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We make decisions about where to look approximately three
times per second in normal viewing. It has been suggested that
eye movements may be guided by activity in the lateral intra-
parietal area (LIP), which is thought to represent the relative value
of objects in space. However, it is not clear how values for saccade
goal selection are prioritized while free-viewing in a cluttered
visual environment. To address this question, we compared the
neural responses of LIP neurons in two subjects with their saccadic
behavior and three estimates of stimulus value. These measures
were extracted from the subjects’ performance in a visual foraging
task, in which we parametrically controlled the number of objects
on the screen. We found that the firing rates of LIP neurons did not
correlate well with the animals’ behavior or any of our estimated
measures of value. However, if the LIP activity was further nor-
malized, it became highly correlated with the animals’ decisions.
These data suggest that LIP activity does not represent value in
complex environments, but that the value can easily be extracted
with one further step of processing. We propose that activity in LIP
represents attentional priority and that the downstream normali-
zation of this activity is an essential process in guiding action.
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In everyday visual behavior, we make two to three eye move-
ments per second. For each of these, a decision must be made

about where to look. These decisions are made based on the
layout of the scene, the salience of various aspects of the scene,
our experience, prior expectations, and often, with goals in mind
(1). It is widely thought that cortical areas functioning as priority
maps guide this decision process (2, 3). One of these areas, the
lateral intraparietal area (LIP), is known to combine bottom-up
and top-down inputs to create responses that are relative to the
attentional priority of the objects in the neurons’ receptive fields
(4). A major factor in attentional priority is reward, and LIP
activity has been related to reward in terms of its relative de-
sirability or subjective value (5–9). In each of these cases, the
relationship was tested under highly constrained conditions in
which one of two stimuli had to be chosen for an animal to get
a reward at the end of the decision. However, in everyday life
there are rarely only two stimuli present, and single eye move-
ments are almost never rewarded or punished. To test whether
the activity in LIP continues to correlate with relative value and,
thus, can explain dynamic saccade target selection in more nat-
ural behavior, we compared the activity in LIP with the behavior
of two monkeys performing a foraging task in which we para-
metrically controlled the number and value of items on
the screen.

Results
Behavior in the Visual Foraging Task. Two rhesus monkeys were
trained to perform a visual foraging task (10, 11). In this task, the
animals had to visually search through an array of distractors (+)
and potential targets (T) to find the target (Fig. 1A). The target
was one of the Ts; it was indistinguishable from the other Ts, but
it had a reward linked to it. To get the reward the animal had to
fixate the target for 500 ms. After the stimuli appeared, the

monkeys were free to move their eyes to find the target within
8 s. By having multiple potential targets, the animals were forced
to forage through the Ts to find the target, thereby inducing
a dynamic form of visual search. Because the task did not punish
the animals when they looked at distractors and they were free to
forage through all of the stimuli on the screen, there were no
incorrect eye movements within a trial. In this study, we para-
metrically varied the number of potential targets and the number
of distractors, which, in effect, varied the value of each T. The
total number of objects was always equal to or less than 10, the
number of potential targets ranged from one to seven, and
number of distractors from zero to seven.
On any given fixation, the probability that an animal would

make a saccade to fixate any T depended on the number of
potential targets and the number of distractors present in the
stimulus array. When more distractors were included in the ar-
ray, the probability that the animals would fixate any T decreased
(Fig. 1 D and E; P << 0.001, two-way ANOVAs) and, for
monkey D, when more potential targets were included in the
array, the animal was more likely to fixate any T (Fig. 1 B and C;
P << 0.001). In both animals there was a significant interaction
between the number of potential targets and the number of
distractors (P ≤ 0.02). The probability of looking at any dis-
tractor was complementary to this: it increased when more dis-
tractors were presented and decreased when more targets were
presented (P << 0.001).
The probability of fixating any T was considerably higher than

would be expected if the animal treated Ts and distractors as
being of equal worth. If the animals treated Ts and distractors as
being equal and did not focus their search on potentially re-
warding stimuli, then we would expect the probability of fixating
any T to be very low when seven distractors were present. In
these cases there were between one and three Ts present, so the
probability of fixating any T should range between 0.125 and 0.30
if all stimuli were treated equally. However, in both animals the
probability of fixating any T in these conditions was always sig-
nificantly greater than 0.5 (one-sample t tests, P < 0.002).
Thus, the animals were significantly more likely to fixate a T than
a distractor.

