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Human melanoma-specific CD8+ T-cells
from metastases are capable of antigen-specific
degranulation and cytolysis directly ex vivo
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The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long
precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with
low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A
multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNc
production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma
patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN.
Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed
endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal
amounts of IFNc, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic
lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer
metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The
identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.

Introduction

A central issue in tumor immunology is that tumor cells do not
express foreign antigens and are therefore not readily fought
against by the immune system. Additionally, cancer cells have
proven to be experts in immune evasion, making use of a wide
repertoire of strategies to elude its adversaries. Nevertheless, tumor
Ag-specific T-cells can be readily detected in PBMC of cancer
patients, and it has been shown that such T-cells can play a
significant role in delaying tumor progression or even eliminate
cancer cells in murine model systems,1,2 as well as in cancer
patients.3

Ag-specific reactivity is typically demonstrated by IFNc
ELISPOT assays.4 PBMC-derived tumor Ag-specific T-cells
have been shown to secrete IFNc in an Ag-specific manner.5-7

Solid tumors of peripheral tissues are infiltrated with tumor
Ag-specific T-cells, and in tumor-infiltrated lymph nodes (TILN;
also referred to as metastases hereafter) the tumor cells are also
surrounded by immune cells that could potentially attack them.
However, it has previously been reported that tumor Ag-specific

CD8+ T-cells from melanoma metastases show impaired IFNc
production directly ex vivo, indicating a functional defect or
inhibition at the tumor site.5,7,8 Importantly, IFNc production is
not necessarily representative for other functions of CD8+ T-cells.
While IFNc production was strongly impaired, we found that
Perforin production was only marginally reduced and Granzyme
B content appeared normal in Ag-specific T-cells from melanoma
metastases.5,9 Based on these findings, we were interested in the ex
vivo cytolytic capacity of tumor-specific CD8+ T-cells from cancer
patients, as the lysis of tumor cells is important for successful
tumor defense.

Target cell lysis can be achieved through different mechanisms:
(1) release of lytic granule contents (Granzymes, Perforin and
Granulysin), (2) cell-cell contact (Fas/FasL) and (3) cross-linking
of death-receptors (TNFa/TNFRa Type I).10 Since a large
proportion of Melan-A (also known as MART-1) specific CD8+

T-cells from melanoma patients express Perforin and Granzyme
B,11 we hypothesized that their lytic activity would be mainly
granule-dependent. Upon granule exocytosis, the lysosomal-
membrane associated glycoprotein CD107a (also known as
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LAMP-1) is transferred to the plasma membrane. Cell surface 
detection of CD107a therefore serves as a read-out for granule 
exocytosis, and it is closely,12,13 though not absolutely,14 linked to 
lytic activity.

Hence, to further investigate the ex vivo functionality of 
tumor-specific CD8+ T-cells as well as the apparent functional 
impairment of TILN-derived cells, we assessed the ex vivo lytic 
capacity, degranulation and IFNγ production of Melan-Aspecific 
CD8+ T-cells from PBMC and TILN of melanoma patients. To 
this end, we made use of our multiparameter LiveCount Assay 
(LCA),15 which was slightly modified (mLCA) to allow the con-
comitant analysis of lytic activity and surface CD107a, as in the 
original protocol, as well as intracellular IFNγ. In addition to 
detecting IFNγ production on a per cell basis, the mLCA does 
not require pre-purification of Ag-specific cells, thus reducing 
procedure-related potential influences on their viability and/or 
functionality.

While circulating T-cells showed strong cytolytic capacity, 
degranulation and IFNγ production, the results indicate a partial 
inhibition of T-cell functions at the tumor site, underlining that 

T-cells sampled from the PBMC do not always reflect functional-
ity at the site of disease. Interestingly, the T-cells from metastases 
showed considerable lytic activity.

