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 6 of 11

to weak edges is O(lk + max(|G|, |S|)) , where l is the
number of weak edges in G .

Software
The unrooted reconciliation algorithm [18] and its data
structures are implemented in program URec [23]. Our
algorithm partially depends on theses data structures
and therefore was implemented as a significantly
extended version of URec. Additionally, we implemented
a hill climbing heuristic to solve kNNIST and ω-
kNNIST.
Software and datasets from our experiments are made

freely available through http://bioputer.mimuw.edu.pl/
~gorecki/ec.

Experimental results and discussion
Data preparation
First, we inferred 4133 unrooted gene trees with branch
lengths from nine yeast genomes contained in the Gen-
olevures 3 data set [24], which contains protein
sequences from the following nine yeast species: C. glab-
rata (4957 protein sequences, abbreviation CAGL), S.
cerevisiae (5396, SACE), Z. rouxii (4840, ZYRO), S. kluy-
veri (5074, SAKL), K. thermotolerans (4933, KLTH), K.
lactis (4851, KLLA), Y. lipolytica (4781, YALI), D. hanse-
nii (5006, DEHA) and E. gossypii (4527, ERGO).
We aligned the protein sequences of each gene family

by using the program TCoffee [25] using the default
parameter setting. Then maximum likelihood (unrooted)
gene trees were computed from the alignments by using
proml from the phylip software package. The original
species tree of these yeasts [24], here denoted by G3, is
shown in Figure 5.
Inferring optimal species trees
The optimal species tree reconstructed with error cor-
rections (1NNIST optimization problem) is depicted in

Figure 5 and denoted by 1NNIEC. This tree differs from
G3 in the rooting and in the middle clade with KLLA
and ERGO. Additionally, we inferred by the heuristic an
optimal species tree, denoted here by NOEC, with no
error corrections (0NNIST optimization). All the trees
from this figure are highly scored in each of the optimi-
zation schemas.
From weak edges to species trees
In the previous experiment, the NNI operations were
performed on almost every gene tree in the optimal
solution and with no restrictions on the edges. In order
to reconstruct the trees more accurately, we performed
experiments for ω-kNNIST optimization with various ω
parameters and subsets of gene trees. The filtering of
gene trees was determined by an integer μ > 0 that
defines the maximum number of allowed weak edges in
a single gene tree. Each gene tree that did not satisfy
such condition was rejected.
Figures 6 and 7 depict a summary of error correction

experiments for weak edges. For each ω and μ we per-
formed 20 runs of the ω-kNNIST heuristic for finding
the optimal species tree in the set of gene trees filtered
by μ. The optimal species trees are depicted in the dia-
gram, where each cell represents the result of a single
ω-kNNIST experiment. We observed that G3, 1NNIEC
and NOEC are significantly well represented in the set
of optimal species trees in ω-1NNIST experiments,
while in ω-2NNIST and ω-3NNIST experiments only
G3 and NOEC were detected. Note that the original
yeast phylogeny (G3, black squares in Figures 6 and 7)
is inferred for ω = 0.1-0.2 (in other words approx. 30-
40% of edges are weak, see Figure 8) and μ ≥ 10 in most
experiments. In particular for ω = 0.15 and μ = 10, 364
gene trees were rejected (see Figure 9). These results
significantly support the G3 phylogeny. Please note that
the results for the standard unrooted reconciliation

Figure 4 Algorithm. Optimal weighted cost for G and its k-NNI neighborhood.

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 7 of 11

http://bioputer.mimuw.edu.pl/~gorecki/ec
http://bioputer.mimuw.edu.pl/~gorecki/ec

algorithms without error correction are located in the
first column of diagrams (ω = 0).
From trusted species tree to weak edges in gene trees -
automated and manual curation
Assume that the set of unrooted gene trees and the
rooted (trusted) species tree S are given. Then we can
state the following problem: find ω and μ such that S
is the optimal species tree in ω-NNIST problem for the
set of gene trees filtered by μ. For instance in our data-
set, if we assume that G3 is a given correct phylogeny of
yeasts, then from the diagrams (Figure 6 and 7) one can
determine appropriate values of ω and μ that yield G3
as optimal. In other words we can automatically deter-
mine weak edges by ω and filter gene trees by μ. This
approach can be applied in tree curation procedures to
correct errors in an automated way as well as to find
candidates (rejected trees) for further manual curation.
For instance, in the previous case, when ω = 0.1 and μ
= 10, we have 3164 trees that can be corrected and
rooted by our algorithm, while the 364 rejected trees
could be candidates for further manual correction.

Discussion
We present novel theoretical and practical results on the
problem of error correction and phylogeny

reconstruction. In particular, we describe a polynomial
time and space algorithm that simultaneously solves the
problem of correction topological errors in unrooted
gene trees and the problem of rooting unrooted gene
trees. The algorithm allows us to perform efficiently
experiments on truly large-scale datasets available for
yeast genomes. Our experiments suggest that our algo-
rithm can be used to (i) detect errors, (ii) to infer a cor-
rect phylogeny of species under the presence of weak
edges in gene trees, and (iii) to help in tree curation
procedures.