Relationship Between LIP Responses and Behavior. To test whether
the activity in LIP could explain the animals’ saccade goal se-
lection behavior, we recorded the responses from 95 neurons (42
from monkey D; 53 from monkeys E) in six standard conditions.
In these conditions, we either presented three potential targets
with zero, two, or four distractors or kept the number of objects
fixed at 10, by presenting three, five, or seven potential targets
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with seven, five, or three distractors, respectively. In 22 sessions,
trials containing all conditions were interleaved. In the remain-
ing sessions, blocks of trials were presented in which either the
number of objects or the number of potential targets remained
constant. Data collected in these two ways were statistically in-
distinguishable and have been pooled for further analyses. All
responses show the average activity in a 350-ms epoch starting
150 ms after the end of the previous saccade.
We first examined the neural activity as a function of the

number of objects or the number of potential targets. On the
basis of previous studies showing that LIP responses are related
to the relative value of a stimulus (5, 6, 9), we expected that the
response to a T would not vary when we only varied the number
of distractors. However, we found that there was a significant
effect of the number of objects on the response (P = 0.011,
ANOVA), with responses decreasing as a function of the number
of objects (Fig. 2A; P = 0.03, linear regression). This is remi-
niscent of the changes in response seen as the number of objects
in search tasks vary (12–14) and can be explained by a normali-
zation process within LIP (15). We also predicted that the re-
sponse to a T would be significantly reduced as we increased the
number of Ts and, thus, decreased the probability that each
could be the target. We found a significant (P= 0.019, ANOVA)
effect of the number of Ts on the response; however, the activity
was not as predicted: it showed a slight increase in response as
the number of Ts increased (Fig. 2B).
The neural activity in LIP did not correlate with the proba-

bility that the animal would fixate any T. Given that LIP activity
did not seem to correlate with stimulus value (Fig. 2 A and B), we

asked whether the activity in LIP correlated with the animals’
behavior. Specifically, we compared the mean neural response
from all fixations recorded from each condition (i.e., with the
same number of Ts and distractors) within a session with the
mean probability that the animal would fixate any T calculated
from the same condition in the same session. We found either no
correlation (Fig. 2C; r = −0.13; P = 0.053, linear regression) or
a weak significant correlation (Fig. 2D; r = 0.32; P << 0.001) for
monkeys D and E, respectively. It is possible that the lack of
a strong correlation could be due to the fact that the neurons all
had different ranges of response magnitudes. To account for this,
we calculated normalized firing rates, in which the response of
a neuron in any condition was divided by the mean response for
that neuron under all conditions. When we compared the mean
normalized responses with the probability of fixating any T, we
found no significant correlation for either monkey (P > 0.29,
linear regressions). These results suggest that the activity in LIP
does not seem to be strongly related to saccade goal selection in
this task.
In the priority map model, attention is allocated to the peak of

activity on the map (16, 17), which suggests that it is the relative
activity rather than the absolute activity that is important (18) in
guiding eye movements. Our data have implied that the actual
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Fig. 1. Task and behavior. (A) Example stimulus arrangement in the foraging
task, in which five potential targets (T) and five distracters (+) were presented.
One T (the target) had a fluid reward linked to it, such that when the monkey
looked at it for 500 ms, he obtained the reward. The stimuli were arranged so
that when looking at one stimulus (small yellow circle) another stimulus was
centered in the LIP neuron’s receptive field (large yellow circle). Note: the
number of potential targets anddistracters varied across trials. (B–E) Themean
(±SEM) probability offixating a potential target is plotted against the number
of potential targets (B and C) and distractors (D and E) for monkeys D and E,
respectively. The datahave been compressed from 3D (plotting the probability
as a function of both the number of Ts and the number of distractors) into 2D,
by pooling data across the third dimension (pooling number of distractors in B
and C and the number of Ts in D and E). The solid red traces represent the
nonlinear fit. Blue dotted lines are 95% confidence intervals of the fit.
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Fig. 2. Neural responses in LIP. (A) Mean (±SEM) responses from all neurons
across both monkeys are plotted as a function of the number of objects in the
array. In each case, three potential targets were present, so the array varied as
a function of the number of distractors. (B) Mean responses from all neurons
across both monkeys are plotted as a function of the number of potential
targets in the array, from trials inwhich therewere always 10objects. Note that
the last point inA is the sameas thefirst point inB. (C andD)Mean responses to
a potential target are plotted against the probability of fixating any T in
monkeys D and E, respectively. Each point represents response of one neuron
in one condition and the animal’s probability offixating any T in that condition
in that session. (E and F) Calculated downstream responses to a potential tar-
get are plotted against the probability of fixating any T in monkeys D and E,
respectively. In all panels, the solid lines are least square regression fit lines.
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response in LIP is inadequate to explain each animal’s perfor-
mance; however, it is possible that if the activity in LIP were to
be further processed, then it might explain the behavior. To
test this, we created a calculated downstream response, which
incorporates the activity across the entire priority map by nor-
malizing the responses by the sum of all of the activity present in
the map.