Results

Direct ex vivo cytotoxicity by Melan-A-specific CD8+ 

T-cells from PBMC or TILN of vaccinated melanoma patients. 
Melan- A-specific T-cells were isolated from five PBMC and 
five TILN samples and tested by ex vivo LCA in triplicates. 
These T-cells showed strong cytolytic function ex vivo. Though 
TILN-derived T-cells exhibited lower levels of cytolytic activity 
than those derived from PBMC (Fig. 1A and B), the differ-
ence was not statistically significant. Efficient cytotoxicity by 
TILN-derived T-cells was remarkable, given previous reports 
showing hyporesponsiveness of T-cells in metastases.5,7,8,16 In 
parallel to the assessment of primary T-cells, we also used a 
Melan-A-specific CTL clone (clone R11) in each experiment 
in order to assess inter-assay variability. The clone was consis-
tently used 13 to 16 d after the periodic re-stimulation with 

Figure 1. Melan-a-specific T-cells from both pBMc and TILN of melanoma patients exert strong cytotoxicity directly ex vivo. Melan-a-specific cD8+ 
T-cells were Facs purified from pBMc [(a); n = 5] and TILN [(B); n = 5] of melanoma patients using pMhc multimers, and incubated for 4 h with an equal 
number of Melan-a-pulsed T2cMTMR-lo and hIV-pulsed T2cMTMR-hi at the indicated e:T ratios. all conditions were measured in triplicates. a semi-paired 
permutation test yielded no statistically significant difference between the cytolytic capacity of cells from pBMc and TILN (p = 0.2). (c) pre-incubation 
with pMhc multimers does not significantly affect the lytic activity of cD8+ cTL clones. cTL clones specific for either Melan-a, Flu, cMV or eBV were 
left untreated (white bars) or incubated with relevant pMhc multimers (black bars) prior to incubating them for 4 h with an equal number of relevant-
peptide-pulsed T2cMTMR-lo and irrelevant-peptide-pulsed T2cMTMR-hi. e:T = 4 was used for all clones except NM cl.55, which was assayed at e:T = 1. Mean 
cytolytic activity and sD of quadruplicates are shown for each clone. a paired, two-tailed t-test showed no difference between pMhc multimer 
treated or untreated cells (p = 0.94).
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Figure 2. The modified Livecount assay 
(mLca) allows to simultaneously determine 
cytotoxicity, degranulation and IFNc 
production. cD8+ T-cells magnetically 
enriched from pBMc of melanoma patients 
were incubated with peptide-pulsed T2 
target cells (a–c) or the endogenously 
Melan-a+ melanoma cell line Me 290 
(D–F) at the indicated e:T ratios in the 
presence of fluorescently conjugated 
cD107a mab. Brefeldin a was added after 
1 h of co-incubation. after a further 3 h of 
co-incubation, cells were incubated with 
Melan-a/hLa-a2*0201 multimers, cD8 
mab, ViViD and, following fixation and 
permeabilisation, IFNγ mab. (a and D) % 
specific lysis. (B and e) Degranulation as 
measured by cD107a upregulation on the 
cell surface. (c and F) IFNc production. 
Results for peptide-loaded T2 and Me 290 
melanoma target cells were compared 
using a semi-paired permutation test, 
yielding p values of 0.007 (lysis), 0.34 
(cD107a upregulation) and 0.50 (IFNγ 
expression). (G) Mean fluorescence intensity 
(MFI) of cell surface cD107a staining at 
increasing e:T ratios with peptide-loaded 
T2 as target cells. The graph shows mean 
± seM of 5 pBMc and 5 TILN samples. (h) 
The scheme illustrates that cD107a and 
cytokine expression is reduced on a per cell 
basis in conditions of limited availability 
of specific target cells, while the overall 
specific lysis is increased.

PHA, such that the clone was always at a similarly high acti-
vation state. Indeed, results from clone R11 revealed favor-
able assay reproducibility (data not shown). In summary, 
these results show a surprisingly strong and consistent lysis of 
peptide-pulsed T2 cells by tumor Ag-specific T-cells isolated 
directly from the patients’ PBMC or TILN, comparable to the 
lytic activity of a CTL clone with strong cytolytic function.

The modified LiveCount Assay (mLCA) and original LCA 
provide comparable results. It could be argued that the vig-
orous cytotoxicity of patients’ T-cells was due to TCR trig-
gering by peptide/MHC (pMHC) multimers used for their 
sorting by flow cytometry. To address this possibility, we tested 
CTL clones of different specificities and found similar levels 
of cytotoxicity, whether they were pre-incubated with pMHC 

multimers or not (Fig. 1C). Regardless, sorting by flow cytom-
etry may alter cell viability and lytic performance in primary 
cells.15 Therefore, we optimised our assay to circumvent prior 
labeling and sorting of T-cells. This modified LiveCount Assay 
(mLCA) was validated with CTL clone R11 and produced simi-
lar titration curves in terms of specific lysis and CD107a upreg-
ulation as the original LCA (data not shown). Characteristics 
and differences of the two assays are listed in a table (Table S1, 
which demonstrates the differences between LCA and mLCA). 
The mLCA was then applied to assess the ex vivo cytotoxic-
ity of Melan-A-specific T-cells from PBMC of three melanoma 
patients (Fig. 2A). Efficient cytotoxicity was detected, with E:T 
titration curves comparable to those obtained with the original 
LCA (Fig. 1A). Thus, considerable cytotoxicity was detected ex 

vivo, even without prior pMHC multi-
mer based T-cell sorting.

