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Abstract Respondent-driven sampling (RDS) has become

increasingly popular for sampling hidden populations,

including injecting drug users (IDU). However, RDS data

are unique and require specialized analysis techniques,

many of which remain underdeveloped. RDS sample size

estimation requires knowing design effect (DE), which can

only be calculated post hoc. Few studies have analyzed

RDS DE using real world empirical data. We analyze

estimated DE from 43 samples of IDU collected using a

standardized protocol. We find the previous recommenda-

tion that sample size be at least doubled, consistent with

DE = 2, underestimates true DE and recommend

researchers use DE = 4 as an alternate estimate when

calculating sample size. A formula for calculating sample

size for RDS studies among IDU is presented. Researchers

faced with limited resources may wish to accept slightly

higher standard errors to keep sample size requirements

low. Our results highlight dangers of ignoring sampling

design in analysis.

Keywords Respondent-driven sampling � Design effect �
Sample size � Injecting drug users � HIV � Hidden

populations

Resumen El muestreo dirigido por los participantes

(RDS, por sus siglas en inglés) es cada vez más utilizado

para tomar muestras de poblaciones ocultas, como las de

usuarios de drogas inyectables (UDI). Sin embargo, los

datos del RDS son muy particulares y requieren de técnicas

de análisis especializado, muchas de las cuales no se han

desarrollado. Para estimar el tamaño de la muestra del RDS

es necesario conocer los efectos del diseño (DE, por sus

siglas en inglés), los cuales solo pueden ser calculados en

forma posterior. Pocos estudios han analizado el DE del

RDS utilizando datos empı́ricos reales. Nosotros analiza-

mos el DE de 43 muestras de UDI recolectadas a través de

un protocolo estandarizado. Determinamos que la recom-

endación anterior de que por lo menos se duplique el

tamaño de la muestra, congruente con DE = 2, subestima

DE verdaderos, por lo que recomendamos a los investiga-

dores utilizar DE = 4 como una estimación alternativa

para calcular el tamaño de la muestra. Se presenta una

fórmula para calcular el tamaño de la muestra para estudios

con RDS que incluyan UDI. Es posible que los investiga-

dores que cuenten con pocos recursos tengan que aceptar

errores estandarizados ligeramente superiores para man-

tener limitados los requisitos del tamaño de la muestra.

Nuestros resultados destacan los peligros al ignorar el

diseño del muestreo en el análisis.

Introduction

Although the number of human immunodeficiency virus

(HIV) infections attributed to injection drug use decreased

between 2006 and 2009 in the United States [1], persons

who inject drugs remain at increased risk of HIV infection.

A recent analysis of IDU in 23 cities in the United States
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[2] found high proportions engaging in HIV risk behaviors.

The National HIV/AIDS Strategy for the United States [3]

identifies injecting drug users (IDU) as a priority popula-

tion for HIV prevention efforts. However, the illicit, stig-

matized nature of injection drug use makes surveillance

and sampling of IDU for research difficult. IDU are a

hidden population which cannot be accessed using standard

sampling methodologies.

Respondent-driven sampling (RDS) is a peer-referral

sampling and analysis method that provides a way to

account for several sources of bias and calculate population

estimates [4–6] now widely used to reach hidden popula-

tions including many at high risk for HIV [7]. IDU are an

especially well-suited population for RDS methodology

because they rely on social networks for much of their

livelihood, including access to drugs, income, and safety.

This reliance requires them to form cohesive social

exchange networks, which are ideal for RDS. Furthermore,

IDU are difficult for researchers to study due to the stig-

matized, illegal nature of their activities and the danger

posed to field researchers working in their communities [8].

RDS’ peer-to-peer recruitment of respondents fosters trust

and promotes participation while also reducing field staff’s

exposure to dangerous environments while conducting

research [9].