CDRTs ¼ RTNT

RTNT þ RDND
[1]

where CDRTs is the calculated downstream response to any T as
a function of the mean response to a T (RT), the mean response
to a distractor (RD), the number of Ts (NT), and the number of
distractors (ND). This formula can also be used to calculate
the probability of looking at a single T by removing NT from
the numerator.
The animals’ behavioral responses were well correlated with

the calculated downstream responses. Using the same condition
by condition analysis, we compared the probability that an ani-
mal would fixate any T with the calculated downstream response
to any T from each condition in each session (Fig. 2 E and F). In
both animals we found highly significant positive correlations
(P << 0.001; r = 0.84, monkey D; r = 0.58, monkey E), showing
that when the total responses to all Ts across LIP was propor-
tionally greater than the total responses to all objects, there was
a greater probability that the animal would fixate one of those
Ts. This means that a low neural response to a T in LIP can still
lead to a high probability of fixating a T if the response to the
distractor was much lower or if there were many more Ts than
distractors. This explains why there is little correlation between
the actual neural response in LIP and the animal’s behavior and
why an extra step of processing is necessary before the activity in
LIP can be used to guide behavior.
The correlation between the calculated downstream response

and the probability of fixating any T was not due to the inclusion
of trials in which monkeys made a saccade into the receptive
field. To test this, we excluded the neural data from all fixations
that were followed by a saccade into the receptive field and
found that the correlations were highly similar (Fig. S1).

Fitting the Behavioral Data to Obtain Measures of Value. Previous
studies have found that LIP activity is better related to the rel-
ative value of a stimulus (5, 6, 9) than to the animals’ choice per
se; however, the correlation we show above relates the activity to
the choice and not to any measure of value. To get an estimate of
each animal’s value for the different classes of stimuli, we used
an economics approach (justification and more information in SI
Results). We found that the behavioral data for each animal
could be fit using a formula similar to that used in a study re-
lating the activity in LIP to subjective value (6):

P
�
T
� ¼ 1

1þ expð−βðSVT − SVDÞÞ [2]

where PðTÞ is the predicted probability of making a saccade to
any T as a function of the difference between the subjective value
of a T (SVT) and the subjective value of a distractor (SVD), with β
as the fit parameter. Subjective value was defined using a stan-
dard hyperbolic discount function, which is often used to relate
the outcome probability and delay (6, 19). However, this function
can also be used in any case in which reward is delivered in
various probabilities unrelated to delay (20); in our study, in-
creasing or decreasing the number of Ts and distractors changes
the probability of reward delivery across trials. Therefore, we
defined subjective value as:

SVO ¼ 1−
1

1þ kONO
[3]

where kO is a fit parameter for each class, NO represents the
number of objects present in the class, and O represents the class
(T or D). Thus, the predicted probability of making a saccade to
a T (Eq. 2) varied as a function of both the number of Ts and the
number of distractors.
The behavioral data were well fit by these equations (red lines,

Fig. 1 B–E), using only the number of Ts, the number of dis-
tractors, and three fit parameters. For illustrative purposes, we
have compressed the data from a 3D space into 2D graphs,
which makes the fits look irregular but roughly demonstrates the
goodness of fit because almost all of the observed data lie within
the 95% confidence intervals (blue dotted lines). We can more
accurately represent the goodness of fit by plotting the monkeys’
observed probability of making a saccade to any T as a function
of the predicted probability based on the fit (Fig. 3). In both
animals, the probabilities were highly correlated (P << 0.001; r=
0.96 and 0.98 for monkeys D and E, respectively), and the lines
of best fit overlapped the unity lines. The behavior of both
monkeys was fit using the same functions but with individual fit
parameters for each monkey (top two rows of Table S1).
The benefit of fitting the data with these equations is that they

provide estimates for three different forms of value for any
number of Ts and distractors based on the animals’ behavior.
Using the parameters obtained by fitting the complete data set,
we were able to estimate the subjective value of a T (Eq. 3),
the predicted probability of making a saccade to any T (Eq. 2),
and the preference for a T over a distractor. We defined the
preference as the difference in subjective value between the
two stimuli:

PRT ¼ SVT − SVD [4]

where PRT is the preference for a T. This is the step between
subjective value and the behavioral probability and is within the
parentheses in the denominator in Eq. 2.

Relationship Between LIP Activity and Estimate Measures of Value.
Using the behavioral fits, we asked whether the neural activity in
LIP was related to any of our three estimate measures of value:
the predicted probability of fixating any T, the subjective value of
a T, and the preference for a T. Specifically, we compared the
mean neural response from all fixations recorded from each
condition within a session with the outputs of the equations,
using the three fit parameters obtained when fitting the entire set
of data for that animal. Thus, when a specific number of Ts and
distractors was present, the same estimate of value was always
used to compare with the neural activity from different sessions.
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We found that the raw and normalized responses to a T were,
at best, poorly correlated with the predicted probability of
making a saccade to any T, our estimate of subjective value, and
our estimate of stimulus preference (Figs. S2 A–F and S3 A–F).
However, after further normalizing the data we found a strong
correlation. We compared the calculated downstream response
(Eq. 1) with our estimate measures of value. We found that the
calculated downstream responses to Ts were best correlated with
our estimate of the preference for a T over a distractor (P <<
0.001; r= 0.95 and 0.84 for monkeys D and E, respectively; Fig. 4
A and B). The preference, as described above (Eq. 4), represents
the difference in the subjective values between Ts and distractors.
The values of the two fit parameters (KT and KD; Eq. 3) were set
according to the original fit to the behavioral data shown in Fig. 1
and are shown in the top two rows of Table S1. Because the
preference is directly related to the probability of making a sac-
cade to a T (Eq. 2), we found significant, albeit weaker, correla-
tions between the calculated downstream response to a T and the
predicted probability of making a saccade to a T (Figs. S2G and
S3G). However, unlike previous studies (5, 6, 9), we found that
the calculated downstream response to a T were not well corre-
lated with our estimates of subjective value (Figs. S2H and S3H).
We believe that this difference is due to the fact that the numbers
of both classes of stimuli impacted the animals’ decisions, whereas
in those previous studies, a single variable could account for the
animals’ choices. Thus, as the task becomes more complex, all
relevant variables are incorporated into the decision.
Both our behavioral fits and the relationship between the fits

and the calculated downstream responses continued to be robust
when tested with a more complex analysis of the data. Thus far,
we have described the data in terms of the number of Ts and
number of distractors. However, behavior in the task is dynamic;
as the animal searches through the array, stimuli can change in
their behavioral importance. Once the animal has fixated a T and
discovered that it is not the target, the behavioral importance of
that stimulus is reduced and the number of remaining potential
targets is reduced. In addition, we have previously shown that the
LIP response to such a stimulus is also reduced (10). To test
whether our hypothesis holds under these more complex con-
ditions, we refit our behavioral data, dividing the stimuli into
three categories: fixated Ts, potential targets (i.e., Ts that have
not been fixated), and distractors. Furthermore, we separated
the data into conditions according to how many of each of the
three classes of stimuli were present in individual fixations and
calculated the predicted probability that the animal would look
at any T under these conditions. In practical terms, this means
that for each fixation, the probability calculation takes into ac-
count how many stimuli are present and how many Ts the animal
has already fixated. To achieve this, we added only a single new

fit parameter: KfT. This fit parameter comes from the calculation of
SVfT (the subjective value of a fixated T), calculated using the for-
mula shown in Eq. 3. Thus, there are only four fit parameters—β,
KT, KD, and KfT—and the predicted probability of fixating any T
is calculated using the function:

P
�
T
� ¼ 1

1þ exp
�
− β

�
SVT −

SVD þ SVfT

2

��: [5]