Enhanced activation of Melan-
Aspecific CD8+ T-cells at low E:T 
ratios. In addition to the simultaneous 
assessment of cytotoxicity and degranu-
lation, the mLCA allows to detect cyto-
kineproducing cells (Fig. 2C and F), 
hence providing a more comprehensive 
evaluation of T-cell function. Although 
lysis was not detectable at low E:T ratios, 
the majority of Melan-A-specific T-cells
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degranulated under such conditions, with a mean of about 70%
at E:T = 0.06 (Fig. 2B). With increasing E:T ratios, frequencies
of CD107a+ cells decreased to values as low as 11% at E:T = 16.
The proportion of IFNc+ T-cells mirrored this observation. At
E:T = 0.06, an average of 51% of Melan-A-specific T-cells were
IFNc+, but only a mean of 12% produced IFNc at E:T = 16
(Fig. 2C). Similarly, the mean fluorescence intensity of cell
surface CD107a detection, reflecting the average molecular
density of this molecule per cell, decreased with increasing E:T
ratios and increasing lysis (Fig. 2G). This suggests that at elevated
E:T ratios, the cells that are participating in killing do not
degranulate as much on a per-cell basis as seen at lower E:T ratios
(Fig. 2H). Together, our data demonstrate that the majority
of Melan-A-specific T-cells are potentially functional, and that
different functions are revealed at different E:T ratios. Since
cytotoxicity is measured as the result of a collective T-cell action
and not on a per T-cell basis, degranulation and IFNc produc-
tion are more accurate measurements of activation of individual
T-cells.

Successful recognition and killing of melanoma cells. To test the
ability of Melan-A-specific T-cells to recognize melanoma cells
based on their endogenous production and presentation of
antigen, we compared the T-cell functions generated in response
to Melan-A+ (Me 290) and Melan-A2 (NA8-MEL) melanoma cell
lines. Melan-A-specific T-cells directly isolated from PBMC of
melanoma patients were able to lyse melanoma cells (Fig. 2D).
Successful recognition of melanoma cells in the absence of
synthetic peptide was also demonstrated by the T-cells’ ability to
degranulate and produce IFNc (Fig. 2E and F). However, lysis
of unpulsed melanoma cells (Fig. 2D) was often less efficient
than lysis of peptide-pulsed T2 cells (Fig. 2A), presumably due
to lower levels of peptide being presented by tumor cells. This
was not statistically significant (p = 0.08) if taking only mLCA
data into account, probably due to low sample numbers, but
did reach statistical significance when integrating the LCA data
from Figure 1A (p = 0.007). Strikingly, stimulating with Me
290 revealed different response patterns generated by PBMC
from different patients. While some delivered strong (LAU 1013)
or weak (LAU 936) responses in all three parameters analyzed,
others showed strong lysis with weak degranulation and IFNc
production (LAU 1164) or vice versa (LAU 1106).

Low IFNc production by Melan-A-specific CD8+ T-cells
from TILN. We compiled the data obtained with T-cells from
PBMC and TILN, as assessed with both the LCA and the
mLCA. In concurrence with our previous studies,5,7,9 the
percentage of IFNc+ Melan-A-specific T-cells was consistently
lower in TILN compared with PBMC (p = 0.0004; Figure 3A
and B). In contrast, T-cells from TILN showed high ex vivo
cytotoxicity and degranulation, similar to those displayed by the
T-cells from PBMC (Fig. 3B). Comparison of lytic activity was
performed at E:T = 4, while degranulation and IFNc produc-
tion were evaluated at E:T = 0.5. These E:T ratios were chosen
as they yielded high, but not maximal, readings (Figs. 1 and 2),
and the standard deviation due to experimental conditions was
at a minimum (see Table S1, which shows Comparison of LCA
with mLCA data). Moreover, the relative frequency of cells

expressing either IFNc, surface CD107a or both was signifi-
cantly different between the two organs, with the bulk of TILN-
derived cells producing either function being single-positive for
CD107a, while PBMC-derived cells were largely double-positive
(Fig. 3C). In conclusion, ex vivo assessment of T-cells from
metastatic lesions consistently reveals deficient IFNc responses.

