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Abstract

The analysis of frailty originated in studies of aging and demography in which the objective was
to demonstrate that the hazard rates (mortality risks) of individuals in a population could
significantly differ from the population hazard rate as a whole. The differences between these two
hazard rates can arise from frailty — differences among individuals that are not observed in a study.
We posit that frailty modeling is a useful approach for risk analysis in personalized medicine
because it provides a way to address the important and perplexing question of how to translate
findings from population studies to the diagnosis and treatment of disease in specific individuals.
Our suggestion is based on three unique advantages of frailty modeling: frailty modeling offers an
effective approach to analyze the risks at both the individual and population levels and can be used
to infer relationships between the two; frailty modeling can be used to analyze the dependence
between survival events — one of the most difficult issues in any field that involves common risks;
and frailty modeling can be used to describe unobserved or unobservable risks. Finally, we
suggest that frailty modeling should be particularly useful in the study and treatment of diseases
that are caused or influenced by the human microbiome. By doing so, truly ‘personalized’
medicine can advance based on a better understanding of the risks to both ‘trees’ (individuals) and
“forests’ (populations).
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The term frailty is used in biomedicine more frequently than it is defined [1,2]. In many
mainstream science and medical publications (e.g., [101,102]), the term frailty typically
refers to “a person’s health status and the risk of adverse events related to various health
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conditions” [101], and it is usually associated with older adults. For example, the frailty of
older adults is sometimes compared with fitness of young adults [3]. Nevertheless, even with
mainstream usage, there is not a consensus on use of the term or ways to determine the
frailty status of an individual [2].

Frailty describes differences among individuals, and is a mathematical concept that can be
quantitatively and unambiguously defined. In human healthcare, the term frailty originated
in studies of aging and demography, and was introduced as ‘longevity factor’ by Beard [4]
who was inspired by Makeham’s law [5]. Vaupel et a/. formally introduced frailty to
account for individual differences in mortality hazard rates [6]. Both frailty and its
prototype, longevity factor, are mathematical concepts invented to capture the differences
among individuals in terms of their susceptibility or vulnerability to risks; furthermore, the
factors that result in differential risk are not observed or not observable for various practical
reasons. Frailty is associated with common risks, acting as a factor that modifies the hazard
function that is a measure of risk in the context of biomedicine.

In engineering reliability, common risk is one of the three mechanisms that are abstracted to
describe the failure dependence among components within a system. While in biomedicine,
common risk describes the scenario in which the risk of an individual is dependent on
common unobserved risks, such as genes common among siblings or members of a
subpopulation. Because differences exist among individuals, different individuals can be
affected differently by common risks. Hence, the rate of disease occurrence and the efficacy
of various treatments may not be pertinent to some individuals in a population because the
conclusions are often drawn from studies based on a population as a whole. So the puzzling
question is how to translate the results from population-based studies so they are meaningful
to the treatment of individuals within populations. We suggest that frailty analysis offers a
powerful approach to answering this question. Our suggestion is based on three unique
advantages of frailty modeling. First, frailty is a concept that can be defined mathematically
for both individuals and populations, and furthermore, the relationship between individual
and population frailties may be quantified [2,6,7]. Second, frailty offers a powerful tool to
model dependence between failure events, one of the most difficult issues in any fields that
involve common risks [8-10]. Third, frailty can be used to describe unobserved and
unobservable risks [11]. These three issues are of obvious importance to personalized
medicine.

Aalen et al. summarized three common sources of the individual variation (heterogeneity) or
frailty in biomedical research: inherent or genetic differences; induced frailty owing to the
stress of life, and; early or late diagnosis [11]. The first of these is a fixed entity, while the
second can change. The third type of frailty exemplifies ‘information eliminating
uncertainty’ — uncertainty that is removed after a reliable diagnosis [12]. Here, we suggest
that in addition to the sources of frailty described by Aalen et a/. [11] the bacterial
communities that comprise the human microbiome contribute a fourth source of frailty.

