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Abstract
Ligand enrichment among top-ranking hits is a key metric of molecular docking. To avoid bias,
decoys should resemble ligands physically, so that enrichment is not simply a separation of gross
features, yet be chemically distinct from them, so that they are unlikely to be binders. We have
assembled a directory of useful decoys (DUD), with 2950 ligands for 40 different targets. Every
ligand has 36 decoy molecules that are physically similar but topologically distinct, leading to a
database of 98,266 compounds. For most targets, enrichment was at least half a log better with
uncorrected databases such as the MDDR than with DUD, evidence of bias in the former. These
calculations also allowed forty-by-forty cross docking, where the enrichments of each ligand set
could be compared for all 40 targets, enabling a specificity metric for the docking screens. DUD is
freely available online as a benchmarking set for docking at http://blaster.docking.org/dud/.
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Introduction
Although molecular docking screens of chemical databases are widely used for ligand
discovery,1–7 the method retains important weaknesses.8–13 A testament to these is the
criterion by which docking screens are evaluated: the enrichment of annotated ligands from
among a large database of presumed non-binding, “decoy” molecules. In these retrospective
calculations, the enrichment factor is the concentration of the annotated ligands among the
top-scoring docking hits compared to their concentration throughout the entire database.
Other possible metrics, such as the magnitude of the docking energies, or even monotonic
rank order among the ligands, are only used occasionally and in restricted sets; in the
general case they remain unreliable because of the many approximations used in docking.
Thus the success of a docking screen is evaluated by its capacity to enrich the small number
of known active compounds in the top ranks of a screen from among a much greater number
of decoy molecules in the database.14–23

The relationship of the decoy molecules to the ligands is critical in assessing enrichment
factors in docking screens. Docking scoring functions can depend on molecular size.24–26

For instance, Verdonk and colleagues27 have observed that if there are significant
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differences in size distribution between ligands and decoys, docking enrichments can appear
to be artificially good, and the same is undoubtedly true for other physical features. The
database decoys should thus resemble the physical properties of the annotated ligands well
enough so that enrichment is not simply a separation of trivial physical features. The decoys
nevertheless should be chemically distinct from the ligands so that they are likely to be, in
fact, non-binders.

Investigators have assembled sets of ligands and presumed decoys for numerous targets and
used them to evaluate docking performance based on enrichment. Rognan and colleagues
made an important contribution towards this end with the introduction of a set of 990
randomly chosen molecules combined with 10 thymidine kinase (TK) and 10 estrogen
receptor (ER) antagonists, which were subsequently used in several studies.15,19,20,23,28–30

More recently, Jain and colleagues introduced a set of 1,000 random drug-like compounds to
complement the Rognan set, and combined those with 252 ligands from 27 protein targets to
evaluate docking enrichment factors.23 Several other groups, including ourselves, have used
the 100,000 molecule MDL Drug Data Report database (MDDR, Elsevier MDL, San
Leandro CA) as a source of both ligands and decoys.31–34 Each of these approaches has
drawbacks. None of these sets of molecules has been adjusted so that the physical properties
of the ligands are matched by those of the decoys. Indeed, in both the Rognan set and its
derivatives the annotated ligands and the presumed decoys differ greatly in their physical
properties, making enrichment factors calculated with these sets open to bias (see Results).
Whereas there is less room for bias in the MDDR database, and statistical variance is less
likely here than in the smaller decoy sets, differences between ligand and decoy sets lead to
significant enrichment-factor bias (see Results). The MDDR has the further disadvantage of
being a non-public access database, which was an advantage of the Rognan and Jain sets.

We were interested in developing large benchmarking sets to evaluate docking screening
calculations. We wanted these sets to cover a large number of proteins so as to offer a
reliable view of how docking might perform on typical and interesting targets. We also
wanted these sets to be publicly available, so that docking programs could be compared
broadly in “apples to apples” comparisons. We wanted the database to be large enough to
have decoys and ligands physically matched so as to be as free from physical and statistical
features as possible. We began with 2,950 ligands for 40 different target proteins taken from
the literature; each set of ligands for each protein had tens to hundreds of molecules in it.
For each ligand in each set, 36 molecules were chosen from the “drug-like” subset of the
ZINC database of commercially available compounds.35 Each of these 36 resembled the
particular ligand in physical properties, such as molecular weight, cLogP, and number of
hydrogen bonding groups, but differed from the ligand topologically. This resulted in a
database of 95,316 decoy molecules whose physical properties closely matched those of the
2,950 ligands that they were chosen to counterpoint. This “directory of useful decoys”
(DUD) was docked against the 40 protein targets, using an automated docking engine that
required little or no user guidance.

Here we report on the enrichments resulting from this large, bias-corrected database and
compare these to those from both small, uncorrected decoy sets15,23 and to the large MDDR
database. Our results suggest that DUD provides a more stringent test with which to evaluate
virtual screening performance. Even using the MDDR as decoys has enrichment factors half
a log better than those using DUD with exactly the same docking procedure, speaking to
enrichment factor biases even in large, uncorrected databases. These calculations also
allowed for a forty-by-forty cross docking, where the enrichments of each ligand set were
compared for all forty targets using the same background decoys. These cross-docking
results suggest a specificity metric to evaluate docking screens. The usefulness of these
targets, ligands and decoys as community benchmarking sets for docking will be considered
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here, as will the prospects for the automated docking pipeline that was deployed in these
studies. The benchmarking sets, including protein structures, docking energy grids and input
files, and the full DUD database are available at blaster.docking.org/dud/.