In this case, the preference for a potential target over the other
two classes of stimuli is calculated as the difference between the
subjective value for the potential target minus the mean of the
subjective values of the other two objects.
This new equation fits the behavioral data well (Fig. 5 A and B;

r= 0.84, P << 0.001 and r= 0.88, P << 0.001 for monkeys D and
E, respectively). In fact, the behavioral probability of looking at
a distractor or a fixated T could be explained using the same
parameter values from this fit (see the bottom two rows of Table
S1 for fit parameters), by just changing the position of the sub-
jective values for each object within the preference part of the
equation (inside the parentheses in the denominator in Eq. 5).
This means that within an animal, there is a robust relationship
between the desirability of each stimulus and the animal’s overall
behavior. More importantly, when these same variables were
used to calculate preference for each of the three stimulus
conditions, the calculated downstream responses in each condi-
tion continued to be highly correlated with the appropriate
preference (Fig. 5 C–H; r = 0.77, 0.59, 0.81, 0.71, 0.73, and 0.64
for C–H, respectively; P << 0.001). Thus, the three estimates of
subjective value calculated using only one set of fit parameters
explain all of the animal’s behavior and produce estimates of
stimulus preference that are well correlated by the calculated
downstream responses for each those objects. This suggests that
our fitting of the behavior and the relationship between LIP
activity and behavior is incredibly robust.
We ran three control analyses to show that the correlations

between stimulus preference and the calculated downstream
response were real. First, we asked whether the correlations
could have arisen from over-fitting the dataset. To test whether
this was the case, we used a cross-validation test (details in SI
Results) and found that fits to a subset of the data could explain
the behavior in the remaining subset of the data (Fig. S4). Sec-
ond, we asked whether the correlations could have arisen be-
cause the denominators in both formulae included the number of
objects in each category. To show that this was not the case, we
shuffled the neural data and randomly assigned them to one of
the three conditions and reran the analysis. The result of this
analysis showed that part of the correlation could be due to the
common factors but that the strong correlations we found with
the actual data could not be fully explained (Fig. S5; details in SI
Results). Finally, we asked whether the correlations could have
arisen because we pooled the responses from fixations when
saccades were about to be made into the receptive field and from
fixations when saccades were about to be made away from the
receptive field. We found that this was not the case: we obtained
the same correlation when only data from fixations in which the
monkey was about to make a saccade away from the receptive
field were used (Fig. S6).

Discussion
We found that the raw activity in LIP did not correlate with the
animal’s saccade goal selection or any estimates of value
obtained by fitting the behavior. However, only a single addi-
tional step of processing was necessary to transform the LIP
responses into a form that correlated with behavior and esti-
mates of value. This result suggests that multiple steps along the
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visual–motor pathway are necessary for value to be calculated in
cluttered or complex visual scenes.
The finding that it is the calculated downstream response that

best correlates with behavior illustrates the importance that
normalization plays in transforming information about a partic-
ular object into motor actions concerning that object. The idea
that normalization may play an important role in the cortical
processing of visual information is not new (15, 21–24); however,
here we demonstrate how important it is in transforming in-
formation processing from one system to another—in this case
from a more visual response to a response that will be used to
guide eye movements. A recent study has identified how a nor-
malization process can explain the activity in LIP (15), and we
would predict that their model would explain the raw responses
we found using our task. Our calculated downstream response
normalization is a process that must occur after the signal leaves
LIP and suggests that normalization processes occur at each
processing step in the visuo-motor transformation.
Our evidence that the calculated downstream response nor-

malization occurs downstream from LIP comes from two facts: we
found that LIP activity did not correlate with behavior or any of
our estimates of value; and the calculated downstream response
was best correlated with our estimate of stimulus preference and,
thus, guides target selection (as shown in Eq. 2). This means that
the activity in LIP acts as a precursor to responses that can guide
behavior. Because the behavior exists, we suggest that the LIP
activity is transformed downstream rather than being calculated
independently and in parallel in other oculomotor areas.
At first glance, our results may seem to contradict previous

studies that have found LIP activity to be directly related to
expected or subjective value (5, 6, 9). However, our hypothesis
that further normalization occurs downstream from LIP and that
it is best correlated with stimulus preference can explain these
differences. We have changes in both the number of stimuli and
the number of potentially rewarding stimuli, which dynamically
changes within a trial. This variation greatly impacts the denom-
inator of our calculated downstream response equation, resulting
in large differences in the calculated downstream responses as
well as in our estimates of stimulus preference. In the more tightly
controlled experiments, the denominator is more stable, resulting
in LIP responses that are similar to the downstream normalized
responses. Together with the fact that previous calculations of

