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In the vertebrate retina, neuronal circuitry required for visual perception is organized within specific laminae. Photoreceptors convey
external visual information to bipolar and horizontal cells at triad ribbon synapses established within the outer plexiform layer (OPL),
initiating retinal visual processing. However, the molecular mechanisms that organize these three classes of neuronal processes within
the OPL, thereby ensuring appropriate ribbon synapse formation, remain largely unknown. Here we show that mice with null mutations
in Sema6A or PlexinA4 (PlexA4) exhibit a pronounced defect in OPL stratification of horizontal cell axons without any apparent deficits
in bipolar cell dendrite or photoreceptor axon targeting. Furthermore, these mutant horizontal cells exhibit aberrant dendritic arboriza-
tion and reduced dendritic self-avoidance within the OPL. Ultrastructural analysis shows that the horizontal cell contribution to rod
ribbon synapse formation in PlexA4 �/� retinas is disrupted. These findings define molecular components required for outer retina
lamination and ribbon synapse formation.

Introduction
Distinct neuronal cell types establish synaptic connections within
two discrete synaptic regions in the vertebrate retina, the outer
plexiform layer (OPL) and inner plexiform layer (IPL) (Masland,
2001; Wässle, 2004). Photoreceptors, and bipolar and horizontal
cells elaborate neurites and establish the OPL during develop-
ment, allowing photoreceptors to transfer visual information to
bipolar and horizontal cells at the triad ribbon synapse (Wässle,
2004; Mumm et al., 2005). Horizontal cells are laterally intercon-
nected interneurons that receive input from, and synapse onto,

rod and cone photoreceptors, providing lateral inhibitory feed-
back that is critical for sharpening visual images (Wässle, 2004;
Mumm et al., 2005). Horizontal cells form gap junctions among
themselves and also connect with rods and cones within the OPL
(Wässle, 2004; Mumm et al., 2005). The molecular mechanisms
that govern neurite targeting of these three cell types to the OPL,
that allow for even coverage of horizontal cell processes in the
OPL, and that facilitate the establishment of ribbon synapses
within the OPL remain largely unknown.

Neurotransmission is important for the assembly of neuronal
circuits in the OPL. Synaptic release of glutamate from photore-
ceptors is required for the correct stratification of horizontal cell
neurites, bipolar cell dendrites, and photoreceptor axon termi-
nals within the OPL. Mutations in genes encoding presynaptic
proteins (Bassoon, CaBP4) (Dick et al., 2003; Haeseleer et al.,
2004) or ion channels (Cacna1f, Cacna2d4) (Chang et al., 2006;
Wycisk et al., 2006) that control the glutamate vesicle release
from photoreceptor axonal terminals, or mutations that impair
photoreceptor signaling and induce photoreceptor degeneration
(Strettoi et al., 2002, 2003; Dick et al., 2003; Claes et al., 2004;
Haeseleer et al., 2004; Specht et al., 2007), result in ectopic neurite
outgrowth into the outer nuclear layer (ONL) from rod photo-
receptors, and bipolar and horizontal cells (Strettoi et al., 2002,
2003; Dick et al., 2003; Claes et al., 2004; Haeseleer et al., 2004;
Specht et al., 2007). However, mutations affecting postsynaptic
components of glutamate-mediated signal transduction onto
ON bipolar cells (mGluR6, Go�, Nyx, and Trpm1) are not asso-
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ciated with these types of deficits (Masu et
al., 1995; Tagawa et al., 1999; Dhingra et
al., 2000; Pinto et al., 2007). Therefore,
synaptic release of glutamate from photo-
receptors appears crucial for constraining
retinal neurites within the OPL. Afferent
inputs from photoreceptors also regulate
horizontal cell morphology, including den-
dritic field size and axon terminal complex-
ity (Reese et al., 2005; Raven et al., 2007). In
addition, homotypic interactions among
horizontal cells control their dendritic field
size (Reese et al., 2005; Huckfeldt et al.,
2009), but the molecules required for these
homotypic interactions are unknown.

We previously demonstrated that dis-
tinct subclasses of transmembrane sema-
phorins (Sema6A and Sema5A/Sema5B)
are expressed in different domains and
cell types of the developing murine retina,
serving crucial and distinct roles in directing
multiple retinal subtype-targeting events
within the IPL in vivo (Matsuoka et al.,
2011a,b). Here, we show that transmem-
brane semaphorin–plexin signaling also
regulates OPL neural circuit elaboration in
vivo and ensures correct formation of rib-
bon synapses within the OPL.