Method
Protein Target Selection and Ligand Collection

Forty protein targets were selected based on the availability of annotated ligands, crystal
structures and, often, previous docking studies. We used the structure used in previous
docking studies if one was available, and otherwise we used the best complex available as
judged by resolution and the absence of errors. All of these proteins have ligand-bound x-ray
crystal structures available in the Protein Data Bank (PDB)36, with the exception of the
PDGFrb and VEGFr2 kinases. We organized these targets into six classes: nuclear hormone
receptors, kinases, serine proteases, metallo-enzymes, folate enzymes, and other enzymes
(Table 1). The number of ligands varies from 12 (~ 0.01% of database) to 416 (~ 0.4% of
database). A total of 2,950 ligands were included overall.

Most of these targets have been studied previously by experimental methods and
computational approaches. Among them, estrogen receptor (ER)15,20,23,28,29,37–39 and
thymidine kinase (TK)15,19,20,23,28,30,40 have been extensively used to benchmark and
evaluate different docking methods and scoring functions. Enrichment studies were also
published on several of the other systems, including CDK220,41, P38 MAP kinase18,20,32,39,
thrombin20,31,39,41, factor Xa38,42, HIV protease18,20,40, DHFR31,40, neuraminidase39,
aldose reductase31,43, HIV-RT20,30, AChE31,38, and COX-220,39,44. Where possible, we
chose to use the crystal structure

DUD Generation
DUD was created as follows (Figure 1). The 2,950 annotated ligands were seeded among 3.5
million Lipinski-compliant molecules from the ZINC database of commercially available
compounds (version 6, December 2005)35. Chiral annotated ligands were prepared in the
correct stereochemical form if known. Feature key fingerprints were calculated using the
default type 2 substructure keys of CACTVS45 and the fingerprint-based similarity analysis
was performed with the program SUBSET46. Substructure keys are bit strings where 1
represents the presence of a particular functional group. Compounds with Tanimoto
coefficient (Tc) less than 0.9 to any annotated ligand were selected, excluding chirality
duplicates (we note that a Tc less than 0.9 for CACTVS type 2 fingerprints roughly
corresponds to a Tc less than about 0.7 for the widely-used Daylight fingerprints, see
Results). This reduced the ZINC compounds to 1.5 million molecules topologically
dissimilar to the ligands. The program QikProp (Schrodinger, L.L.C., New York) was used
to calculate 32 physical properties of all the annotated ligands and selected ZINC
compounds from the previous step, and QikSim (Schrodinger, L.L.C., New York NY) was
applied to prioritize ZINC compounds possessing similar properties to any of the ligands. A
weight of 4 was used to emphasize the drug-like descriptors (molecular weight, number of
hydrogen bond acceptors, number of hydrogen bond donors, number of rotatable bonds and
LogP), and a weight of 1 was used for the number of important functional groups (amine,
amide, amidine and carboxylic acid), and the rest of the descriptors were ignored (weight 0)
during the similarity analysis procedure. Thirty-six decoy compounds were selected for each
ligand, leading to a total of 95,316 decoys that were physically similar but topologically
dissimilar to the 2,950 annotated ligands. The total number of decoys is less than 36 times
the number of annotated ligands because some ligands had the same decoys.
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Dockable Database Preparation
Molecules were prepared for docking using the latest version of the ZINC protocol35.
Briefly, molecules were converted from 2D SDF to isomeric SMILES using OEChem
(OpenEye Scientific Software, Santa Fe NM). An initial 3D structure was generated with
Corina (Molecular Networks GmbH, Germany). A protonated form of each molecule at pH
7.0 was calculated with LigPrep (Schrodinger, L.L.C., New York NY) with additional
protonated and tautomeric forms calculated in the range of pH 5.75 to 8.25 using modified
versions of LigPrep’s parameter files. For each protonated form, we again used Corina to
obtain a 3D model and then used AMSOL to calculate partial atomic charges and atomic
desolvation energies.47 We used Omega (OpenEye Scientific Software, Santa Fe NM) to
enumerate accessible conformations; ring conformations calculated by Corina were
preserved. AMSOL and Omega results were combined into a single “flexibase” format file
using our program Mol2db.33 All new parameter files used in this process (rules.txt,
tautomer_list, ionizer.ini, and torlib.txt) are available in the Supplementary Material.

Overall Virtual Screening Strategy
To undertake docking screens against 40 targets, it was important to automate our
procedures as much as possible (Supplementary Material, Figure S1). Most of the labor-
intensive steps formerly performed manually have been automated, including most of the
binding site preparation, sphere or “hot spot” generation, scoring grid calculation, docking
calculation and data analysis. For simplicity, our automated procedure removes all water
molecules, including structural waters, by default. We describe docking results achieved
with or without expert intervention as “semi-automated” or “automated”, respectively. For
both semi-automated and automated procedures, the only input requirements were a protein
structure file and a specification of the protein-binding site. Expert intervention during
protein structure preparation or binding site identification significantly improved the
docking results for 13 out of the 40 targets (see Results). The fully automated procedure was
used for all 40 targets, the semi-automated procedure being attempted only when docking
enrichment from the fully automated procedure was poor.

Manual Preparation
For some targets, protein structure preparation involves steps that are challenging to
automate, such as differentiating cofactors from ligands, parameterizing those cofactors,
perceiving structural water molecules, identifying and parameterizing metal ions involved in
ligand binding, correctly assigning the protonation state on binding site residues (e.g.
histidines and cysteines), and selecting among disordered residues.

Parameterizing the cofactor is challenging to automate. Cofactors were present for the
following targets: TK, SO4; DHFR, NADPH; GART, β-GAR; ALR2 and InhA, NADP+;
GPB, PLP; PNP, PO4; and SAHH, NAD+. In these cases, we treated the cofactors as part of
the target, manually preparing their parameters for the van der Waals (vdW) and
electrostatic energy calculations. Once a parameter file has been prepared for a cofactor, the
scripts can recognize it based on its PDB residue name, and becomes part of the automated
procedure in future runs.