RDS has become increasingly popular in studies of IDU

in the U.S. [10, 11] and abroad [7]. While studies collecting

RDS data are numerous, many RDS analytical techniques

are still under development due to the complex nature of

RDS data and relatively short time since its debut in 1997

[12]. One currently under-developed technique is a priori

sample size calculation.

Calculating sample size requirements is a necessary

preliminary step to proposing, planning, and implementing

a successful study. However, in RDS, this calculation is

complicated by the peer-driven nature of RDS data and

their analysis [13]. RDS analysis is similar to analysis of

stratified samples where sampling weights are applied

during analysis to adjust for non-uniform sampling prob-

ability. However, while such samples are usually stratified

by variables of interest, such as race or income, with preset

selection probabilities determined by the researcher, RDS

samples are stratified by the target population’s underlying

network structure which is unknown to researchers. For

this reason, data on network structure are collected during

sampling and used to calculate sampling weights post hoc

[4]. Thus, sample size estimation, which requires knowing

selection probabilities, cannot currently be directly calcu-

lated a priori.

Cornfield [14] proposed that sample size for complex

surveys can be calculated by first calculating the sample

size required for a simple random sample (SRS) and then

adjusted by a measure of the complex sampling method’s

efficiency compared to SRS, termed the design effect (DE)

[15]:

n ¼ DE � Pa 1� Pað Þ
SE Pað Þð Þ2

ð1Þ

where n is the sample size;
Pa 1�Pað Þ
SE Pað Þð Þ2 is the common for-

mula for calculating required SRS sample size for some

proportion Pa; SE is the standard error; and DE is the

design effect of the actual sampling method used.

Following Kish [15] we define DE as the ratio of the

variance of the estimate observed with RDS, VarRDSðPaÞ,
to the expected variance of the estimate had the sample

been collected using simple random sampling (SRS),

VarSRSðPaÞ as follows:

DE ¼ VarRDSðPaÞ
VarSRSðPaÞ

ð2Þ

where VarSRSðPaÞ ¼ Pað1�PaÞ
n : Consequently, DE compares

the observed variance under a complex sampling method—

in this case RDS—to that expected for the same estimate

under an SRS of similar size [15]. Consequently, DE

measures the increase in sample size required to achieve the

same power as that of an SRS. For example, a sampling

design with DE = 3 requires a sample three times as large

as an SRS to achieve the same power [16]. Comparing

sampling methods to SRS is mathematically convenient

here because calculating power, and consequently estimat-

ing sample size, is straightforward for SRS. Consequently,

knowing DE for a given sampling method provides a means

for estimating sample size [14]. However, SRS and RDS are

not directly comparable in an empirical setting. RDS was

developed to reach hidden-populations which, by definition,

cannot be sampled using SRS methods. A comparison of

RDS to other hidden-population methodologies, such as

time-location sampling, is beyond the scope of this paper;

however we expect all such methods to have similar limi-

tations in comparison to SRS [17].

The definition of DE assumes knowledge of variance

associated with a given estimate. However, the only way to

truly measure the variance would be to take repeated

samples from the same population simultaneously. Given

limited resources, researchers are left with two options for

estimating the underlying variance: (1) estimate the vari-

ance based on a single sample of real world data or (2)

create an estimate of the population and simulate repeated

samples from that estimate. In both approaches, the

researcher is forced to make mathematical assumptions

regarding the behavior of participants and the probability

of selection. For established sampling methods, such as

SRS, this is not problematic because the probabilities of

selection are well understood and a single, agreed upon

variance calculation exists for real (not simulated) data. For
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less established methods, such as RDS, the sampling

probabilities are not yet well understood and multiple

methods of calculating variance may exist with no agreed

upon best approach. In such cases, the calculated DE rep-

resents an estimated design effect, denoted cDE throughout

this paper.

To date, few studies of RDS cDEs have been conducted.