Materials and Methods
Animals. The day of birth in this study is desig-
nated as postnatal day 0 (P0). The PlexA4-null
mutant mouse line and Sema6A gene-trap mu-
tant mouse line were previously described
(Leighton et al., 2001; Yaron et al., 2005). The
PlexA2 �/ �, Npn-1Sema�/Sema�, and Npn-
2 �/ � mutant mice also have been described
previously (Giger et al., 2000; Gu et al., 2003;
Suto et al., 2007). The age of adult mice of ei-
ther sex used for this study is 2– 6 months.

Immunohistochemistry. Immunohistochemis-
try was performed as previously described (Mat-
suoka et al., 2011a). The following primary
antibodies were used: rabbit anti-calbindin
(Swant at 1:2500); mouse anti-neurofilament
(2H3 concentrated, Developmental Studies Hy-
bridoma Bank at 1:2000); mouse anti-Go� (Mil-
lipore at 1:500); goat anti-mouse Sema6A (R&D
Systems at 1:200); Armenian hamster anti-
PlexA4 (generous gift from Dr. Fumikazu Suto,
National Center of Neurology and Psychiatry,
Tokyo, Japan, at 1:400) (Suto et al., 2007); guinea
pig anti-vGlut1 (Millipore at 1:2000); mouse
anti-CtBP2 (BD Biosciences at 1:2000); rabbit
anti-PlexA2 (generous gift from Dr. Fumikazu
Suto at 1:400) (Suto et al., 2007); mouse anti-
PSD95 (Millipore at 1:500); mouse anti-
Gephyrin (Synaptic Systems at 1:250); guinea pig
anti-vGAT (Millipore at 1:500); rabbit anti-cone
arrestin (generous gift from Dr. Cheryl Craft,
University of Southern California, Los Angeles,
CA, at 1:3000); mouse anti-PKC� (Millipore at
1:200); and rabbit anti-CaBP5 (generous gift
from Dr. Françoise Haeseleer, University of
Washington, Seattle, WA, at 1:200) (Haeseleer et
al., 2000).

Figure 1. Sema6A and PlexinA4 direct horizontal cell axon targeting to the OPL in vivo. A–D, WT (A), Sema6A �/ � (B),
PlexA2 �/ � (C), and PlexA4 �/ � (D) adult retina sections were immunostained with the horizontal cell marker anti-
calbindin (green). In WT retina (A), all horizontal cell neurites stratify in the OPL; however, in Sema6A �/ � retinas (B),
horizontal cells exhibit a pronounced defect in neurite stratification in the OPL, and a significant number of horizontal cell
neurites reside in the ONL. Horizontal cells in PlexA4 �/ � retinas (D) exhibit a similar defect in neurite stratification as
observed in Sema6A �/ � retinas. In contrast, horizontal cells in PlexA2 �/ � retinas (C) do not exhibit this stratification
defect. E, Quantification of aberrant calbindin � neurites that reside in the ONL in adult WT, Sema6A �/ �, and PlexA4 �/ �

mice (n � 3 animals for PlexA4 �/ �, and n � 4 animals for WT and Sema6A �/ �; presented here normalized to the
number of horizontal cells quantified; n � 1072 cells for WT, n � 1176 cells for Sema6A �/ �, and n � 1050 cells for
PlexA4 �/ � mice). Both Sema6A �/ � and PlexA4 �/ � retinas exhibit a pronounced increase in the number of aberrant
horizontal cell neurites that reside in the ONL (43.9 � 8.4% for Sema6A �/ � and 61.1 � 5.5% for PlexA4 �/ �) compared
with WT retinas (1.6 � 0.5%). Error bars are SEM. **p � 0.01, ***p � 0.001, one-way ANOVA followed by Tukey’s HSD
multiple-comparison test. F, Quantification of aberrant calbindin � neurites that reside in the ONL in adult WT,
Sema6A�/ �, PlexA4�/ �, and Sema6A�/ �;PlexA4�/ � mice (n � 4 animals for each genotype; normalized to the
number of horizontal cells quantified; the same WT as quantification from E, n � 1174 cells for Sema6A�/ �, n � 1161
cells for PlexA4�/ �, and n � 1179 cells for Sema6A�/ �; PlexA4�/ �). Sema6A�/ �;PlexA4�/ � mice show a signifi-
cantly increased number of aberrant horizontal cell neurites in the ONL (21.4 � 3.8%) compared with the other three
genotypes (1.6 � 0.5% for WT, 3.5 � 0.7% for Sema6A�/ �, and 4.0 � 1.1% for PlexA4�/ �). Error bars are SEM. ***p �
0.001, one-way ANOVA followed by Tukey’s HSD multiple-comparison test. G–G�, PlexA4 �/ � adult retinas were double
immunostained with anti-calbindin (G) and anti-neurofilament (NF, G�) (merged in G�). Aberrant horizontal cell neurites
localized in the ONL of PlexA4 �/ � retinas are both calbindin and neurofilament positive, suggesting that these aberrant
neurites are axonal poles of horizontal cells. Scale bars: (in D) A–D, 50 �m; (in G) G–G�, 30 �m.
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Quantification of aberrant horizontal cell neurites and genetic interaction
analysis. Retinal cross sections (40 �m thickness) from adult mice of
either sex were immunostained with anti-calbindin for quantification
of aberrant horizontal cell neurites. For genetic interaction analysis,
retina sections from adult wild-type (WT), PlexA4�/ �, Sema6A�/ �, and
Sema6A�/ �;PlexA4�/ � mice were used for quantification (n � 4 retinas
from four animals for each genotype). The number of horizontal cell
neurites, which aberrantly project to the ONL, is normalized by the num-
ber of horizontal cell bodies within the areas used for the quantification.
The number of aberrant horizontal cell neurites that directly originate
from the OPL were quantified, and branches of the neurites were not
included in the quantification.

Density recovery profile analysis. Density recovery profile (DRP)
analysis was performed as previously described (Rodieck, 1991; Rock-
hill et al., 2000). Confocal images of five selected regions (298 � 298
�m field) from each whole-mount retina (n � 3 retinas from three
animals of either sex for WT and PlexA4 �/ � genotypes) were used to
measure the DRP of horizontal cells. The regions we used for this
analysis did not include the areas near peripheral edges or optic nerve
heads of retinas.

Horizontal cell dye injection. Eyes were enucleated from anesthetized
mice. After retinas were isolated, they were incubated in oxygenated
Ames medium with 10 �M DAPI at 35°C for 11 min. These retinas were
cut into four pieces and flattened on black filter papers. Dye injection

into horizontal cells was performed at 23°C
with continuous perfusion of oxygenated
Ames medium, running at 5 ml/min. Elec-
trodes were pulled from borosilicate glass cap-
illary by a P-1000 micropipette puller. The
electrode was tip filled with 8 mM Alexa Fluor
hydrazide 555 (Invitrogen) and 0.5% Lucifer
yellow dissolved in ddH2O, and backfilled with
3 M KCl. The electrode resistance was 100�180
M�, and the dye solution was injected by bi-
phasic current (�1 nA, 2 Hz, 3 min). Horizon-
tal cells were identified by their large, flat
DAPI-labeled nuclei situated close to the outer
plexiform layer. After the dye injection, retinas
were fixed in 4% paraformaldehyde for 15 min
at room temperature. The retinas were washed
in PBS for 45 min, and images were taken using
a Zeiss confocal microscope (LSM-510). The
dendrites of the horizontal cells filled with dye
was drawn semi-manually in NeuroStudio
(Wearne et al., 2005). The number of crossings
among dendrites was manually counted, and
the neurite length was measured automatically
by the NeuroStudio software.

Transmission electron microscopy. Eyes were
enucleated from anesthetized 4- to 6-month-
old adult mice of either sex (n � 3 animals
for WT and PlexA4 �/ � genotypes). Retina
cups were isolated and fixed in 3% parafor-
maldehyde/1.5% glutaraldehyde in 0.1 M Ca-
cacodylate, 3 mM CaCl2, and 2.5% sucrose at
pH 7.4 at 4°C overnight. Each of the fixed
retina cups was cut into three to four pieces;
washed three times for 15 min in 0.1 M Ca-
cacodylate, 3 mM CaCl2, and 2.5% sucrose at
pH 7.4; and fixed in 1.0% OsO4 on ice for
1 h. The retina tissues were then incubated in
1.0% Kellenberger’s uranyl acetate, dehy-
drated in graded series of ethanol, infiltrated,
and flat embedded in EPON. Ultrathin (80
nm) sections were cut with a Reichert Ul-
tracut E microtome using a Diatome dia-
mond knife. Images were taken using a
Hitachi H-7600 transmission electron mi-
croscope. For classification of surrounded
and nonsurrounded rod ribbon synapses, we

categorized each rod ribbon synapse into two groups: when a rod
ribbon is surrounded by two components of horizontal cell neurite
tips, we define it as a surrounded rod ribbon; when a rod ribbon is not
surrounded by two components of horizontal cell neurite tips, we
define it as a nonsurrounded rod ribbon. The total number of rod
ribbon synapses quantified for this analysis was 233 for WT retinas
and 234 for PlexA4 �/ � retinas.