For control calculations, the crystallographic ligand was also prepared manually for docking
using SYBYL48. In the case of PDGFrb kinase where no crystal structure was available and
a modeled structure was used49,50, the cognate ligand was obtained from the x-ray crystal
structure of c-Kit kinase, the homology modeling template. Similarly, only an uncomplexed
apo structure was available for VEGFr1 kinase, so its native ligand was obtained by
superimposing FGFr1 kinase, a homolog with high sequence and structural identity.
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In target systems with large ligands spanning more than one pocket, it is helpful to specify
that part of the ligand most intimately involved in binding. Such a fragment is presented to
the automated scripts as an individual file that can be recognized as the reference state for
generating the docking spheres or “hot spots”. Other special measures include manually
redistributing the partial atomic charges of polar atoms in critical binding site residues to
increase polarity and thus favoring polar ligands, as described previously.5,34,51

Automated Steps
The automated docking pipeline begins with the receptor structure file and its co-crystallized
ligand, or a manually-curated specification of the binding site. All tasks including sphere
generation, scoring grid and docking calculations, and analysis of enrichment, are driven
automatically (Figure S1). The scheduling system Condor (U. Wisconsin, Madison WI) was
used manage jobs on our Linux cluster.

Binding site residues are identified as those being within 12 Å of any heavy atom of the
crystallographic ligand or the residues used to define the site, using the program FILT (from
the DOCK3.5 distribution). The solvent-accessible molecular surface52 of the protein
binding site is then calculated with the program DMS53 using a probe radius of 1.4 Å.
Receptor-derived spheres are calculated using the program SPHGEN (part of the UCSF
DOCK suite),54 while the ligand-derived spheres are simply generated from the positions of
the heavy atoms of the crystallographic ligand, if available. If the molecular fragment file is
present, the ligand-derived spheres are created from the molecular fragment instead of using
the entire ligand structure. The matching spheres, required for orientation of the ligand in the
binding site, are obtained by augmenting the ligand-derived spheres with receptor-derived
spheres. Spheres furthest away from ligand-derived spheres, furthest from the centroid of the
remaining spheres, too close to receptor atoms or too close to each other are removed
iteratively until the total number of spheres is 35 or less. Spheres are labeled for chemical
matching based on the hydrogen bonding properties and charged states of nearby receptor
atoms.55

The scoring grids are also prepared automatically. The grid box dimensions are initially set
so that the edges extend 15 Å beyond the matching spheres. The box dimensions are refined
to maximize the coverage of the protein without exceeding two million grid points at a
resolution of three points per Ångstrom. Polar hydrogens are added to the protein using
SYBYL48. Four scoring grids are generated: an excluded volume grid using DISTMAP56, a
united atom AMBER-based van der Waals potential grid using CHEMGRID56, an
electrostatic potential grid using DelPhi57 and a solvent occlusion map using the program
SOLVMAP (B Shoichet, unpublished results). The Delphi grid potential is calculated using
a dielectric of 2 with the internal low dielectric volume determined by the protein atoms
augmented by dummy atoms occupying the binding pocket, and an external dielectric of 78
for the external solvent environment. When structural waters, cofactors or metal ions are
present, they are treated as part of the protein.

Docking was performed with DOCK 3.5.54, a flexible-ligand method that uses a force-field-
based scoring function composed of van der Waals and electrostatic interaction energies
corrected for ligand desolvation.33,47,56 The sampling of ligand orientations in DOCK3.5.54
can be varied according to several user-defined parameters, which we set to the same values
for all 40 systems, as follows. The bin size for both receptor and ligand were set to 0.4 Å
and the overlap bin size was set to 0.3 Å. A distance tolerance (dislim) of 1.5 Å was applied
for matching the ligand onto the matching spheres, and ligand orientations were rejected if
the color of a ligand-receptor pair did not match. For each ligand orientation, the
conformational ensemble is filtered for steric complementarity using DISTMAP with the
polar and non-polar close contact limits of 2.3 Å and 2.6 Å respectively. Ligand
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conformations are scored based on the total docking energy (Etot = Eele + Evdw − ΔGlig-solv),
which is the sum of electrostatic (Eele) and van der Waals (Evdw) interaction energies,
corrected by the partial ligand desolvation energy (ΔGlig-solv).47 Final energies are
computed after 25 steps of rigid-body minimization. A single docking pose with the best
total energy score is saved for each docked molecule. For ligands with multiple protonation
states and tautomeric forms, only the best scoring representation is retained.

Results
A directory of useful decoys (DUD)

We have created DUD as a research tool to benchmark structure-based virtual screening.
DUD contains 2950 annotated ligands for 40 diverse targets, plus 36 decoy molecules for
each annotated ligand, each decoy having similar physical properties but dissimilar chemical
structures to its active (Table 1). Topological dissimilarities were originally calculated using
CACTVS fingerprints, but it is convenient to compare decoys and ligands using Daylight
fingerprints, which are more widely used. Of the 95,316 DUD decoys, and based on
standard Daylight fingerprints58, only 90 compounds are above a Tc of 0.85 to any
annotated ligand, only 400 compounds are above a Tc of 0.8 and only 1,300 above a Tc of
0.7, indicating that DUD decoys are topologically dissimilar to the annotated ligands and are
thus likely to be true negatives, although of course we cannot be completely sure that this is
the case.59