One often-cited publication suggests RDS samples have a

cDE of at least two and recommends samples sizes should be

at least double that required for a comparable SRS design

[18]. However, An RDS study of sex workers in Brazil

reported cDE = 2.63 [19]. Another RDS study of under-

graduate students found an average cDE of 3.14 [13]. Fur-

thermore, using simulated data, Goel and Salganik [20] find

RDS cDEs may reach above 20, suggesting RDS analysis may

produce highly unstable samples. While empirical evidence

suggests RDS estimates are too accurate to support such

large cDEs [21], further research is needed to determine if a

generalized cDE can be applied to RDS studies of certain

populations or if the commonly applied recommendation of

cDE = 2 should be adjusted. If, for example, a review of

many RDS studies found relatively consistent cDEs across

variables and samples, then this cDE could be applied to

calculate sample size in future RDS studies.

Methods and Data

Methods for NHBS among IDU (NHBS-IDU) are described

in detail elsewhere [10] and briefly reported here. NHBS is a

community-based survey that conducts interviews and HIV

testing among 3 high risk populations: IDU, men who have

sex with men, and heterosexuals at increased risk for HIV

infection [22]. Data used in this paper were collected during

the first two cycles of NHBS-IDU (NHBS-IDU1 from 2005

to 2006 and NHBS-IDU2 in 2009). NHBS-IDU is con-

ducted by the Centers for Disease Control and Prevention

(CDC) in collaboration with state and local health depart-

ments in over 20 of 96 large metropolitan statistical areas

(those with population greater than 500,000) within the

United States (termed ‘‘cities’’ throughout), where approx-

imately 60% of the nation’s AIDS cases had been reported

[23]. Health departments in each city received local IRB

approval for study activities. CDC reviewed the protocol

and determined CDC staff was not-engaged; therefore CDC

IRB approval was not required.

Each city operated at least one interview field site that

was chosen to be accessible to drug-use networks identified

during formative research. Following standard RDS pro-

cedures [12, 24], each city began RDS with a limited

number of diverse initial recruits, or ‘‘seeds’’ (n = 3–35).

Respondents were provided number-coded coupons with

which to recruit other IDU they knew personally. The

number of coupons given to each respondent varied by city

and ranged from three to six. Within some cities, the

number of coupons given varied throughout sampling to

regulate the flow of individuals seeking interviews and to

reduce the number of coupons in the community as the

sample size was approached. Respondents were compen-

sated both for their participation and for each eligible

recruit who completed the survey.

NHBS-IDU procedures included eligibility screening,

informed consent from participants, and an interviewer-

administered survey. Eligibility for NHBS-IDU included

being age 18 or older, a resident of the city, not having

previously participated in the current NHBS data collection

cycle, being able to complete the survey in English or

Spanish, and having injected drugs within 12 months pre-

ceding the interview date as measured by self-report and

either evidence of recent injection or adequate description

of injection practices [10]. The survey measured charac-

teristics of participants’ IDU networks, demographics, drug

use and injection practices, sexual behaviors, HIV testing

history, and use of HIV prevention services. Participants in

NHBS-IDU2 were also offered an HIV test in conjunction

with the survey.

NHBS-IDU1 was conducted from May 2005 through

February 2006 in 23 cities. NHBS-IDU2 was conducted

from June 2009 through December 2009 in 20 cities, 18 of

which were included in NHBS-IDU1. Our results are based

on two cycles of data collection from 18 cities and 1 cycle

of data collection from seven cities, five from NHBS-IDU1

and two from NHBS-IDU2 (Fig. 1). For this analysis, RDS

data from each city are treated as independent samples.

Data from each city were analyzed separately. Results from

city level analysis are pooled and presented here by cycle.

In total 43 samples (23 samples from NHBS-IDU1 and 20

from NHS-IDU2) were included. Data collection time

varied across cities, due to differences in timing for human

subjects approvals, logistics, and speed of sampling.