Electroretinogram recording. Electroretinogram (ERG) measurements
were performed as previously described (Budzynski et al., 2010). The
amplitude of the a-wave was measured at 8 ms after flash presentation
from the prestimulus baseline. The amplitude of the b-wave was mea-
sured to the b-wave peak from the a-wave trough or, if no a-wave was
present, from the baseline.

Statistical analysis. The statistical significance of the differences be-
tween mean values among two or more groups was determined using Stu-
dent’s t test or ANOVA followed by Tukey’s HSD test, respectively. The
criterion for statistical significance was set at p � 0.05. Error bars are SEM.

Results
Sema6A–PlexA4 signaling directs horizontal cell axon
targeting to the OPL
To assess transmembrane–semaphorin function in the murine
OPL during development, we first analyzed retinas from adult

Figure 2. PlexA4 and PlexA2 protein expression in the developing OPL, and normal horizontal cell neurite stratification in
neuropilin-deficient retinas. A–B�, WT retina sections from P7 (A–A�) or P14 (B–B�) mice were double immunostained with
anti-PlexA4 (A, B, red) and anti-PlexA2 (A�, B�, green). At both P7 and P14, PlexA4 is localized in the OPL, whereas PlexA2
immunostaining is not observed in the OPL at these postnatal stages (yellow arrows). C, D, Npn1sema�/sema� (C) and Npn2 �/ �

(D) adult retina sections were immunostained with anti-calbindin. Both Npn1sema�/sema� (C) and Npn2 �/ � (D) mice do not
exhibit aberrant horizontal cell neurite extension into the ONL (n � 3 animals for each genotype), suggesting that neuropilins are
not required for Sema6A and PlexinA4 regulation of horizontal cell neurite stratification in vivo. Scale bars: B� (for A–B�), D (for C,
D), 50 �m.
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mice harboring null alleles in Sema6A (Sema6A�/ �) (Leighton et
al., 2001), Sema6B (Sema6B�/ �) (Tawarayama et al., 2010), or
both Sema6C and Sema6D (Sema6C�/ �;Sema6D�/ �) (Leslie et
al., 2011) using immunohistochemistry. We used antibodies
against calbindin, PKC�, Go�, and vGlut1, which label horizon-
tal cells, rod bipolar cells, ON bipolar cells, and photoreceptor
axonal terminals, respectively. We observed a defect in horizontal
cell neurite stratification in adult Sema6A�/� mice; many neurites,
instead of being confined within the OPL (Fig. 1A), strayed ectopi-
cally into the ONL (Fig. 1B). Sema6A serves as a ligand for the PlexA2
or PlexA4 receptors during development of the cerebellum, the hip-
pocampus, and the spinal cord in vivo (Suto et al., 2007; Renaud et
al., 2008; Rünker et al., 2008). We found that adult PlexA4�/�, but
not PlexA2�/�, mutant retinas phenocopy Sema6A�/� retinas (Fig.
1C,D). PlexA4, but not PlexA2, is expressed within the OPL of the
developing postnatal retina (Fig. 2A–B	). Neuropilin-deficient reti-
nas (Npn-1Sema�/Sema� (Gu et al., 2003) or Npn-2�/� (Giger et al.,

2000)) did not show the defects in horizontal cell neurite stratifica-
tion observed in Sema6A�/� or PlexA4�/� retinas (Fig. 2C,D),
showing that neuropilins do not serve as obligate coreceptors with
PlexA4 for regulating horizontal cell neurite stratification. The hor-
izontal cell neurite-targeting defect in Sema6A�/� and PlexA4�/�

retinas is fully penetrant, although some variation in expressivity was
observed among mutant animals, with Sema6A�/� retinas tending
to display a somewhat less severe phenotype than PlexA4�/� retinas
(n � 10 adult animals for each genotype) (Fig. 1E). However,
double-homozygous Sema6A�/�;PlexA4�/� mutants exhibited a
similar severity of this horizontal cell neurite stratification defect as
we observed in PlexA4�/� retinas (data not shown). In addition, we
found that Sema6A and PlexA4 mutants show strong genetic inter-
actions with respect to aberrant horizontal cell neurite stratification
in the outer retina in vivo (Sema6A�/�;PlexA4�/� transheterozy-
gous mutants) (Fig. 1F). These results show that Sema6A and
PlexA4 together constrain horizontal cell neurite stratification to the