Apparent discrepancy between functional parameters. Even
though Melan-A-specific CD8+ T-cells from TILN produced
only low levels of IFNc ex vivo, their IFNc production correlated
with degranulation (CD107a; Figure 4A). A similar trend was
observed for PBMC. No correlation was observed between ex
vivo IFNc production and lytic capacity, underlining that IFNc
alone is not sufficient to determine a sample’s reactivity
(functionality vs. exhaustion; Figure 4B). Interestingly, an inverse
correlation was observed between degranulation and lytic activity
(Fig. 4C). This indicates that samples with high ex vivo lytic
activity might contain Melan-A-specific cells with high avidity.
Thus, only a few (high avidity) cells of the total Melan-A-specific
CD8+ T-cell population would be involved in target cell killing,
resulting in low frequencies of CD107a+ cells. In contrast, more
(lower avidity) cells are involved in Ag-specific lysis in samples
with lower lytic activity, hence the elevated frequencies of
CD107a+ cells.

Increased Ag-reactivity following peptide-vaccination. We
were able to perform LCAs with longitudinal PBMC samples
as well as one TILN from a melanoma patient positive for the
cancer/testis Ag NY-ESO-1 (Fig. 5), before and after peptide
vaccination.17 Samples obtained pre-vaccination revealed strong
ex vivo cytolytic activity, but only very weak degranulation in
response to NY-ESO-1-pulsed T2 cells. NY-ESO-1-specific
CD8+ T-cells from a PBMC sample drawn after one year of
monthly peptide vaccinations had even higher ex vivo cytolytic
potential, and a significantly increased degranulation response.

Discussion

In this study we simultaneously determined cytotoxicity,
degranulation and cytokine production of human cancer-specific
T-cells directly ex vivo, using the original and modified
LiveCount Assays. Strong cytolytic activity was observed not
only by circulating T-cells, but also by T-cells from melanoma
metastases in lymph nodes, a remarkable result given previous
reports of functional impairment of cancer-specific T-cells in
metastases.5,7,8,16 T-cells readily killed peptide-pulsed target cells
in an Ag-specific manner, to a similar extent as a representative
and strongly cytolytic CD8+ CTL clone. We also found efficient
recognition and killing of melanoma cells presenting naturally
processed antigen. However, killing, degranulation and IFNc
production by T-cells differed considerably between patients,
emphasizing the inter-individual differences in T-cell function-
ality, which possibly reflects, at least in part, differences in TCR
avidities18 and cytotoxic mechanisms employed by individual
T-cells.

Competent killing activity by T-cells from metastases is in
agreement with the notion that cytolytic function often remains
intact, despite defects in cytokine production, as observed in
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exhausted T-cells in chronic/protracted viral infections in mouse
models (45) and in HIV and HCV patients.19,20 Recently, we
and others have demonstrated that CD8+ T-cells from melanoma
metastases are exhausted, as their gene expression profile
overlapped significantly with the one of exhausted T-cells in
chronic viral infections.7,21 T-cell exhaustion was originally
described in mice infected with particular strains of lymphocytic
choriomeningitis virus (LCMV) strains causing chronic infec-
tions. These mice generated LCMV-specific CD8 T-cells that are
dysfunctional and cannot clear the virus.22,23 T-cell exhaustion is
defined by the hierarchical loss of cytokine function of effector
T-cells, first with the loss of IL-2, then TNFa and finally IFNc 24.
While some exhausted T-cells are driven into apoptosis, large
numbers remain vital. The question whether exhausted T-cells are

capable of cytolysis is still open.24,25

The immediate cytolytic function of
T-cells observed in our experiments
is in agreement with their differenti-
ation profile, as the majority of T-cells
had an effector memory phenotype
(see Table S2 showing frequencies
and phenotype of melan-A-specific
CD8+ T-cells from PBMC and
TILN). Indeed, both PBMC- and
TILN-derived T-cells showed efficient
Ag-specific cytotoxicity and degranu-
lation directly ex vivo. In contrast, T-
cells from TILN displayed impaired
IFNc production. This is in concert
with our previous reports demonstrat-
ing that T-cells from melanoma
metastases expressed abnormally low
IFNc levels.5,7 Such suppressed cyto-
kine production proved to be revers-
ible upon a 2 d in vitro culture in the
presence of IL-2.5,7 Thus, T-cells
appear to retain functional potential
despite the hostility of the tumor
environment, even though some of
these functions might not be exerted
locally due to effective suppressive
mechanisms.