Histograms of five physical properties (molecular weight, number of hydrogen bond
acceptors, number of hydrogen bond donors, number of rotatable bonds and LogP) were
calculated for the DUD ligands, DUD decoys, MDDR database compounds, Jain’s decoys23

and Rognan’s decoys15 (Figure 2). For each of the 40 targets, the DUD decoys are designed
to match the physical properties of the specific ligands for that target. Strictly speaking,
there is no reason why the amalgamation of the 40 decoy sets (the DUD decoys) should
provide good decoys for each of the 40 ligand sets (the DUD actives), but in fact they
typically do (see Discussion). The properties of the DUD decoys are comparable to the
actives from which they were generated: they span the same ranges and have maxima at
about the same place. Conversely, the uncorrected databases can differ substantially from
the physical properties of the DUD ligands (figure 2). The largest differences are observed
for the 1000 decoys introduced by Rognan, which differ substantially in all physical
properties from the DUD ligands. The 98,000 MDDR database also differed significantly
from the DUD ligands, being typically larger in every physical property (e.g., 9% larger, on
average, in molecular weight and having 15% more hydrogen-bond acceptors) than the
DUD ligands. The 1000 decoy set introduced by Jain was the second best-matched to the
DUD ligands, after only the DUD decoys themselves, typically differing only in being
slightly smaller or lower in physical properties (figure 2). Of course, there is no reason why
these other decoy sets should match the physical properties of the DUD ligands, since they
were not selected to match these ligands. Nor is there any reason to require them to match,
unless one believes the DUD ligands to be especially representative of good physical
properties, which we do not contend. What the differing physical properties among the
decoy sets allows us to probe is how matched and unmatched ligand-decoy sets affect
enrichment calculations in docking.

Overall Enrichments
Virtual screening is benchmarked using two criteria: enrichment of annotated ligands among
top scoring docked molecules from a database of decoys, and by the geometric fidelity of
the docked poses compared to those of the experimental structures. The docking enrichment
factor (EF) reflects the ability of the docking calculations to find true positives throughout
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the background database compared to random selection. This enrichment factor is calculated
as EFsubset = {Ligandsselected/Nsubset} / {Ligandstotal/Ntotal}.47 For instance, for a given
protein with 100 annotated ligands (Ligandstotal) in a database of 98,000 compounds (Ntotal),
only one of the known ligands (Ligandsselected) would be expected to be found in any chosen
subset of 980 molecules (Nsubset) by random selection, which corresponds to an enrichment
factor of 1. The key results of docking to 40 targets are summarized in Figure 3 and Table 1.
Figure 3 shows the overall profile of percentage of ligands found (y-axis) plotted as a
function of the percentage of the ranked docked database (x-axis in logarithmic scale) for
each system. Here, we present two different enrichments using two different background
databases, namely, the “entire database” contains the 2,950 DUD ligands and the 95,316
DUD decoys (blue line), while the “own decoys” only includes the native ligands and their
corresponding decoys (red line). The percentage of true ligands found by docking at any
given percentage of the docking ranked database should always be greater compared to
being chosen by random selection (gray line). The higher the percentage of known ligands
found at a given percentage of the ranked database, the better the enrichment performance of
the virtual screening. In general, the docking enrichments are poorer against the “own
decoys” than against the entire database; for some targets, the enrichment difference
between the entire database and the “own decoys” is dramatic (e.g. TK, PNP and SAHH).

The enrichment results for entire-database docking may be summarized using three
enrichment indicators: EFmax (maximum enrichment factor), EF1 (enrichment factor at 1%
of the ranked database), and EF20 (enrichment factor at 20% of the database) (Table 1).
EFmax and EF1 present the early enrichment while EF20 presents the late stage database
screening. Significant enrichment is obtained for most targets, with an average EFmax of
49.1, where 20 systems have EFmax greater than or very close to 30, 10 systems have an
EFmax less than 5, and only 4 out of these 10 systems fail to enrich their native ligands
above random. Superior enrichments are observed in 7 diverse targets with EFmax greater
than 100. On average, 17.3% and 52.9% of the known ligands can be found in the top 1%
and 20% of the docking ranked database, respectively, corresponding to enrichment factors
of 17.3 and 2.6. It is also notable that six out of ten targets with poor enrichment are kinases.
We now take up in more detail the dependence on decoys, docking specificity via cross
docking, and consider six representative targets.

1. Enrichments against DUD compared to uncorrected databases—To test the
influence of decoys on docking performance, we docked exactly the same ligand sets against
12 different targets, varying only the background decoy database. We compared the 98,000
compounds of the MDDR, the 98,266 compounds of DUD, and the 1000 compound sets
introduced by Rognan15 and Jain23. For comparing the performance of the large DUD and
MDDR databases to the smaller Rognan and Jain sets, we used receiver operator
characteristic (ROC) curves to avoid biases introduced in enrichment plots when the ratio of
actives to decoys grows large.60 ROC curves plot sensitivity (Se) and specificity (Sp), where
Sesubset = {Ligandsselected/Ligandstotal} and Spsubset = {(Decoystotal − Decoysselected)/
Decoystotal}. We plotted the ROC curves as (1 – Sp) (i.e., % selected decoys) versus Se (i.e.,
% selected ligands) (Figure 4). Like an enrichment plot, the further away the ROC curve is
above the diagonal, the better the docking enrichment. Docking enrichments typically
followed the following trend: the Rognan decoys led to the best enrichments, followed
closely by the MDDR decoys, then the Jain decoys, with the worst enrichments against
DUD. Here, better enrichment means only less competitive decoys. Thus, targets that had
poor or no enrichment using DUD had very respectable enrichments against the other decoy
sets, using exactly the same ligands and docking protocols. To investigate whether a smaller
decoy database itself introduces artificial enrichment and thus unfairly biases the smaller
decoy sets, ROC curves were also generated using a randomly selected 1,000 compounds
from DUD and compared with ROC curves using the entire DUD. No difference was
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observed (not shown), suggesting that there is little size dependent behavior using the entire
DUD versus a random portion of DUD. The more competitive behavior of the DUD decoys
presumably reflects their closer physical similarity to the ligands docked; indeed, the
monotonic order of enrichments follows the level of dissimilarity of the decoys to the
ligands, with the Rognan decoys being the most dissimilar and the Jain and DUD decoys
being the most similar and correspondingly leading to the worst (i.e. most competitive)
enrichments.