Concepts & principles

As briefly introduced in the previous section, frailty refers to heterogeneity among
individuals in a population, and the concept can be applied in various science and
engineering contexts. For example, in computer science, ‘individuals’ can refer to individual
nodes, and ‘population’ can refer to a network of nodes [13]. Today, frailty analysis has
become one of two major areas of multivariate survival analysis, the other being Markov
chain-based multistate modeling. In engineering reliability analysis frailty has been
discussed theoretically, but applications seem to be limited to shared frailty modeling of
parallel systems and more recently network reliability and survivability analysis (e.g.,
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[12,13]). Individuals and populations, whether in biology or computer network design, can
be described using a range of different mathematical models. Among the simplest is a set
model in the form of P = (ny,ny, ...,Ns), or a vector of P = [nq,n, ...,ng], where P represents a
population composed from sindividuals, and an individual 7has abundance n;. These models
are simple and conceptually useful, but they are too general to be useful in studying
meaningful individual or network properties or behaviors such as reliability, survivability or
performance. There are numerous other mathematical and computational models that can be
applied to study the properties of populations, such as population dynamics models,
individual-based models, cellular automata and evolutionary computing [14-16]. Compared
with these more familiar modeling approaches, frailty modeling is unique in terms of its
ability to deal with individual heterogeneity, particularly in studying the relationship
between individual failure hazard and population hazard. Existing frailty modeling is hardly
separable from survival analysis. On the one hand, survival analysis offers a mathematical
framework to examine the effects of frailty on time-to-event random variables, which are
also known as lifetime, survival time or failure time. Conversely, frailty modeling represents
an attempt to take a deeper look at survival mechanisms than can be carried out using
traditional survival analysis [103]. For a general introduction to survival analysis readers are
referred to monographs such as that by Kalbfleisch and Prentice [17].

Two concepts in survival analysis need to be explained before undertaking a discussion of
frailty modeling (Equations 1 & 2): survivor function and hazard function. The survivor
function S(t) is defined as the probability that survival time, a random variable denoted as T,
is at least as large as a value t,

S@)=P(T > t),0<t<o0 Equation 1

while the hazard function specifies the instantaneous rate of failure at T = t, conditional on
survival to time t, and it is defined as:

h(= lim Pt < T<t+AfT > t)_&

o At 0 Equation 2

Obviously, the survivor function and hazard function have the exact same form as the
reliability function R(t) and the hazard function in engineering reliability analysis [18].

Survival analysis has developed more powerful approaches to study time-to-event random
variables, of which failure time in reliability analysis is a special case. One such example is
the proportional hazards models (PHM) originally proposed by Cox to capture the effects of
covariates on the survivor (reliability) function [19] (Equations 3-5). In the PHM, Ay(t) is
the base hazard function that is conditional on the vector of covariates (2):

h(t1Z)=ho(Dexp(Z) Equation 3
and the conditional survival function for T given Z is:

S(t)=[So(H]*"® Equation 4
where:

So(t)=exp [—f;/lo(u)du] Equation 5

numerous extensions to Cox’s PHM [20,21] have been developed.
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Frailty modeling can be classified using one of several schemes. One simple classification
scheme is based on whether or not covariates are observed. When covariates are not
observed or of no interest, only survival or failure time data are available. The following
model (Equations 6 & 7) may be adopted to describe frailty when covariates are not
involved:

h(Y, H)=Yho(t)+h(f) Equation 6

where /(1) is the ‘background’ hazard, and Y is a non-negative random variable representing
frailty. When covariates are observed, a vector of covariates Z is observed and the frailty
model takes the following form:

h(Y, Z, t)=Yho(t)exp(Zp) Equation 7

where B is a vector of parameters that reflect the effects of covariates (Z). In both Equations
6 & 7, frailty is considered to have a multiplicative effect on the hazard function used in
survival analysis, which is a measurement of instantaneous risk of failure at time t.
Therefore, Equations 6 & 7 treat frailty as a random variable that has a multiplicative effect
on the instantaneous failure rate. The assumption of multiplicative frailty is merely a
mathematical convenience and other kinds of effects, such as additive effects, are also
possible. Even so, it has been found that simple multiplicative frailty models are very useful
in many applications.