Numerous studies have analyzed
T-cell function after prolonged in
vitro culture, but such studies do not
necessarily reflect in vivo function.
In mice, where T-cell functions can be
studied in vivo, CD8+ effector T-cells
are highly cytolytic against target cells
occurring as single loosely associated
cells in the tissues.26 To some extent,
CD8+ effector T-cells are also capable
of attacking solid tumors, though in
vivo imaging studies have shown that
target cell lysis in solid tumors may be
very slow27 and that T-cell function

may be inhibited by environmental factors such as TGFβ.28,29

Indeed, several factors of the tumor microenvironment have
been found to inhibit T-cells.8,30-34 The present data suggest that
when CD8+ effector T-cells are separated from the tumor
microenvironment, cytolytic function is immediate, whereas
cytokine production requires a few days to recover.5

Partially deficient T-cell function has been described more than
20 y ago, in the context of murine thymic T-cell maturation.35

More recently, Ohlen et al. described tumor Ag-specific T-cells
with normal effector function but deficient proliferation in a
mouse model.36 Partial T-cell function may be due to deficient
TCR signaling and/or co-stimulation, which must be strong for
proliferation, intermediate for cytokine production and only
weak for target cell lysis.37,38 Thus, our findings may be caused

Figure 3. TILN-derived melanoma-specific CD8+ T-cells exhibit decreased IFNc production, but
comparable degranulation to their PBMC-derived counterparts. (A) Representative dot plots for
degranulation and IFNc production by PBMC- (LAU 944) and TILN-derived (LAU 465) Melan-A-specific
CD8+ T-cells. (B) Frequencies of Melan-A-specific T-cells positive for IFNc, CD107a at E:T = 0.5. and %
specific lysis at E:T = 4 is indicated. Data are means of triplicates. E:T Data for PBMC and TILN were
compared using unpaired, two-tailed t-tests. (C) Pies show the relative proportion of Melan-A-specific
CD8+ T-cells positive for either IFNc and/or cell surface CD107a expressing either combination of these
markers.
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Do not distribute.Figure 4. Apparent discrepancy between functional parameters. Correlation analysis of functional parameters measured following Ag-specific
stimulation of Melan-A-specific cells isolated from either PBMC (open circles) or TILN (closed triangles). (A) CD107a vs. IFNc. (B) IFNc vs. % specific lysis.
(C) CD107a vs. % specific lysis. The outliers highlighted in gray have been excluded from the statistical analysis of CD107a vs. % specific lysis, as they had
very low lytic capacity.

Figure 5. Peptide-vaccination results in increased degranulation and cytolytic activity of tumor Ag-specific CD8+ T-cells. A longitudinal study was
performed with NY-ESO-1-specific CD8+ T-cells from a melanoma patient. PBMC samples were collected 11 and 3 mo before, as well as 12 mo after
commencing peptide vaccination. TILN were also obtained 3 mo pre-vaccination. (A) Cytolytic activity and (B) degranulation in response to incubation
with NY-ESO-1 peptide-pulsed T2 cells were determined.
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by partially deficient TCR and co-stimulatory signals, still
sufficient for lysis but not for cytokine production. Further-
more, persistent Ag has been shown to result in impaired nuclear
translocation of NFAT proteins, which in turn could negatively
impact IFNc production.25 In any case, the molecular mechan-
isms underlying the observed functional deficits of T-cells from
metastases need to be addressed, and the responsible tumor-
derived suppressive mechanism(s)8,30-34 identified. IFNc is known
to be essential for tumor defense,39 and so the lack of IFNc in
TILN is likely important. Tumor Ag-specific CD8+ T-cells are
known to also exist in tumor-free lymph nodes.40 However, as
frequencies of Ag-specific T-cells are very low in such patient
samples, we were not able to test whether such cells behave like
their counterparts found in TILN or PBMC.