Figure 3. Horizontal cell development in WT and PlexA4 �/ � retinas. A–N, WT (A, C, E, G, I, K, M ) and PlexA4 �/ � (B, D, F, H, J, L, N ) retina sections from postnatal P1 (A, B), P3 (C,
D), P5 (E, F ), P10 (G, H ), P14 (I, J ), P17 (K, L), and P21 (M, N ) mice were immunostained with anti-neurofilament (A–F ) or anti-calbindin (G–N ). In PlexA4 �/ � retinas, aberrant
horizontal cell neurites directed toward the ONL are observed as early as P14 (yellow arrows) and then more clearly at later time points. White dashed lines indicate the edge of the
outermost ONL (J, L, N ). Horizontal cells in PlexA4 �/ � retinas do not show correct neurite stratification within the OPL (yellow arrows) at P3 (D) and P5 (F ) compared with WT retinas;
however, the ectopic horizontal cell neurites across the INL of PlexA4 �/ � retinas stratify within the OPL by P10 (H ). At P14, horizontal cells in PlexA4 �/ � retinas begin extending
aberrant neurites toward the ONL (J, yellow arrows), and these aberrant neurites extend to the outermost photoreceptor cell body layers by P17 (L). Axon terminal-like structures are
observed in the ONL in PlexA4 �/ � retinas at P21 (N, yellow arrows). O, O�, High magnification of P21 PlexA4 �/ � retina section immunostained with anti-calbindin (O) and
counterstained with TO-PRO3 (O�). Aberrant horizontal cell neurites extend across the ONL visualized by TO-PRO3 (O�, blue) and reach the outermost edge of the ONL (yellow arrows).
Scale bars: F (for A–F ), N (for G–N ), O� (for O, O�), 50 �m.
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OPL. The aberrant neurites in adult Sema6A�/� and PlexA4�/�

retinas are immunopositive for neurofilament (Fig. 1G–G	; data not
shown), suggesting that they are horizontal cell axons (Peichl and
González-Soriano, 1994; Haverkamp and Wässle, 2000; Lee et al.,
2008), which in the mouse retina contact rods (Peichl and González-
Soriano, 1993, 1994).

Sema6A–PlexA4 signaling regulates horizontal cell
morphological remodeling during postnatal development
We next determined when during neural development these de-
fects are observable. At P1, horizontal cell soma location and
morphology are similar in PlexA4�/ � and WT retinas (Fig.
3A,B). Between P1 and P5, WT horizontal cells gradually retract