All cities implemented a single protocol during each

cycle. Field operations across all cities were standardized

and followed common RDS procedures [24], however,

individual cities were provided flexibility, such as deter-

mining the number of coupons given or interview locations

used, to meet local challenges. While not its primary pur-

pose, the presence of multiple simultaneous samples in the

NHBS-IDU research design provides a means for evalu-

ating RDS methodology when used to study populations at

increased risk for HIV.

To meet public health goals, NHBS focused on those

cites with the largest burden of AIDS disease based on

most recent available data at the time cites were being
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chosen: NHBS-IDU1 cities were chosen based on AIDS

data available from 2000; NHBS-IDU2 cities were chosen

based on AIDS data available from 2004 [23]. As such, the

cities are not necessarily representative of all U.S. cities or

IDU populations. However, NHBS cities are chosen to

ensure coverage of diverse geographic areas in the United

States and likely represent typical U.S. cities in which RDS

studies of IDU or other hard-to-reach populations would be

conducted.

Measures

Efficiency of network-based samples, such as RDS, is

correlated with homophily in the social network [4].

Homophily is the network principal that similar individuals

are more likely to form social connections than dissimilar

ones.

In networks where members are defined by a specific

stigmatized activity—such as injection drug use—the

highest homophily variables tend to be basic demographic

characteristics [25]. Based on formative research, we

identified three key NHBS-IDU variables likely to have

high homophily and, consequently, the largest cDEs: race/

ethnicity, gender, and age. Race and Hispanic ethnicity

were asked separately, then coded into one variable with

mutually exclusive categories: white, black, Hispanic

(regardless of race), and other (including American Indian

or Alaska Natives, Asian, Native Hawaiian and Pacific

Islander, and multiracial). Gender was coded as male or

female. Age was grouped into five categories: 18–24,

25–29, 30–39, 40–49, 50 years and over. In addition, we

analyze cDE for two variables related to HIV risk: sharing

syringes and self-reported HIV status. Sharing syringes was

defined as having shared any syringes or needles in the past

12 months. Self-reported HIV status was coded as HIV-

positive or not (HIV-negative, indeterminate results or

status, never received the result, never tested).

Data

As shown in Fig. 2, during the NHBS-IDU1 and NHBS-

IDU2 a total of 26,705 persons were recruited to participate

(13,519 in NHBS-IDU1; 13,186 in NHBS-IDU2), 524 of

whom were seeds (384 in NHBS-IDU1; 140 in NHBS-

IDU2). The target sample size for each city in each cycle

was 500 IDU (range: 186–631 IDU).

In NHBS-IDU1, a total of 1,563 (12%) persons did not

meet NHBS-IDU eligibility criteria and were excluded

from analysis. An additional 46 persons had no recruitment

information and their records were also excluded. Among

the 11,910 eligible persons, we retained only recruitment

data for 439 (3.2%) persons whose survey data were either

lost during data transfer (334), who were not identified as

male or female (67) or whose responses to survey questions

were invalid (38). The purpose of this analysis procedure is

Fig. 1 Map of NHBS-IDU1 and NHBS-IDU2 sampling sites by participating cycle. Cycle for which data are available is shown in parenthesis
next to city names. If no cycle is shown, data are available for both NHBS-IDU1 and NHBS-IDU2
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to maintain recruitment chains. Their survey data were

coded as missing thus excluded from analysis.

In NHBS-IDU2 a total of 2,692 (20.4%) persons were

screened ineligible. These included 2,687 persons who did not

meet NHBS-IDU eligibility criteria and 5 persons without

recruitment information. Among the 10,494 persons included

in the analysis, 279 persons (2.7%) were included with only

recruitmentdata in order to maintain recruitment chains. These

include 142 lost records, 55 persons who were not identified as

male or female, 64 persons with incomplete survey, and 18

persons for other reasons (repeated participants, invalid survey

response or invalid participation coupons).