Cytokine production and degranulation assays are comple-
mentary to cytotoxicity assays, with the former investigating
intrinsic T-cell properties, and the latter their effects on target
cells.14 Our data demonstrate the importance of E:T ratio titra-
tion when analyzing cytotoxicity vs. CD107a or IFNc. Expression
of CD107a and IFNc reflect the proportion of Ag-specific
T-cells productively interacting with target cells. The full func-
tional potential of individual T-cells can only be revealed when
stimulator/target cells outnumber Ag-specific T-cells. In contrast,
cytolysis of target cells, a collective action of all T-cells present,
is maximal with high E:T ratios (Fig. 2G). This is important for
the design of functional assays.

Independent of E:T ratios, in a biological sample with mixed
T-cell avidities and functionalities, a low frequency of Ag-specific
cells with measureable cell surface expression of CD107a after
4h triggering might indicate the presence of high avidity cells.
In this scenario, the high avidity fraction of the Ag-specific
population is dominating the interactions with target cells, which
results in a low frequency of degranulating cells but a high lytic
activity. In the absence of cells with high functional avidity,
many lower avidity cells combine their efforts to act against target
cells, resulting in a higher fraction of degranulating cells but a
lower lytic activity (Fig. 4).

High T-cell frequencies (i.e.,. 0.3% of CD8+ T-cells) induced
by endogenous tumors are often observed in metastases but rare
in circulating blood cells of cancer patients. Novel T-cell vaccines
may induce increased frequencies of tumor Ag-specific T-cells,
as well as advanced T-cell differentiation that can be revealed by
flow cytometry.41 However, since T-cell differentiation markers
do not always correlate with functional characteristics, it is
important to measure the T-cell functions directly whenever
possible.

Due to low numbers of available cells we were unable to
determine whether peptide vaccination had a direct effect on the
functionality of TILN-derived T-cells, or whether different
vaccination protocols had disparate effects. Longitudinal studies
including samples before and after immunotherapy would allow
to determine whether a given (immuno-) therapy may indeed
result in increased T-cell functionality, though such studies
would be more practicable to be performed with PBMC
samples. Our LCA analysis of four such samples (with pre- and
post-vaccination time-points) from a single melanoma patient

indicated an increase not only in the frequency, but also in the
ex vivo detectable degranulation and lytic activity of the tumor
Ag-specific T-cells.

Recognition of tumor cells presenting naturally processed
tumor antigen is critical, but often not the case,42,43 presumably
due to low amounts of naturally presented tumor antigen and
low avidity of self-specific TCRs.11 The fact that T-cells were
capable of killing melanoma cells in the absence of synthetic
peptide suggests that TCR-affinities were relatively high, corres-
ponding to our previous findings.11 However, tumor cell
recognition varied between patients. In contrast to T-cells from
patient LAU 1164, T-cells from patient LAU 1106 lysed Me
290 cells much less efficiently than peptide-pulsed T2 cells,
suggesting that the former patient had better TCRs and conse-
quently required lower amounts of antigen for efficient tumor
recognition. In the future, comprehensive analyses of TCR
repertoire and T-cell function will improve the characterization
of T-cell responses. Recently, ex vivo assessment of cytokine
production and cytotoxicity has become possible for groups of
dominant T-cell clonotypes44 and even individual clonotypes, as
we have demonstrated in a strong NY-ESO-1-specific T-cell
response of a melanoma patient.17 As T-cell avidity and
functionality are key for immune protection, such studies have
the potential to reveal correlates of protection against disease,45

providing the rationale to improve T-cell based immunotherapies.

Patients and Methods

Patients and biological specimens. PBMC and TILN were
obtained from 14 HLA-A2+ melanoma patients who gave
informed consent for this study, approved by the ethical
committee of the University of Lausanne and the Ludwig
Institute for Cancer Research. PBMC from all patients except
patient LAU 50 were analyzed after peptide vaccination with
Melan-A peptide, CpG 7909 and IFA.41 Patients LAU 465 and
LAU 969 had not received vaccination at the time of TILN
isolation, while LAU 672 and LAU 818 had received Melan-A
peptide in IFA46 and LAU 352 had received Melan-A peptide in
AS02.47 Two PBMC draws and one TILN were obtained
from patient LAU 50 before commencing administration of NY-
ESO-1, Mage-A10 and Melan-A peptides in Montanide.48 One
additional post-vaccination PBMC sample was also included in
this study. Ex vivo mononuclear cells were purified and
immediately frozen as described previously.40 Frequencies of
Melan-A/HLA-A*0201 (see Table S2, which shows frequencies
and phenotype of Melan-A-specific CD8+ T-Cells from PBMC
and TILN) or NY-ESO-1/HLA-A*0201 multimer binding CD8+