Figure 4. Aberrant horizontal cell neurites are not associated with ON bipolar cell dendrites, photoreceptor axon terminals, ribbon synapses, or excitatory or inhibitory synaptic
markers in PlexA4 �/ � retinas. A–F�, PlexA4 �/ � adult retina sections were double immunostained with anti-calbindin (A–E, F ), and anti-Go� (A�), anti-vGlut1 (B�), anti-C-terminal
binding protein 2 (CtBP2, a ribbon synapse marker, C�), anti-PSD95 (D�), anti-Gephyrin (E�), or anti-vGAT (F�). Ectopic horizontal cell neurites located in the ONL of PlexA4 �/ � adult
retinas are not accompanied by ON bipolar cell dendrites (A, A�) or photoreceptor axon terminals (B, B�), and therefore ribbon synapses are not formed on the aberrant horizontal cell
neurites in the ONL (C, C�). Ectopic horizontal cell neurites located in the ONL of PlexA4 �/ � adult retinas are also not associated with excitatory postsynaptic regions (D, D�), inhibitory
postsynaptic regions (E, E�), or inhibitory presynaptic regions (F, F�). G–L, WT (G, J ), PlexA4 �/ � (H, K ), and Sema6A �/ � (I, L) adult retina sections were immunostained with
anti-cone arrestin (G–I ) or anti-calcium binding protein 5 (CaBP5, J–L). Cone photoreceptor axonal targeting to the OPL does not apparently differ among WT (G), PlexA4 �/ � (H ), and
Sema6A �/ � (I ) retinas. Rod bipolar cell as well as type 3 and type 5 cone bipolar cell dendrites do not exhibit aberrant neurite extension into the ONL of PlexA4 �/ � (K ) and
Sema6A �/ � (L). Scale bars: C� (for A–F�), L (for G–L), 50 �m.
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vertically oriented neurites and extend
their lateral dendritic arbors into the fu-
ture OPL (Huckfeldt et al., 2009), remain-
ing in the OPL into adulthood. At P3 and
P5 in PlexA4�/ � retinas, however, a sig-
nificant number of vertically oriented
basal, but not apical, horizontal cell neu-
rites remain (Fig. 3C–F). By P10, the ec-
topic horizontal cell vertical neurites in
the PlexA4�/ � retina have disappeared,
leaving overall neurite stratification ap-
parently similar to WT (Fig. 3G,H). P14 is
the developmental stage when horizontal
cell neurites normally invade photorecep-
tor presynaptic terminals to ultimately
form ribbon synapses (Blanks et al.,
1974). It is at this stage when we observe
that horizontal cells in PlexA4�/ � retinas
again extend aberrant neurites toward the
ONL (Fig. 3 I, J), extending almost com-
pletely through the ONL by P17 (Fig.
3K,L). By P21, the vertically extended
neurites exhibit elaborate axon terminal-
like structures in the ONL (Fig. 3M–O
).
Thus, PlexA4 regulates the reorganization
of horizontal cell neurites during early,
and again during later, postnatal retinal
development. Sema6A �/ � retinas phe-
nocopy these PlexA4 �/ � horizontal cell
neurite-targeting defects (data not
shown). Ectopic outgrowth of horizon-
tal cell neurites into the ONL observed
in Sema6A �/ � and PlexA4 �/ � retinas is
not, therefore, due to neurite sprouting
that is observed in the outer retina of
aged mice (Liets et al., 2006; Samuel et
al., 2011).

Aberrant horizontal cell neurites are
not accompanied by aberrant bipolar
cell subtype neurites, photoreceptor
neurites, or ribbon synapse markers
Ectopic horizontal cell neurites that
come to reside in the ONL of PlexA4 �/ �

and Sema6A �/ � retinas are not associ-
ated with markers of photoreceptor
axon terminals, bipolar cell dendrites,
or ribbon synapses (Fig. 4; data not
shown). This is in contrast to what is
observed in mouse lines harboring
mutations in genes encoding the synap-
tic proteins Bassoon, CaBP4, Cacna1f,
and Cacna2d4; in these mutants, retinal
stratification deficits involve all of the
three OPL neuronal cell types that con-
tribute to the ribbon synapse: horizon-
tal cells, bipolar cells, and photoreceptor axon terminals
(Strettoi et al., 2002, 2003; Dick et al., 2003; Claes et al.,
2004; Haeseleer et al., 2004; Specht et al., 2007). Thus,
Sema6A/PlexA4 signaling regulates horizontal cell neurite
stratification through a mechanism distinct from that used by
these synaptic proteins, which are essential for glutamate
neurotransmission.

PlexA4 directs horizontal cell axon apposition within rod
ribbon synapses
At the ultrastructural level, electron microscopy (EM) reveals
abnormal rod ribbon synapse structure in the PlexA4�/ � retina
(Fig. 5A–E). In WT retinas, the majority of rod ribbon synapses
contain the tips of two horizontal cell neurites surrounding a rod
synaptic ribbon (Fig. 5A,B). In contrast, PlexA4�/ � retinas ex-