It is important to note that hazard and frailty models (Equations 3-7) are individual based
[10]. In Equation 7, frailty Y is a random mixture variable that varies across the population
from individual to individual. It is assumed that a scale factor common to all individuals in
the population may be absorbed into the baseline hazard function /1y(?), such that frailty
distributions are standardized to E(Y)=1. The variance of Y,V(Y), indicates the
heterogeneity in baseline risk across the population. When V(Y) is small, the values of
frailty (YY) are closely concentrated around one. When V(Y) is large, the values of Y are
more dispersed, which reflects greater heterogeneity in individual hazard [10]. Therefore,
frailty analysis acknowledges two types of factors (covariates) that influence individual
hazards: those accounted for by the observed covariates that may be represented by
parameter vector §, as in PHM, and those due to unobserved or unobservable individual
heterogeneity (). The above two models exemplify univariate frailty modeling wherein
frailty (YY) is used to account for unobserved or unobservable covariates.

Multivariate frailty models have also been developed. Early efforts at multivariate frailty
modeling exploited the concept of shared frailty or common risks. These are ideal for
studying possible interdependence of lifespans (such as twins or family membership) or
dependent failures of parallel systems in engineering reliability analysis (e.g., [9]). For
multivariate systems with three or more failure variables, the ideal models should
accommodate varying degrees of dependence. The theory for generalization of shared frailty
modeling to general multivariate systems is an active field of research and only ad hoc
extensions are currently available [9].

Because frailty is a random variable, it has a probability distribution. Indeed, the precise
nature of the relationship between individual and population hazards depends on the precise
distribution of frailty among individuals. The choice of frailty distributions can therefore
have a profound influence on frailty modeling because it describes the degree of
heterogeneity in the population under study. Several distributions including, exponential, v,
log-normal, negative binomial, Weibull, power variance function (PVF) have been studied.
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The -y distribution seems to be the most common choice owing to the mathematical
simplicity of its use.

Relationship between individual & population hazard functions

Within frailty theory there are strict distinctions between individual hazard functions versus
population hazard functions, and between individual survivor functions versus population
survivor functions. For example, when the background frailty in Equation 6 is ignored, the
population hazard function can be shown to be (Equations 8 & 9) [11]:

w(D)=h(r) _gf :((t; )]] Equation 8
where:
A(t):ftoh(s)ds .1 Equation 9

is the Laplace transform of Y. In Equation 8, the frailty distribution is not specified, and
therefore Equation 8 is a general model for estimating population hazard rate when frailty is
assumed to act multiplicatively. A similar relationship also exists between individual
survivor and population survivor functions.

The derivation of Equation 8 is rather complex, so here we cite two relatively simple
examples to further explain the distinction between individual and population hazard
functions. In these examples, the distribution of frailty is specified and the frailty assumed to
be multiplicative. By doing so the models specify a concrete relationship between
population and individual hazard functions.

The first example is one initially proposed by Beard [4] along with the term longevity factor,
which is essentially the prototype of frailty that Vaupel et a/. later introduced [6]. The
following brief introduction is based on the discussion in Duchateau and Janssen [2]. As it
will become clear, the first example shows how to compute the population hazard function
from the individual hazard function. The second example shows the opposite. In his model
Beard [4] adopted Makeham’s law [5], which is (Equation 10):

h(t)=a+PBexp(Ar) Equation 10

where A(2) is the hazard function, a is the constant basic hazard, and B, A are parameters that
can be chosen so that the hazard function /() will continue to increase with time (or age).
Strictly speaking, Makeham’s law referred to individual hazard, but this distinction is hardly
meaningful until Beard’s longevity factor v (the prototype of frailty) is added to the model.