T-cells were determined by flow cytometry.41

CD8+ CTL clones. The CD8+ CTL clones NM cl.55
(Influenza-specific), BC25 cl.R10 (EBV-specific), cl.R11
(Melan-A-specific), cl.R45 and cl.46 (both CMV-specific) were
isolated from healthy donors, while LAU 465 cl.11E5 (Melan-A-
specific) and LAU 50 cl.1 (NY-ESO-1-specific) were isolated
from melanoma patients as follows: peptide/MHC multimer
binding CD8+ T-cells were purified by FACS from PBMC,
cloned by limiting dilution and periodically (every 3–4 weeks)
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expanded by stimulation with 1 mg PHA/ml (Sodiag), 5 � 105

irradiated allogeneic feeder cells/ml and 150IU hIL-2/ml (Glaxo
Welcome). Cells were used 13–16 d after PHA-stimulation.

Target cell lines. The T2 cell line, a human TAP-deficient
TxB cell hybrid expressing low levels of surface HLA-A*0201
and virtually no other surface class I MHC molecules49 was
peptide-pulsed to serve as a target. The melanoma-derived cell
lines Me 290 (Melan-A+ HLA-A*0201+)50 was used as a specific
target, while NA8-MEL (Melan-A– HLA-A*0201+)51 served as
an irrelevant melanoma target cell line. Me 290 was kindly
provided by D. Rimoldi (Ludwig Institute for Cancer Research,
Lausanne Branch, Switzerland), and their identity established by
testing for the melanoma Ags Melan-A, Tyr, gp100 and HMW-
MAA. NA8-MEL was a kind gift from F. Jotereau (INSERM);
it expresses the common melanoma mutation in BRAF. All cell
lines are routinely monitored for morphology, growth character-
istics and the absence of mycoplasma. Since they are often used in
cytolytic assays, potential alterations in their performance and
hence their identity would be readily identified.

Media and buffers. Assays were performed in RPMI 1640
containing 100 IU penicillin/ml, 100 mg streptomycin/ml, 2 mM
glutamine, 0.1mM non-essential amino acids, 1mM Na pyruvate
(all from Gibco, Invitrogen), 5 � 1025M β-ME (Sigma) and 8%
human serum (HS; CTS) (subsequently referred to as RPMI
8% HS). The T-cell clones were maintained in RPMI 8% HS
enriched with 150 IU hIL-2/ml (Roche Pharma). T2 cells and
melanoma cell lines were cultured in RMPI 1640 with 0.24 mM
L-asparagine, 0.55 mM L-arginine HCL (both from Sigma),
1.5 mM glutamine, 10 mM HEPES, 100IU penicillin/ml,
100 mg streptomycin/ml and 10% FCS (Gibco). Staining buffer
was 50 mM EDTA (Fluka Chemie) and 0.2% BSA (Calbiochem)
in PBS (CHUV) and used during CD8+ T-cell enrichment and
immunofluorescent labeling procedures. For intracellular IFNc
detection, cells were fixed with 1% formaldehyde, 2% glucose
and 5 mM sodium azide (both from Fluka Chemie) in PBS
followed by intracellular labeling in staining buffer containing
0.1% saponin (Sigma).

Peptides and pMHC multimers. The following HLA-A*0201
restricted synthetic peptides were used in the assays:
Melan-A26–35/A27L (ELAGIGILTV),52 HIV Polymerase468–476
(ILKEPVHGV),53 hCMV pp65495–503 (NLVPMVATV),54 EBV
BMLF280–288 (GLCTLVAML),55 Influenza Matrix58–66
(GILGFVFTL)56 and NY-ESO-1157–165/C165A (SLLMWITQA).57

The peptides were produced by the Biochemistry Institute of the
University of Lausanne. Fluorescent pMHC multimers (kindly
provided by I. Luescher and P. Guillaume, Ludwig Institute
for Cancer Research, Lausanne Branch, Switzerland) were
constructed with recombinant HLA-A*0201 and the synthetic
peptides indicated above, and were conjugated to APC or PE.