Conclusion
We introduced a novel polynomial time algorithm for
error-corrected and unrooted gene tree reconciliation.
Experiments on yeast genomes suggests that an imple-
mentation of our algorithm can greatly improve on the
accuracy of gene tree reconciliation, and thus, curate
error-prone gene trees. Moreover, we use our error-cor-
rected reconciliation to make the gene duplication pro-
blem, a standard application of gene tree reconciliation,
more robust. We conjecture that the error-corrected
gene duplication problem is intrinsically hard to solve,
since the gene duplication problem is already NP-hard.
Therefore, we introduced an effective heuristic for

Figure 5 Yeasts phylogeny. Species tree topologies. G3 - original phylogeny of Genolevures 3 data set [24]. 1NNIEC - optimal rooted species
tree inferred from gene trees with all possible 1-NNI error corrections. NOEC - optimal species tree for the yeast gene trees with no NNI
operations (cost 64413, no corrections). Rank denotes a position of a tree on the sorted list of the best trees. The trees below are inferred from
other ω-kNNIST (see next figures). Please note that NOEC, G3, a1 and a2 are rooted variants of the same unrooted tree. Similar property holds for
1NNIEC, b1 and b2.

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 8 of 11

Figure 6 ω-1NNIST and ω-2NNIST experiments. A summary of ω-1NNIST (top) and ω-2NNIST experiments (bottom) for ω = 0, 0.02, 0.04, ... ,
0.98, μ = 2, 3, ... , 20. Optimal species trees found by the heuristics. Please note that in some cases two optimal trees were found.

Figure 7 ω-3NNIST experiments. A summary of ω-3NNIST experiments for ω = 0, 0.02, 004, ... , 0.48 and μ = 2, 3, ... , 20.

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 9 of 11

error-corrected gene duplication problem. Our experi-
mental results for a wide range of error-correction tests
on yeasts phylogeny show that our error-corrected
reconciliations result in improved predictions of invoked

gene duplication and loss events that then allow to infer
more accurate phylogenies.
The presented error correction is based on gene-spe-

cies tree reconciliation using gene duplication and loss.

Figure 8 Branch lengths. Histogram of branch lengths.

Figure 9 Rejected gene trees. The number of rejected trees as a function of μ and ω.

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 10 of 11

However, there are other major evolutionary mechanism
that infer gene tree topologies that are inconsistent with
the actual species tree topology, like horizontal gene
transfer and deep coalescence. Gene tree reconciliation
using these mechanisms is highly sensitive to topological
error, similar to gene tree reconciliation under gene
duplication and loss. Future work will focus on the
development of algorithms that can also reconcile
unrooted and erroneous gene trees using horizontal
gene transfer and deep coalescence.

Acknowledgements
The reviewers have provided several valuable comments that have improved
the presentation. This work was conducted in parts with support from the
Gene Tree Reconciliation Working Group at NIMBioS through NSF award
#EF-0832858. PG was partially supported by the grant of MNiSW (N N301
065236) and OE was supported in parts by NSF awards #0830012 and
#10117189.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 10, 2012: “Selected articles from the 7th International
Symposium on Bioinformatics Research and Applications (ISBRA’11)”. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/13/S10.

Author details
1Institute of Informatics, University of Warsaw, Warsaw, 02-097, Poland.
2Department of Computer Science, Iowa State University, Ames, 50011, USA.

Authors’ contributions
PG and OE were responsible for algorithm design and writing the paper. PG
implemented the programs, and performed the experimental evaluation and
the analysis of the results. Both authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 25 June 2012

References
1. Graur D, Li WH: Fundamentals of Molecular Evolution. 2 edition. Sinauer

Associates; 2000 [http://www.amazon.com/exec/obidos/redirect?
tag=citeulike07-20\&path=ASIN/0878932666].

2. Page RDM: Maps between trees and cladistic analysis of historical
associations among genes, organisms, and areas. Systematic Biology 1994,
43:58-77.

3. Bonizzoni P, Della Vedova G, Dondi R: Reconciling a gene tree to a
species tree under the duplication cost model. Theoretical Computer
Science 2005, 347(1-2):36-53.

4. Eulenstein O, Mirkin B, Vingron M: Duplication-Based Measures of
Difference Between Gene and Species Trees. J Comput Biol 1998,
5:135-148.

5. Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G:
Fitting the Gene Lineage into its Species Lineage, a Parsimony Strategy
Illustrated by Cladograms Constructed from Globin Sequences.
Systematic Zoology 1979, 28(2):132-163.

6. Mirkin B, Muchnik IB, Smith TF: A Biologically Consistent Model for
Comparing Molecular Phylogenies. J Comput Biol 1995, 2(4):493-507.

7. Sanderson M, McMahon M: Inferring angiosperm phylogeny from EST
data with widespread gene duplication. BMC Evolutionary Biology 2007,
7(Suppl 1)[http://dx.doi.org/10.1186/1471-2148-7-S1-S3].