The final analysis sample included 21,686 persons

(11,471 for NHBS-IDU1 and 10,215 for NHBS-IDU2),

including seeds. As this analysis does not present test

results, participants with missing or indeterminate HIV test

results were not excluded from the analysis. Raw sample

proportions (unweighted), aggregated national estimates

(weighted), and median homophily for all five analysis

variables are presented in Table 1.

Analysis Techniques

As discussed above, measurement of cDE requires a means of

calculating variance. Several methods of estimating RDS

variance have been presented [5, 18, 19, 26]. A detailed dis-

cussion of these estimates is beyond the scope of this paper.

For this analysis, Salganik’s [18] bootstrap variance estimate

procedure was used for two reasons. First, this paper revisits

Salganik’s [18] recommendation that cDE = 2 should be used

in calculation of RDS sample size. Our use of the same vari-

ance estimation provides a consistent comparison. Second,

this is the variance estimate employed by RDS Analysis Tool

(RDSAT). To date, RDSAT is the only RDS analysis software

publically available. While multiple RDS variance estimators

have been proposed, RDSAT remains the primary RDS

analysis option for most researchers not involved in the

development of new estimators.

RDS analysis was conducted using RDSAT 8.0.8 with

a = 0.025 and 10,000 resamples for bootstrapping to cal-

culate estimates and estimate standard errors [27]. cDEs

were calculated as the ratio of RDS variance to variance

expected under SRS, as defined above. cDEs were calculated

independently for each variable within each city. Observed

cDEs for each variable across all cities within a given cycle

are presented in each box plot. A tall box plot represents

large variation in cDE across cities. Homophily was calcu-

lated in RDSAT using Heckathorn’s formula [4, 24]:

Ha ¼
Saa �cPa

1�cPa

if Saa�cPa

Ha ¼
Saa �cPa

cPa

if Saa\cPa

ð3Þ

where Ha is homophily of subgroup a, Saa is the proportion

of in-group recruitments of individuals in subgroup a, and

cPa is the estimated proportions of a individuals in the

population. As defined, homophily ranges from -1 to 1

Fig. 2 NHBS-IDU1 and NHBS-IDU2 analysis data
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and provides of an estimate of the proportion of in-group

ties after accounting for group size.

We utilized NHBS-IDU’s extensive data to determine

whether and to what extent cDEs vary in RDS studies of

U.S. IDU and to test the current recommendation that a cDE

of at least two should be used when calculating sample size

requirements for RDS studies. A finding that cDEs remain

consistent across variables and cities would suggest a sin-

gle cDE can be applied to studies of U.S. IDU using RDS to

conduct a priori sample size estimation. If cDEs vary within

an identifiable range, then the upper bound of that range

can be used as a conservative estimate in the calculation of

sample size for future RDS studies of U.S. IDU.

Results

Figures 3, 4, 5, and 6 show box plots of cDE for five

analysis variables across two cycles of NHBS-IDU.

Figure 3 shows cDEs for estimates by gender, self-reported

HIV status, and syringe sharing behavior. In all cases, the

25th percentile occurs above cDE = 2 and the 75th per-

centile occurs below cDE = 4. The distribution of cDEs

differs between variables, but appears consistent across

cycles.

Figure 4 shows cDEs for age estimates by cycle. DEs for

younger age categories are more variant than those for

older age categories. Overall, Fig. 4 displays a similar

pattern to Fig. 3. The majority of DEs fall above cDE = 2

and below cDE = 4.

Figure 5 shows DEs for race estimates by cycle. Again

the majority of cDEs fall above cDE = 2, however, there is

more variation in cDE across racial categories and across

NHBS cycles by race than by other variables.