Antibodies and cellular dyes. The mAb CD8AmCyan, CD8APC-H7,
IFNcPE-Cy7, anti-CD107aPE-Cy5 were purchased from BD Bio-
sciences (Basel, Switzerland), CD8FITC from Beckman Coulter
(Nyon, Switzerland) and CD8MicroBeads for magnetic-enrichment
from Miltenyi Biotec (Bergisch Gladbach, Germany). Target
cells were labeled with CellTracker1 Orange CMTMR (5-(and-
6)-((4-chloromethyl) benzoyl) amino) tetramethylrhodamine) or

CFSE. The UV-excitable DNA stain DAPI (358ex 461em) or the
Violet LIVE/DEAD1 Fixable Dead Cell Stain (ViViD) (405ex
451em) were used to evaluate cellular viability (all dyes from
Molecular Probes, Invitrogen, Leiden, Netherlands).

LiveCount Assay (LCA). LCA were performed as described.15

Briefly, T2 cells were labeled with 0.1 mM or 2 mM CMTMR
and pulsed with 1 mM of the appropriate peptide. Cells were
then washed twice and re-suspended in RPMI 8% HS. A 1:1
mixture of specific and control target cells was prepared and
the appropriate volume dispensed into a V-bottomed 96-well
plate. CD8+ cells were enriched by magnetic cell sorting prior
to isolating Melan-A- or NY-ESO-specific CD8+ T-cells by
fluorescence activated cell sorting. Cells were dispensed into
wells of a 96-well plate containing 125 or 250 cells of each target
cell population to obtain the indicated E:T ratios. Control wells
received only the target cell mixture in order to correct for
eventual variations in target cell counts. All conditions were
prepared in triplicates. Cells were incubated in 50 ml RPMI 8%
HS containing CD107aPE-Cy5 mAb and after 3.5 h a fluorescently
conjugated CD8 mAb was added. At the end of the 4h co-
incubation period, cells were harvested, pelleted and re-suspended
in 100 ml staining buffer containing 3 mg/ml DAPI. Samples
were acquired on a FACS Vantage SE and analyzed with the
instrument’s operating software (CellQuest1, BD Biosciences).
Specific lysis was calculated as originally published.

Modified LiveCount Assay (mLCA). T2 cells and/or mela-
noma cell lines were labeled with 0.125mM CFSE. T2 cells were
pulsed with Melan-A peptide or left unpulsed. All targets were
finally re-suspended in RPMI 8% HS. Upon thawing, PBMC
and TILN were rested overnight in RPMI 8% HS and CD8+

cells enriched by magnetic cell sorting. These cells were then
pelleted by centrifugation, taken up in RPMI 8% HS and
dispensed into the wells of a U-bottomed 96-well plate contain-
ing specific or irrelevant target cells. Control wells contained only
Ag-positive or Ag-negative targets in order to correct for eventual
variations in target cell counts. All conditions were prepared in
triplicates. Two series of experiments were performed. The first
series was done at E:T = 0.5 with 0.12 � 106 to 1.42 � 106 CD8+

T-cells. The number of target cells was adjusted so as to achieve
the desired E:T ratio according to the previously determined
frequency of Melan-A-specific CD8+ T-cells (see Table S2, which
shows frequencies and phenotype of Melan-A-specific CD8+

T-cells from PBMC and TILN). In the second series, the
number of CD8+ T-cells was adjusted from patient to patient
in order to contain a fixed number (3383) of Melan-A-specific
cells per well. These were dispensed into wells containing target
cells titrated to attain the indicated E:T ratios. Cells were
incubated in 50 ml RMPI 8% HS containing CD107aPE-Cy5 mAb.
After 1h, 15 mg/ml of the protein transport inhibitor Brefeldin
A was added. At the end of the 4 h co-incubation period, the
cells were transferred to tubes and incubated with Melan-A/HLA-
A*0201 multimers. Samples were washed and re-suspended in
100 ml staining buffer containing ViViD prior to acquisition on a
FACS Vantage SE.

Biostatistical analyses. For E:T titration curves the areas
under the curves between E:T ratios 0.25 to 4 or 0.25 to 8 were
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calculated, and a semi-paired permutation test adapted. This test
uses a traditional unpaired t-statistic, but compares it to a
corrected permutation distribution in which pairing or the lack
thereof is taken into account. To compare the lytic activity
generated by pMHC multimer pre-treated vs. untreated CD8+

T-cell clones a paired, two-tailed t-test was applied. Pies were
compared using the permutation analysis in Spice 5.1.58

Correlation analyses were performed in JMP 8.0 (SAS). All other
comparisons were performed using an unpaired, two-tailed t-test.
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