2. Docking Specificity via Cross-Docking Simulations—We docked DUD against
all 40 targets and compared the enrichment of each ligand set against each target (Table 2).
We used two enrichment indicators, ETmax and ET20, to define the enrichment performance
for each matrix unit, from very good (ETmax ≥ 30 and ET20 ≥ 3), good (30 > ETmax ≥ 20
and 3 > ET20 ≥ 2.5), medium (20 > ETmax ≥ 10 and 2.5 > ET20 ≥ 2) and poor (ETmax < 10
and ET20 < 2). An exception (e.g. ERantagonist) is made when one of the two enrichment
indicators is well above its defined cutoff while the other is marginally below its cutoff. In
these cases an averaged enrichment performance classification is assigned. Several features
of the cross docking table are noteworthy. First, it is a sparse matrix, mostly white, showing
that most annotated ligand sets are not highly enriched against most targets. Second, many
of the diagonal elements are black or red, indicating very good or good enrichment of the
target’s own ligands. Third, many of the off diagonals make sense. For example, serine
protease ligands (thrombin, trypsin and factor Xa) are enriched against other serine protease
targets, nuclear hormone receptor ligands are enriched against most nuclear hormone
receptors, such as androgen receptor (AR), mineralocorticoid receptor (MR) and estrogen
receptor (ER), and nucleoside analogs are enriched against most of the nucleoside
recognizing enzymes such as thymidine kinase (TK), purine nucleoside phosphorylase
(PNP) and S-adenosyl-homocysteine hydrolase (SAHH). Fourth, the kinases generally show
poor enrichments, not just of their own ligands, but of all ligand lists. More generally, we
note that when the cognate ligands are not enriched against a target, other ligand lists are
also not enriched, giving rise to blank rows. Conversely, when its own ligands are well
enriched against a target, other ligand lists are often also enriched.

3. Automated vs semi-automated docking—The large number of docking targets
motivated us to develop a fully automated docking engine. We were able to automate most
of the steps formerly performed manually, resulting in satisfactory enrichments for 24 of 40
targets. For the remaining 16 targets, we resorted to a semi-automated procedure involving
expert intervention in the preparation of the receptor binding site. Thirteen of the sixteen
targets with poor enrichment using the automated protocol were improved with expert
intervention (Supplementary Material, Figure S4). This intervention was often trivial – we
did not try very hard to maximize the docking performance, and suspect that further
intervention could improve the results even more, but that was not the goal of this study.

4. Detailed Results for Six Representative Systems—We examined several
representative targets in greater detail (highlighted in Table 1 and Figure 3). ER and TK
were chosen based on their strong ligand enrichment as well as a substantial number of
published docking studies.15,19,20,23,28–30,37–40 P38 MAP kinase was chosen to represent
poorly performing protein kinases. ADA was chosen to represent targets that failed with the
fully automated docking engine, but were rescued by the semi-automated procedure. ALR2
was chosen to represent targets with intermediate enrichment. InhA was chosen to represent
what we consider a failure of our docking method. For these six representative systems, the
docking accuracy is presented by both the enrichment performance and the ability to
reproduce the binding geometry observed in the crystallographic complex structure. In
assessing the docked binding geometries, we only consider the geometry of the
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crystallographic ligand produced as part of the overall DUD database screen without
optimization; the ligand shown has been prepared as every other DUD molecule, starting
from the SMILES string representation, to avoid bias. Depending on the size of the binding
pocket and our sampling criteria, docking DUD takes several hours to several days per target
on a single 2.8 GHz CPU (Table 3).

4A. Estrogen Receptor (ERantagonist): ER is considered to be an easy docking target
because of its deeply buried hydrophobic binding site and high affinity ligands.15 Consistent
with this view, automated docking achieves a significant early enrichment with an EFmax of
101.6 in the top 0.1% of the ranked database. This corresponds to finding 4 ER antagonists
among the top scoring 98 compounds from a screen of 98,000 compounds. From automated
docking, the docked pose of the crystallographic ligand, included and prepared as part of
DUD, correctly reproduces the crystallographic binding pose of 4-hydroxy-tamoxifen
(Figure 5A).

As was observed for almost all targets, docking enrichments were strongly influenced by the
choice of background database. For estrogen receptor, the three other decoys sets – the 990
Rognan decoys, the 1,000 Jain decoys and the 98,000 MDDR decoys all led to much better
enrichments than did DUD, with the early enrichment being particularly striking (Figure 4).
Since the docking parameters and the ligands were exactly the same in each calculation, the
better enrichments compared to the DUD results can only mean that the other databases
present easier decoys. This view is substantiated by comparing the physical properties of the
ER antagonists to the decoys in each background database. In DUD, these properties are
closely matched, by design. In the other decoys sets, there are substantial differences. For
example, the molecular weight varies from 380 to 460 for 90% of ER antagonists. Sixty
percent of DUD compounds are within this range whereas only 40%, 42% and 44% of
compounds in Rognan’s set, MDDR, and Jain’s set satisfy this criterion, respectively. In
addition, the ER binding site requires specific hydrogen bonding interactions whereas a
large portion of Rognan’s decoys lack hydrogen bonding functionalities, further increasing
the likelihood of them being easier decoys than either the MDDR or Jain’s decoys.