Figure 5. PlexinA4 directs horizontal cell axon apposition within rod ribbon synapses, but PlexA4 �/ � retinas exhibit normal
dark-adapted and light-adapted ERG responses. A–D, EM analysis of rod ribbon synapses reveals synaptic ultrastructure in WT (A,
B) and PlexA4 �/ � (C, D) adult retinas. In WT retinas, rod ribbon synapses are in most cases surrounded by two horizontal cell
neurites (A, B); however, in PlexA4 �/ � retinas, a significantly increased number of rod ribbon synapses lack one horizontal cell
neurite (C, D). H, Horizontal cell neurite tips; B, bipolar cell dendritic tips. E, Quantification of ribbon synapses associated with one
or no horizontal cell neurite (defined here as a “nonsurrounded ribbon”); 7.3 � 1.7% for WT retinas and 26.2 � 4.3% for
PlexA4 �/ � retinas. The number of rod ribbon synapses quantified is 233 for WT and 234 for PlexA4 �/ � retinas (n � 3 retinas
from three animals for each genotype). p � 0.015 by Student’s t test. F–I, Representative dark-adapted ERGs (F ) and light-
adapted ERGs (H ) obtained from PlexA4�/ � and PlexA4 �/ � mice. Intensity response functions for the amplitude of the a-wave
and b-wave of dark-adapted ERGs (G) and light-adapted ERGs (I ) obtained from PlexA4�/ � and PlexA4 �/ � mice. The ampli-
tudes of the a-wave and the b-wave of dark-adapted ERGs (G) as well as light-adapted ERGs (I ) are comparable between Pl-
exA4�/ � and PlexA4 �/ � mice. Data points indicate average � SEM for four or more mice. Scale bar: (in D) A–D, 500 nm.
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hibit over a threefold increase in the number of rod ribbon syn-
apses harboring only one horizontal cell process [Fig. 5C–E;
quantification of non-HC-surrounded rod ribbons: 7.3 � 1.7%
for WT retinas (of 233 rod ribbon synapses) and 26.2 � 4.3% for
PlexA4�/ � retinas (of 234 rod ribbon synapses); n � 3 retinas for
each genotype]. This finding that some, but not all, horizontal
cell axons fail to invade rod synaptic terminals in PlexA4�/ �

retinas is commensurate with our observation that not all
PlexA4�/ � horizontal cells exhibit neurite mistargeting into the
ONL. PlexA4�/ � retinas exhibit normal ERGs under both dark-
adapted and light-adapted conditions (Fig. 5F–I), indicating that
synaptic function between photoreceptors and bipolar cell den-
drites is largely intact in PlexA4�/ � retinas; this is consistent with
the normal stratification of photoreceptor axons and bipolar cell
dendrites we observe in PlexA4�/ � retinas (Fig. 4).

Sema6A and PlexA4 are localized to horizontal cell bodies and
neurites, and Sema6A–PlexA4 signaling governs horizontal
cell dendritic arborization and self-avoidance
To understand how Sema6A and PlexA4 regulate horizontal cell
development, we performed protein expression analysis using
antibodies against these proteins (Matsuoka et al., 2011a). Both

Sema6A and PlexA4 are localized in hori-
zontal cell neurites and cell bodies in the
developing OPL (Fig. 6).

Since repulsive interactions mediated
by Sema6A and PlexA4 could serve to reg-
ulate the mosaic patterning of horizontal
cells (Raven et al., 2005; Suto et al., 2005,
2007), we examined horizontal cell neu-
rites and cell bodies in the tangential plane
at the level of the OPL. Markedly fewer
horizontal cell neurites occupy the OPL in
PlexA4�/ � retinas at P5 (Fig. 7A–C);
however, the number of horizontal cell
bodies and their mosaic spacing are the
same as in P5 WT retinas (Fig. 7D–G).
Sema6A�/ � P5 retinas phenocopy these
defects in horizontal cell neurite targeting
and neurite coverage within the OPL
observed in PlexA4 �/ � mutants (Fig.
8). To better assess horizontal cell neu-
rite arborization in PlexA4 �/ � retinas,
we filled individual horizontal cells with
Alexa fluorescent 555 dye (Fig. 9 A, B).
PlexA4 �/ � adult horizontal cells do not
show a significant difference in over-
all neurite length compared with WT
horizontal cells (Fig. 9C). However,
PlexA4�/� horizontal cells display an aber-
rant dendritic field organization that results
in reduced dendritic process self-avoidance,
compared with WT adult horizontal cells
(Fig. 9A–B	,D). Together with our observa-
tion that Sema6A and PlexinA4 are colocal-
ized in horizontal cells during postnatal
development (Fig. 6), this finding suggests
that repulsive signaling between Sema6A
and PlexinA4 is required for isoneuronal
dendritic self-avoidance in horizontal cells.

Discussion
Our results show that transmembrane
semaphorin–plexin signaling directs hor-

izontal cell axon targeting, dendritic process self-avoidance, and
the correct localization of horizontal cell neurites along rod rib-
bon synapses within the OPL of the mammalian retina. Intrigu-
ingly, aberrant horizontal cell axon projections into the ONL are
not accompanied by mistargeting of photoreceptor axons or bi-
polar cell dendrites, indicating that normal stratification of pho-
toreceptor axons and bipolar cell dendrites within the OPL is not
sufficient for constraining horizontal cell axons to ribbon syn-
apses within the OPL. These results also suggest that horizontal
cell neurite stratification within the OPL in part relies on cues that
do not come from photoreceptors and bipolar cells. Indeed,
Sema6A and PlexinA4 are localized in horizontal cells and are
required for proper horizontal cell neurite stratification within
the OPL. Therefore, in addition to the previously characterized
roles played by neurotransmission, classical guidance cue signal-
ing also contributes to mammalian outer retinal lamination.