The association between homophily and cDE is shown in

Fig. 6. For both NHBS-IDU1 and NHBS-IDU2 data, a

non-linear model fits the data well, with approximately

Table 1 Demographic characteristics of participants: National HIV Behavioral Surveillance System—Injecting Drug Users, United States,

2005–2006 and 2009

NHBS-IDU1, 2005–2006 NHBS-IDU2, 2009

Unweighted Weighted Unweighted Weighted

N Sample (%) Proportion

(95% CI)

Median

homophily

N Sample (%) Proportion

(95% CI)

Median

homophily

Gender

Male 8,158 71.1 68.0 (66.1–70) 0.27 7,389 72.3 70.9 (69–72.7) 0.19

Female 3,313 28.9 32.0 (30–33.9) 0.11 2,825 27.7 29.1 (27.3–31) 0.15

Race/ethnicity

Hispanic 2,429 21.2 23.1 (21.1–25.2) 0.35 2,199 21.5 23.1 (21–25.2) 0.37

Black 5,630 49.1 47.7 (45.3–50.1) 0.47 4,756 46.6 40.5 (38.2–42.9) 0.57

White 2,921 25.5 24.8 (22.9–26.7) 0.37 2,786 27.3 31.8 (29.3–34.3) 0.37

Multiple/other 482 4.2 4.3 (3.5–5.1) 0.07 458 4.5 4.6 (3.8–5.4) 0.04

Age (years)

18–24 443 3.9 4.5 (3.6–5.4) 0.14 349 3.4 4.4 (3.5–5.3) 0.24

25–29 793 6.9 7.2 (6.3–8.1) 0.09 669 6.5 7.1 (6–8.1) 0.12

30–39 2,527 22.0 21.4 (19.9–22.9) 0.07 1,838 18.0 19.9 (18.3–21.6) 0.12

40–49 4,314 37.6 39.1 (37.2–41) 0.06 3,176 31.1 32.1 (30.2–34) 0.08

C50 3,394 29.6 27.8 (26–29.6) 0.18 4,183 40.9 36.5 (34.5–38.5) 0.23

Self-reported HIV status

HIV positive 882 7.7 7.8 (6.6–9) 0.18 549 5.4 5.8 (4.9–6.7) 0.10

HIV negativea 10,535 91.8 92.9 (91–93.4) 0.25 9,596 93.9 94.2 (93.3–95.1) 0.21

Share syringesb

Yes 4,133 36.0 33.0 (31.2–34.7) 0.16 3,575 35.0 33.3 (31.4–35.1) 0.17

No 7,322 63.8 67.0 (65.3–68.8) 0.01 6,495 63.6 66.7 (64.9–68.6) -0.01

Total 11,471 10,215

a Includes participants who reported negative or unknown status
b Sharing syringes or needles in the 12 months prior to interview
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50% of the variation in cDE attributable to differences in

homophily. The intercept in both models, 2.55 in IDU1 and

2.73 in IDU2, is above 2. Thus, even when there is no

homophily, the expected cDE is greater than the current

recommendation. A linear fit was tested but ruled out when

the residuals plots showed non-random clear patterns

suggesting a non-linear fit. A non-linear association is

consistent with Heckathorn [4] who hypothesizes a non-

linear association between homophily and standard error in

RDS studies.

Discussion

Our results show that while RDS cDEs tend to vary by city

and analysis variable, the majority of cDEs fall between

cDE = 2 and cDE = 4 with the exception of several race

categories. As mentioned above, the NHBS populations

Fig. 3 cDE by gender, self-reported HIV status, and syringe sharing

behavior for two cycles of NHBS-IDU. cDEs of dichotomous variables

are equivalent across category (i.e. cDE of males = cDE of females)

Fig. 4 cDE of estimates for age of IDU in NHBS-IDU1 and NHBS-

IDU2

Fig. 5 cDE of estimates of race of IDU in NHBS-IDU1 and NHBS-

IDU2

Fig. 6 Association between cDE and homophily by gender, race, age,

HIV positive status and sharing syringes among IDU in 43 RDS

samples in NHBS-IDU1 and NHBS-IDU2. Poly (IDU1) and Poly

(IDU2) are the non-linear best fit lines for NHBS-IDU1 and NHBS-

IDU2, respectively. Linear fit lines were tested and ruled out when

residual plots showed clear nonrandom patterns

AIDS Behav (2012) 16:797–806 803
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tended toward insularity by race. Consistent with other

work [4], we found high cDEs were associated with high

homophily. High cDEs for blacks, Hispanics, and whites are

likely due to the high homophily we observed for these

groups.