4B. Thymidine Kinase (TK): TK is considered to be a difficult target for docking because
of receptor flexibility, a highly exposed binding pocket, the importance of water-bridged
interactions, and the low affinity of most ligands.15 Despite these drawbacks, a high overall
enrichment was achieved for this target (Figure 3). From automated docking, the docked
pose corresponds closely to the crystallographic structure (Figure 5B). We note that TK is
among the most promiscuous targets, in that it also highly enriches non-native ligands
(Table 2), where those non-ligands are either nucleoside analogs (PNP and SAHH ligands)
or highly polar or charged small compounds (ADA, COMT, ALR2, and PARP ligands).

Of the 12 targets where we compared decoy sets, TK was the only one where DUD led to
better enrichments than the other sets. The TK inhibitors are much smaller and more
hydrophilic than most other ligand sets, and correspondingly smaller than much of DUD.
The molecular weight of 70% of the TK inhibitors is between 210 and 290, but only a small
portion of the background database compounds fell within this range, 5%, 9%, 10% and
19% of DUD, Jain’s set, MDDR and Rognan’s decoys, respectively. The idiosyncratic
nature of the TK ligands is brought home by comparing the very good enrichment against all
of DUD compared with the relatively miserable enrichment compared to the “own decoys”
of the TK ligands (Figure 3, highlighted). This is one of the rare cases where the overall
DUD decoys had very different physical properties from the “own decoys” of a particular
target.
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4C. P38 Mitogen Activated Protein Kinase (P38 MAP): P38 MAP kinase is a challenging
target for docking due to its structural flexibility. For many ligands, a new allosteric site is
induced upon binding.61 Docking is also complicated by the high degree of solvent exposure
and a relatively shallow, hydrophobic cleft; taken together, these features result in poor
enrichment and docking geometries that miss critical interactions. Many highly ranked
decoys explore irrelevant binding regions, and manual intervention had little effect. From
the automated docking, the docked ligand reproduces the correct binding geometry of urea
and naphthyl groups, but not the morpholino substituent on the naphthyl ring which are
thought to be crucial for potency61 (Figure 5C). Similar defects were observed with other
protein kinases (PDGFrb, VEGFr2, EGFr, SRC and FRFr1).

Like many other targets, the enrichment performance in decreasing order is Rognan’s set,
MDDR, Jain’s set and DUD. As for TK, a molecular size dependence biases the docking
enrichments. The molecular weight ranges from 320 to 410 for 75% of the P38 kinase
inhibitors, whereas for DUD, Jain’s set and MDDR, 67%, 54% and 37% of molecules fall
within this range, respectively, directly corresponding to their enrichment performance.
Although sixty percent of Rognan’s set falls within this weight range, a lack of suitable
hydrogen bonding functional groups in the set ensures the best enrichment performance.

4D. Adenosine Deaminase (ADA): ADA is one of four metalloenzymes we targeted. Its
binding pocket is large and contains a zinc ion coordinated by three histidines. No
enrichment is achieved for this target via fully automated docking. After manually
redistributing the partial atomic charges of the N-epsilon atoms in the ligating histidine
residues to the Zn ion, which we have previously found to be important for docking to
metalloenzymes34, and included one structural water in the active site, the enrichment
improved significantly (Supplementary Material, Figure S4). From automated docking, the
docked ligand is approximately matched with the crystallographic ligand. Although some
key groups and interactions have shifted, the ligand still occupies the same space as the
crystallographic ligand, inhibiting approach to the catalytic zinc (Figure 5D). Electrostatics
plays an important role in these metalloenzymes. All ADA inhibitors contain hydrogen bond
donors ranging from 1 to 5, whereas 95%, 75%, 69% and 45% for DUD, Jain’s set, MDDR
and Rognan’s decoys do, respectively. Correspondingly, the enrichments with the MDDR
and Rognan decoys are better than those with DUD and Jain’s decoys.

4E. Aldose reductase (ALR2): ALR2 presents a solvent exposed binding surface that
requires both good polar and hydrophobic complementarity between the enzyme and
inhibitors. Intermediate enrichment performance is observed in ALR2 with a good early
enrichment (EF1 = 38) but a rather weak enrichment at a later stage of database screening
(EF20 = 2.3), which might be attributed to the conformational changes induced by the
binding of different sizes of ligands. From automated docking, the docking pose reproduces
the critical polar interactions within the protein binding site and overlaps with the
crystallographic binding pose except for the flipping of the aromatic ring (Figure 5E).
Unsurprisingly, both the molecular size and hydrogen bonding capacity of the decoys
influence docking enrichment. The molecular weight ranges from 260 to 400 for 85% of the
ALR2 inhibitors, whereas 72%, 68%, 66% and 45% of the DUD decoys, Jain’s set,
Rognan’s decoys and the MDDR compounds do, respectively, which explains the better
enrichment using MDDR. Although, molecular size alone is not adequate to distinguish
Rognan’s set from the others, the absence of suitable hydrogen bonding functional groups
ensures its best enrichment performance.

4F. InhA: The worst docking scenario occurs with InhA (Figure 3) where docking gives no
enrichment despite reasonable docking geometries of the crystallographic ligand and related
analogs (Figure 5F), a reminder that reproducing the crystallographic binding pose is a
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necessary but not sufficient criterion for evaluating virtual screening. The docking
enrichment decreases in the order: Rognan’s set, MDDR, Jain’s set, the DUD decoys. It
seems that the requirements of the presence of hydrogen bond acceptors and the steric
fitness to the InhA binding site are important for ligand binding, which makes the DUD
decoys the most competitive.