The mouse retina has a single type of horizontal cell that elab-
orates axons (Peichl and González-Soriano, 1993, 1994), and
these horizontal cell axons synapse with rod photoreceptor axon
terminals, in contrast to horizontal cell dendrites, which form
synapses with cone photoreceptors and form gap junctions with

Figure 6. Sema6A and PlexinA4 are both localized in horizontal cell bodies and neurites. A–D�, WT retina sections from P14
(A–B�) and P5 (C–D�) mice were double immunostained with anti-calbindin (A�, B�, C�, D�, red) and either anti-Sema6A (A, C,
green) or anti-PlexA4 (B, D, green). Both Sema6A and PlexA4 are localized to horizontal cell bodies (yellow arrows) and neurites
within the OPL (A�, B�, C�, D�). Scale bar, 50 �m.
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neighboring horizontal cells (Reese et al.,
2005). We find that many horizontal cell
axons are mistargeted to the ONL of
PlexA4�/ � and Sema6A�/ � retinas, re-
sulting in an increased number of rod
ribbon synapses that lack the normal
complement of horizontal cell axons. Fur-
ther, horizontal cell dendritic arboriza-
tion in the OPL is compromised in these
mutant retinas. Defects in horizontal
cell dendritic process self-avoidance in
PlexA4 �/ � and Sema6A �/ � retinas re-
sult in abnormal dendrite elaboration,
and these phenotypes likely affect the
formation of appropriate connections
with neighboring horizontal cell den-
drites and/or cone photoreceptor axon
terminals. The horizontal cell self-
avoidance defect we observe is unique in
that it is not accompanied by alterations
in horizontal cell mosaic cell body spac-
ing, as is observed in DSCAM mutants
(Fuerst et al., 2008, 2009, 2012).

Horizontal cell axons and dendrites
choose distinct photoreceptors (rods and
cones, respectively) as synaptic partners
(Raven et al., 2007). Both horizontal cell
axonal targeting and dendritic arboriza-
tion require Sema6A–PlexA4 signaling;
however, Sema6A–PlexA4 signaling could
control these two events through distinct
mechanisms. Horizontal cell axons typi-
cally extend over long distances, and their
axonal terminals are highly elaborated so
as to synapse with many rod photorecep-
tors residing far from their cell bodies
(Peichl and González-Soriano, 1994; Ra-
ven et al., 2007). However, horizontal cell
dendritic processes cover OPL regions so
as to connect with cone photoreceptors
that are more closely associated with their
cell bodies (Peichl and González-Soriano,
1994; Raven et al., 2007). One possible
mechanism underlying isoneuronal tiling of horizontal cell den-
dritic processes is that Sema6A and PlexA4 within the same hor-
izontal cell mediate cell-autonomous repulsive interactions to
establish complete coverage of the OPL by their dendrites. On the
other hand, horizontal cell axon targeting may be constrained
within the OPL by non-cell autonomous cues (Sema6A and/or
PlexA4) presented by other horizontal cells, perhaps acting
through adhesive mechanisms, to ensure that horizontal cell ax-
ons correctly target rod ribbon synapses. Selectively removing
Sema6A and/or PlexA4 gene expression in horizontal cells, com-
bined with select labeling of horizontal cells, will begin to address
these issues.

Sema6A–PlexA4 signaling within horizontal cells governs the
developmental program that controls horizontal cell neurite
morphology and targeting, thereby organizing outer retina lam-
ination and ribbon synapse formation. A recent study identified
pikachurin as a critical regulator of bipolar cell dendrite apposi-
tion within rod ribbon synapses (Sato et al., 2008); however,
horizontal cell axon contributions to rod ribbon synapses are
intact in Pikachurin mutants (Sato et al., 2008). We show here

that horizontal cell axon contributions to rod ribbon synapses
require Sema6A–PlexA4 signaling; however, Sema6A–PlexA4
signaling is not apparently required for bipolar cell dendrite ap-
position within ribbon synapses. It will be of interest to determine
whether additional guidance cues and their receptors also reg-
ulate outer retina development, and also how retinal develop-
ment and function are affected when these signaling events are
compromised.
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