subjective or relative value are correlated to our preference
measure (again because of the controlled conditions), we believe
that our findings do not contradict these previous studies but add
to them by explaining what occurs in more complex dynamic
behavior.
In addition to being consistent with previous studies, our

findings also explain several other previous results. It had been
suggested that the reduction in activity in priority maps when
multiple stimuli were used was related to the reduced probability
that each would become a target (13, 14); however, others have
suggested that although the activity does depend on how many
available alternatives there are, the strongest changes seen in
those previous studies were due to the introduction of more
stimuli, rather than more targets per se (12, 15). Our data are
consistent with this latter interpretation. We found that the raw
responses varied more strongly as a function of the number of
stimuli than as a function of the number of potential targets (Fig.
2 A and B). However, because we propose that the output of LIP
will be further normalized downstream, the general effect of
reduced responses when more stimuli are present should not
have an affect on performance if all are normalized by the same
denominator.
In a previous study (10), we found an unexpected result: the

responses to potential targets did not increase during a trial, even
as the likelihood that they would be the target increased. On the
basis of previous studies showing relative value encoding in LIP
(5, 9), we initially interpreted this to mean that perhaps the
subjects did not maintain a moment-by-moment measure of
value. However, our present findings explain this discrepancy; if
the calculated downstream response is examined, then it
increases as targets go from being a potential target with high
activity to a seen target with low activity. Mathematically, this
translates into a reduction in the denominator of the calculated
downstream response function (Eq. 1), so although the response
to a single potential target remains static, its calculated down-
stream response increases. This means that the guidance of vi-
sual search can incorporate both the reduction in reward
probability at seen locations and an increase at the remaining
locations by only suppressing activity at the seen location in LIP;
the normalization process sorts out the remaining probabilities.
It also means that the premise of inhibition of return (25, 26) truly
aids in making search more efficient. Not only does decreasing the
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priority of already examined Ts reduce the chance that they will
be refixated, but it also increases the preference for the remaining
potential targets without having to actively increase their responses
in earlier visual areas.
If LIP activity in complex scenes or in dynamic conditions does

not directly correlate with subjective value, then what does it
represent, and where could the normalization occur? We pro-
pose that LIP activity represents the attentional priority of the
object within individual neurons’ receptive fields. We use the
term “priority” to indicate that the response is made up of
a combination of bottom-up inputs (27, 28) combined with top-
down biases (4) and the term “attentional” to indicate that it
drives attention—both covert (16, 29) and overt (30–32). We
suggest that under more complicated conditions, attentional
priority does not seem to be strongly influenced by the priority of
stimuli outside of the receptive field; however, there are clearly
some normalization processes occurring within LIP (15), and it is
possible there is some less spatially specific inhibition as well
(33). It is unclear where the normalization process we termed the
calculated downstream response may occur; it could be on the
way to the frontal eye field or superior colliculus (34), or at the
level of the motor neurons in the brainstem nuclei.
A large open question in sensorimotor physiology asks: what

are the differences among LIP, the superior colliculus, and the
frontal eye field? A number of subtle but significant differences
have been seen in the responses (32, 35, 36) and behavior
(37, 38) during visual search and in the responses during two

alternative forced-choice direction discrimination tasks (39–41).
However, no clear and consistent processing differences have
been identified. Our data suggest that in complex visual scenes
and dynamic search, the activity in LIP is inadequate to guide eye
movements and that these later areas allow for further pro-
cessing, in the form of normalization, which is necessary to guide
behavior. Thus, it may be that the differences among the areas
can only be elucidated when more complex tasks, such as our
foraging task, are used to probe the system.

Methods
Details can be found in the SI Methods. All experiments were approved by
the Chancellor’s Animal Research Committee at University of California, Los
Angeles as complying with the guidelines established in the Public Health
Service Guide for the Care and Use of Laboratory Animals. Electrophysio-
logical recordings were made from two rhesus monkeys, which were trained
on a standard memory-guided saccade task and the foraging search task
(Fig. 1A). Single-unit activity was analyzed during fixations in which there
was a single object inside the receptive field. Data were aligned by the
beginning of fixation, and we analyzed the mean spike rates within a 350-
ms window starting 150 ms after the end of the last saccade.
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