Considering all 40 targets, docking enrichment varied from excellent to poor, returning what
we consider to be satisfactory-but-not-stellar enrichments. Typically, poor enrichments
could be attributed to sampling of ligand conformations and, in the cases of kinases,
undersampling those of the receptor. There were other targets for which the differentiation
between ligands and strong decoys was uninspiring, reflecting failures of our physics-based
scoring function. These are all important weaknesses in our docking program, and are not
uncommon in the field. As important as they are, they are not the subject of this paper,
which is focused on database bias and its role in evaluating docking enrichment factors.

Discussion
Three key results emerge from this study. Perhaps the one that will have the greatest
pragmatic impact is the creation of the DUD database itself. DUD is composed 2950
annotated actives together with compounds having dissimilar topology but similar physical
properties to the active ligands. Because of these properties, it provides a challenging, but
relatively unbiased metric for evaluating docking performance. As DUD is composed
entirely of compounds in the public domain, it may be used without restriction; it may be
downloaded from http://blaster.docking.org/dud/. Second, by docking all ligand sets against
all 40 targets, we unintentionally undertook a very large “cross docking” experiment. The
specificity matrix that results from these cross-docking results suggests interesting patterns
relating to docking promiscuity and level of difficulty for docking targets. Finally, it is
somewhat surprising that a fully automated docking pipeline yielded reasonably good results
for 24 of 40 cases, and that minor expert intervention improved docking enrichments for 13
of the remaining 16 targets.

DUD is by far the largest and most comprehensive public data set for benchmarking virtual
screening programs of which we are aware. The forty targets used to create DUD offer a
diverse range of binding site types: some have deeply buried hydrophobic pockets, such as
estrogen receptor and COX-2; some have more open binding sites displaying both polar and
apolar binding regions, such as DHFR and P38 MAP kinase; and some have highly solvent-
exposed polar sites, such as thymidine kinase and neuraminidase. The receptor diversity is
reflected in the ligands they recognize: some are mostly hydrophobic (e.g. the ER ligands
have LogP values in the range of 3 to 8), some are highly polar (e.g. the TK ligands have
LogP values between −3 to 2), some are mostly cationic (e.g. the thrombin ligands have one
or two positively charged groups) and some are mostly anionic (e.g. the GART ligands
typically have two negatively charged groups). This binding site diversity allows us to
evaluate the robustness and generality of our docking methods with some confidence that
the range of targets is representative.

Our results are consistent with the observation by Verdonk27 that enrichment depends on the
background database used, and suggest that misleadingly good enrichment may result if the
physical properties of the decoys are easily distinguished from those of the actives (Figure
4). It is for this reason that the uncorrected databases, using exactly the same basis ligands,
consistently lead to better enrichments than docking with DUD. For this purpose, good
enrichments indicate nothing other than relatively poor decoys. Even so large and diverse a
database as the MDDR led to artificial improvements in enrichment factors, typically by half
a log over DUD. This is not to say that DUD itself is ideal. An indication of this is the
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greater stringency often provided by the “own decoys”, i.e. those decoys matched only to the
annotated ligands for a particular target, compared to DUD overall (compare red and blue
curves in Figure 3). Indeed, it could be argued that it is the “own decoys” that should always
be used, and not the amalgamated DUD. Our own view is that both “own decoy” and
amalgamated DUD docking should be performed, because they present distinct challenges
to the docking program. We are aware, also, that the five physical properties we used to
match ligands with decoys were not comprehensive, and it is likely that other properties
could usefully be included. DUD can be seen as a procedure for building a decoy database
as much as an instance of one. Thus, there is probably no such thing as a perfect single
decoy set for testing docking algorithms against all targets, but there certainly are better and
worse ones, and the former offer better protection against artifactual performance to the
unwary docker.

In docking each of 40 DUD ligand and decoy sets against all 40 targets, we unintentionally
undertook a very large cross-docking experiment, and so arrived at a measure of library-
scale specificity. “Cross-docking” typically investigates the specificity of a particular ligand
for a particular protein conformation26,62,63 or, more rarely, the specificity of a particular
ligand for a few possible targets64. It is a more subtle gauge of docking success than simply
the distance to a crystallographic orientation. Correspondingly, the specificity of ligands for
their cognate receptor versus the other 39 targets more stringently measures docking success
than enrichment against a single target alone. Most of the diagonal elements in the cross
docking matrix indicate decent to very good enrichment (Table 2), and the matrix overall is
sparse, with little enrichment against off-diagonal targets. Specificity was rarely perfect,
however. Often, off-diagonal promiscuity reflected similarities among the targets (squared
regions along the diagonal in Table 2). Thus the nuclear hormone analogs have moderate to
very good enrichments against several non-cognate nuclear hormone receptors and the
serine protease inhibitors often do well against not only their own targets, but also against
several of the other serine proteases that recognize similar functionality. But even this is not
the full story – many targets that enriched their cognate ligands also enriched ligands of
unrelated targets, typically those with similar physical properties as their own ligands.
Indeed, one of the most striking features of the cross-docking matrix is that targets that had
very good enrichments for their cognate ligands typically also had good enrichments against
a few other ligand sets, whereas targets that had poor enrichment for their own ligands
typically had no enrichment against any other sets (white rows in Table 2). These latter,
white-row targets are effectively difficult targets, at least for our docking program.