Our results support two conclusions. First, the original

cDE recommended by Salganik [18] for use in sample size

calculations of RDS studies (cDE = 2), is unlikely to pro-

vide adequate statistical power in RDS studies of IDU in the

U.S. While some cDEs at or below two were observed, the

vast majority fell above cDE = 2. Second, with the excep-

tion of estimates of race, cDEs tended to fall below cDE = 4.

Coupled with our previous assessment that these data can be

viewed as representative of typical RDS studies of IDU in

the U.S., the results suggest that cDEs for successful RDS

studies focusing on this population will generally fall in the

range of two to four. Consequently, we recommend

cDE = 4 as a more appropriate, realistic estimate of cDE to

use when calculating sample size requirements for RDS

studies of IDU in the U.S. In multi-racial studies, formative

research should be conducted to determine the level of

racial homophily within the population. If race homophily

is too high, separate studies maybe necessary.

Calculating Sample Size

Based on our finding that cDE = 4 is a more realistic

estimate for the cDE of RDS studies of U.S. IDU popula-

tions, we can now calculate sample size estimates for

future research using Eq. 1 For example, if based on pre-

existing knowledge we suspect approximately 30% of IDU

engage in a high-risk behavior and we want to estimate this

prevalence with a standard error no greater than 0.03, the

required sample size is calculated as follows:

n ¼ 4 � ð0:3Þ 1� 0:3ð Þ
0:03ð Þ2

¼ 933 ð4Þ

Thus, we would need a sample of 933 IDU in our study.

Note that while the relationship between sample size and

DE is linear, the relationship between sample size and

standard error is exponential. Therefore, while achieving

the same statistical power requires a sample size four times

larger than SRS, an RDS study with sample size similar to

SRS will reduce statistical power by less than four times.

For example, if we make the above estimate with a desired

maximum standard error of 0.04 instead of 0.03 the new

sample size requirement is:

n ¼ 4 � ð0:3Þ 1� 0:3ð Þ
0:04ð Þ2

¼ 525 ð5Þ

By slightly reducing statistical power (i.e., increasing

maximum standard error), we reduce the required sample

size by about 50% to 525 IDU. Figure 7 shows the

relationship between sample size and standard error of

estimates for RDS studies with cDE = 4 for Pa = 0.3 and

Pa = 0.5. The relationship is exponential, so a reduction in

standard error from 0.03 to 0.04 provides a greater

reduction in absolute sample size than reducing standard

error from 0.04 to 0.05. A population proportion estimate

of 0.5 (Pa = 0.5) provides the most conservative estimates

and should be used in the absence of outside information.

Researchers faced with limited resources may be willing to

accept higher standard errors to keep sample size

requirements low. Additionally, because cDE = 4 is a

conservative estimate, studies planning for higher standard

errors may find observed standard errors are lower than

initially expected for many variables.

Conclusion

Our analyses suggest that a cDE of four (cDE = 4) is pre-

ferred for applying to calculations of sample size for future

RDS studies of IDU in the U.S. This cDE is higher than

Salganik’s [18] estimate, but lower than some recent the-

oretical estimates suggested by Goel and Salganik [20].

The advantage of our recommendation is its empirical basis

and practical emphasis.