8. Bansal MS, Eulenstein O: The multiple gene duplication problem revisited.
Bioinformatics 2008, 24(13):i132-8.

9. Fellows MR, Hallett MT, Stege U: On the Multiple Gene Duplication
Problem. In ISAAC, Volume 1533 of LNCS Chwa KY, Ibarra OH, Springer 1998,
347-356.

10. Guigó R, Muchnik IB, Smith TF: Reconstruction of ancient molecular
phylogeny. Molecular Phylogenetics and Evolution 1996, 6(2):189-213.

11. Behzadi B, Vingron M: Reconstructing Domain Compositions of Ancestral
Multi-domain Proteins. In Comparative Genomics, Volume 4205 of LNCS.
Springer;Bourque G, El-Mabrouk N 2006:1-10.

12. Bansal MS, Burleigh GJ, Eulenstein O, Wehe A: Heuristics for the Gene-
Duplication Problem: A Θ(n) Speed-Up for the Local Search. RECOMB,
Volume 4453 of LNCS Springer; 2007, 238-252.

13. Ma B, Li M, Zhang L: From Gene Trees to Species Trees. SIAM Journal on
Computing 2000, 30(3):729-752.

14. Page RDM: GeneTree: comparing gene and species phylogenies using
reconciled trees. Bioinformatics 1998, 14(9):819-820.

15. Hahn MW: Bias in phylogenetic tree reconciliation methods: implications
for vertebrate genome evolution. Genome biology 2007, 8(7):R141[http://
dx.doi.org/10.1186/gb-2007-8-7-r141].

16. Chen K, Durand D, Farach-Colton M: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J Comput Biol 2000, 7(3-
4):429-447.

17. Durand D, Halldorsson BV, Vernot B: A Hybrid Micro-Macroevolutionary
Approach to Gene Tree Reconstruction. J Comput Biol 2006, 13(2):320-335
[http://dx.doi.org/10.1089/cmb.2006.13.320].

18. Górecki P, Tiuryn J: Inferring phylogeny from whole genomes.
Bioinformatics 2007, 23(2):e116-22.

19. Wehe A, Bansal MS, Burleigh GJ, Eulenstein O: Dup-Tree: a program for
large-scale phylogenetic analyses using gene tree parsimony.
Bioinformatics 2008, 24(13):1540-1541.

20. Eulenstein O, Huzurbazar S, Liberles D: Reconciling phylogenetic trees.
Evolution After Gene Duplication Dittmar, Liberles, Wiley; 2010.

21. Bender MA, Farach-Colton M: In The LCA Problem Revisited LATIN, Volume
1776 of LNCS. Springer;Gonnet GH, Panario D, Viola A 2000:88-94.

22. Górecki P, Eulenstein O: A Linear Time Algorithm for Error-Corrected
Reconciliation of Unrooted Gene Trees. In Bioinformatics Research and
Applications, Volume 6674 of Lecture Notes in Computer Science. Springer
Berlin/Heidelberg;Chen J, Wang J, Zelikovsky A 2011:148-159.

23. Górecki P, Tiuryn J: URec: a system for unrooted reconciliation.
Bioinformatics 2007, 23(4):511-512.

24. Sherman DJ, Martin T, Nikolski M, Cayla C, Souciet JL, Durrens P:
Gènolevures: protein families and synteny among complete
hemiascomycetous yeast proteomes and genomes. Nucleic Acids Research
2009, 37(suppl 1):D550-D554[http://nar.oxfordjournals.org/content/37/
suppl_1/D550.abstract].

25. Notredame C, Higgins DG, Jaap H: T-coffee: a novel method for fast and
accurate multiple sequence alignment. J Mol Biol 2000, 302:205-217
[http://dx.doi.org/10.1006/jmbi.2000.4042].

doi:10.1186/1471-2105-13-S10-S14
Cite this article as: Górecki and Eulenstein: Algorithms: simultaneous
error-correction and rooting for gene tree reconciliation and the gene
duplication problem. BMC Bioinformatics 2012 13(Suppl 10):S14.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Górecki and Eulenstein BMC Bioinformatics 2012, 13(Suppl 10):S14
http://www.biomedcentral.com/1471-2105/13/S10/S14

Page 11 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S10
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S10
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0878932666
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0878932666
http://dx.doi.org/10.1186/1471-2148-7-S1-S3
http://dx.doi.org/10.1186/gb-2007-8-7-r141
http://dx.doi.org/10.1186/gb-2007-8-7-r141
http://dx.doi.org/10.1089/cmb.2006.13.320
http://nar.oxfordjournals.org/content/37/suppl_1/D550.abstract
http://nar.oxfordjournals.org/content/37/suppl_1/D550.abstract
http://dx.doi.org/10.1006/jmbi.2000.4042

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Our contribution
	Duplication-loss model
	Introduction to unrooted reconciliation

	Methods
	Algorithm
	General reconstruction problems
	Software
	Experimental results and discussion
	Data preparation
	Inferring optimal species trees
	From weak edges to species trees
	From trusted species tree to weak edges in gene trees - automated and manual curation

	Discussion
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