Somewhat to our surprise, fully automated docking performed well in 24 of 40 cases (Figure
3, Table 1). Typically in docking, one spends a great deal of time visually inspecting the
receptor site, identifying binding site hot spots, adjusting the protonation states and
orientation of rotatable protons of critical binding site residues, and deciding which
structural waters, cofactors or metal ions should be included in the model. This artisanal
treatment becomes less feasible in larger studies, such as this one, and indeed has inhibited
the proteome-level efforts in docking that are common in related fields, such as comparative
modeling of protein structures49. Whereas we do not anticipate the end of artisanship in
docking campaigns, after all we had to return to manual intervention in 40% of the targets,
the relative success of the automated pipeline suggests that efforts to expand such treatments
merit more attention.

In docking screens, one cannot expect to correctly predict binding affinity or even
monotonically rank order the ligands, and so the method falls back on the weak metric of
ligand enrichment. Enrichment is a weak measure of docking success because it is always
measured relative to the decoys in the database. The very same docking program with the
same ligands can have very good or very mediocre enrichments with worse or better decoys.
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This is currently something we must live with as a field. What we can do is minimize the
biases inherent in enrichment factors by matching the physical properties in decoys with
those of the ligands. DUD attempts to do just this, and may provide a useful benchmarking
set for the field. It is available to all investigators at http://blaster.docking.org/dud/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

DUD directory of useful decoys

EF enrichment factor

MDDR MDL Drug Data Report

Tc Tanimoto coefficient

ROC receiver operating characteristic

ACE angiotensin-converting enzyme

AChE acetylcholinesterase

ADA adenosine deaminase

ALR2 aldose reductase

AmpC AmpC beta-lactamase

AR androgen receptor

CDK2 cyclin-dependent kinase 2

COMT catechol O-methyltransferase

COX-1 cyclooxygenase-1

COX-2 cyclooxygenase-2

DHFR dihydrofolate reductase

EGFr epidermal growth factor receptor

ER estrogen receptor

FGFr1 fibroblast growth factor receptor kinase

FXa factor Xa

GART glycinamide ribonucleotide transformylase

GPB glycogen phosphorylase beta

GR glucocorticoid receptor

HIVPR HIV protease
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HIVRT HIV reverse transcriptase

HMGR hydroxymethylglutaryl-CoA reductase

HSP90 human heat shock protein 90

InhA enoyl ACP reductase

MR mineralocorticoid receptor

NA neuraminidase

P38 MAP P38 mitogen activated protein

PARP poly(ADP-ribose) polymerase

PDE5 phosphodiesterase 5

PDGFrb platelet derived growth factor receptor kinase

PNP purine nucleoside phosphorylase

PPARg peroxisome proliferator activated receptor gamma

PR progesterone receptor

RXRa retinoic X receptor alpha

SAHH S-adenosyl-homocysteine hydrolase

SRC tyrosine kinase SRC

TK thymidine kinase

VEGFr2 vascular endothelial growth factor receptor

ATP adenosine-5’-triphosphate

β-GAR β-glycinamide ribonucleotide

NAD(P)-(H) nicotinamide adenine dinucleotide (phosphate)-(reduced)

PLP pyridoxal-5’-phosphate
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Figure 1.
The schematic description of the procedure to generate DUD. Molecular weight (MW),
number of hydrogen bond acceptors (HBacc), number of hydrogen bond donors (HBdon),
number of rotatable bonds (RB). * We note that a Tc less than 0.9 for CACTVS type 2
fingerprints roughly corresponds to a Tc less than about 0.7 for the Daylight fingerprints.
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Figure 2.
The physical property distributions of the ligands and different sets of decoys. The brown
line represents the annotated ligands (2,950 compounds); the blue line represents the DUD
decoys (95,316 compounds); the green line represents the properties of the MDDR database
(98,000 compounds); the orange line represents the Jain’s decoys (randomly selected 1,000
ZINC drug-like compounds) and the cyan line represents the Rognan’s decoys (randomly
selected 990 ACD compounds).
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Figure 3.
Docking enrichment plots for forty protein targets using DUD. The docking ranked database
(x-axis) is plotted against the percentage of known ligands found by calculations (y-axis) at
any given percentage of ranked database. Targets are listed in same order as in Table 1, and
six representative systems are highlighted in light yellow (see text). The gray line represents
the results expected from selecting ligands randomly; the blue line is docking enrichment
against the entire DUD database (98,266 compounds), and the red line is the docking
enrichment against the “own decoy” subset for any target. “Automated” represents the
results achieved from the fully automated procedure; “semi-automated” represents the
enrichments obtained with some expert intervention.
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Figure 4.
ROC curves for twelve targets using four different background databases, DUD (blue),
MDDR (green), Jain’s decoys (orange) and Rognan’s decoys (cyan). The gray line
represents the results expected from random selection of ligands. The ROC curves were
plotted as the Se (% selected actives) versus (1 – Sp) (% selected decoys). The same
annotated ligands were used for the different background databases. Targets are listed in the
same order as in Table 1.
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Figure 5.
Binding pose predictions for docked ligands (green) superposed on crystallographic
structures (colored by atom type) for six representative targets. Key hydrogen bonds are
shown by yellow lines and the protein molecular surface65 is colored by atom type. Images
generated with Chimera.66
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Table 2

The matrix of cross-enrichments. The color-coded table unit presents poor (white), medium (green), good
(red) and very good enrichment (black). Dark boxes are drawn around related targets (Nuclear hormone
receptors, kinases, serine proteases, metallo-enzymes, folate enzymes, and other enzymes).

Very good (ETmax ≥ 30 and ET20 ≥ 3), good (30 > ETmax ≥ 20 and 3 > ET20 ≥ 2.5), medium (20 > ETmax ≥ 10 and 2.5 > ET20 ≥ 2) and poor

(ETmax < 10 and ET20 < 2). The only exception is when one of the two enrichment indicators is well above the defined cutoff while the other is

marginally below the defined cutoff, and then an averaged enrichment performance is assigned to compensate it.
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