Our results are likely generalizable to RDS studies of

IDU populations in the U.S. Studies of non-IDU or popu-

lations outside the U.S. should apply our results with

caution. Second, our data originate from larger urban

populations. Studies of rural IDU may find different cDE

outcomes. Third, while the large number of cities included

in NHBS covers a wide range of IDU populations, city

selection favored those cities with the highest overall HIV
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Fig. 7 Required sample size decreases sharply as the maximum

allowable standard error of estimates is relaxed for samples with cDE

of four based on Eq. 1 Pa is the population proportion of individuals

with characteristic ‘a’
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burden. Thus, results from studies conducted in cities with

lower HIV burdens may differ from our own.

Beyond generalizability, our results have several limi-

tations. First, our recommendation that cDE = 4 should be

used in estimating sample size requirements may underes-

timate cDE with respect to race. The large cDEs we observed

are likely due to higher homophily by race than other

variables, a common finding in U.S. populations. Fortu-

nately, racial homophily is relatively easy to monitor during

sampling and to address in formative research. If racial

homophily is too high, stratified results can be reported by

race. If racial homophily is excessive, such that almost no

cross-race recruitment is observed, samples can be sepa-

rated by race and analyzed separately. If external informa-

tion on the relative size of the different racial groups is

available, the results can be aggregated. Second, our anal-

ysis relies on confidence interval bounds generated using

the RDSAT bootstrapping algorithm [18, 27]. The algo-

rithm is not the only method of calculating RDS variances

[5, 19, 26] and has been shown to underestimate variance

under certain conditions [20, 21]. If this variance estimation

procedure is not correct the true DE could be higher, pos-

sibly much higher, than cDE. Similarly, as new, more effi-

cient estimation procedures are developed a lower cDE may

become more appropriate for estimating sample size.

Unfortunately, there is often a significant delay between

when new methods are developed and when they are

accessible for use by the scientific community. For practi-

cality, we chose a variance estimate that is most accessible

to researchers utilizing RDS today. Third, differences in

implementation within city across time, such as the number

of coupons given to each respondent, negate our ability to

explore the effect of some implementation differences on

cDE. Fourth, our analysis focused on the relationship

between cDE and homophily, a trait level measure of clus-

tering. Recent work suggests bottlenecks may be a more

appropriate level of analysis than homophily [20]. Bottle-

necks are a function of the entire network structure and how

traits are distributed across that network structure. Unfor-

tunately, our RDS data do not provide sufficient information

to analyze the global network structure. Based on the lit-

erature, we expect the association between cDE and bottle-

necks to be stronger than the association between

homophily and cDE. Finally, this analysis analyzed data

from 43 RDS samples implementing a standard NHBS

protocol. While the NHBS protocol follows standard RDS

procedures and allowed flexibility meet the unique condi-

tions of each city, it is possible that different studies could

yield different results. This is especially true of studies that

use modified RDS procedures. Further research is needed to

explore the effect of differences in implementation on cDE.

Despite these limitations, we argue that these results

provide an alternative to earlier recommendations for cal-

culating RDS sample size in studies of U.S. IDU and serve

as a guide to researchers planning future RDS studies.

Previous research presenting weighted RDS estimates and

confidence intervals is not impacted by our results, as

confidence intervals from RDS analysis account for DE.

However, our results further highlight the need for con-

ducting RDS analysis on RDS data. Unweighted analyses

of RDS data, which treat the sample as an SRS, not only

risk presenting biased estimates, but also risk underesti-

mating the variance of those estimates by as much a factor

of four.

Public health researchers working with RDS data will

benefit from our results by ensuring they have adequate

power for identifying health outcomes such as HIV prev-

alence and/or risk behaviors. Data collections, including

NHBS-IDU, must balance the need for precise estimates

with the need to limit burden on the public and to ensure

the best use of limited resources. The current target sample

size for NHBS-IDU is 500 per city and 10,000 nationally.

This sample size is adequate for national estimates, but

may have limited power locally for some variables of

interest. Given the exponential relationship between stan-

dard error and sample size, researchers may be willing to

accept and plan for higher standard errors to keep sample

size requirements low.
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