hi(t)=a+u;Bexp(Ar) Equation 11

where ¢ is a random variable with probability density function #,. Beard was particularly
interested in the changes of hazard function with time [4], which can be better examined by
transforming Equation 11 into Equation 12, which is the following differential equation:

dh(t
%:uiﬁ/lexp(/lt) Equation 12

The population survivor function can then be obtained as (Equation 13):
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S (D)= f Soexp(—at)exp (—M,B f gexp(/lv)dv) fu(w)du Equation 13

where Beard used a two-parameter y probability density function (pdf) for 7, [4]. Duchateau
and Janssen further restricted this frailty distribution to a one-parameter -y distribution with
mean one and variance 6 [2]. This is a convention used in frailty analysis when the -y frailty
distribution is assumed. Equation 14 shows the one-parameter -y with mean 1, which is
represented by the following pdf:

ul/g_lexp(—u/ﬂ)

== (179)

Equation 14

where < is the y function. With this y pdf, population survivor function Equation 13
becomes Equation 15:

,89 -1/6
S p(D=exp (—at) [1+7(exp 1 -1)] Equation 15

The population hazard function can be derived as Equations 16-18:

~ dlogs (1) _ Bexp (A1)

h,(t)= =a+ Equation 16
p() i TTiCep ) quation
with
167!
=/£_]—_ﬁ Equation 17
and
B
C=—"—— i
20T -B Equation 18

The above population hazard function is actually in the form of a logistic curve, which starts
with basic hazard a and increases over time towards the horizontal asymptotic line specified
with the value a +A/6.

The second example we briefly introduce is from Vaupel ef a/., who first defined the term
frailty quantitatively [6]. The major objective of their work was to demonstrate that in
demography, population hazard rates may be a poor indicator for the hazard rates of
individuals from that population. Vaupel’s model is essentially the same as Equation 6, here
we briefly introduce Vaupel’s original work [6] based on the discussion presented in
Duchateau and Janssen [2]. Vaupel et al. assumed that the ratio of hazard rates of two
individuals at anytime should equal the ratio of their time-constant frailties (v ) (Equation
19) [6].

hi(t) _
hj(t) = u; Equation 19
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or equivalently if one individual with frailty equal to 1 is chosen as the baseline or reference
individual (Equation 20), then:

hi(t)=u;ho(t) Equation 20

In other words, an individual with frailty equal to 2 is twice as likely to die as the baseline
individual; while an individual with 0.5 frailty is half as likely to die as the baseline
individual. Typically, mortality rates for individuals increase faster with age than the
observed mortality of the whole population and the risks of more frail individuals are
typically higher than that of the whole population. VVaupel et a/. [6] assumed that ¢ follows
the -y distribution with mean 1 and variance 6. They then derived the hazard function of the
baseline individual to be (Equation 21):

ho()=h,()S ;0(1) Equation 21
and the hazard function for an arbitrary individual /{2 to be (Equation 22):
hi(D)=uih, (1S ;1 (1) Equation 22

where /,(f) and Si(2) are the population hazard function and survivor function, respectively.
Equation 20 can then be written as (Equation 20):

uihp(t)

= ETir>n

Equation 23

in which the denominator is the conditional mean of the frailty at time £ From Equation 20 it
can be seen that because the conditional mean of frailty decreases over time, the hazard rates
of more frail individuals should on average be higher and they would die sooner.

Application to studies of the human microbiome & disease

The human microbiome consists of microbial communities that exist in and on human
bodies that contribute to host nutrition and protect against infectious disease. This occurs
through finely balanced commensal, and often symbiotic relationships that reflect the
coevolution of human hosts and their microbiota. The species that make up these
communities have been demonstrated to vary between individuals [22—24], probably as a
result of differences that exist among hosts in terms of medical history, diet, host genotype,
ecological interactions within hosts and a plethora of other factors just now being
discovered, as well as purely stochastic factors. It is becoming increasingly apparent that
these differences may have important consequences for human health given the associations
discovered in recent years between the human microbiome and obesity, cardiovascular
disease, autism, diabetes, colon cancer, gastrointestinal disease, asthma, some autoimmune
diseases and other conditions [25-37].

It is equally clear that various events such as antibiotic use, diet, personal habits and
practices can disturb communities of the human microbiome resulting in loss of community
performance and dyshiosis. Thus, the risks to diseases influenced by the human microbiome
are likely to differ markedly among individuals and change over time. This greatly
complicates risk assessment and makes it nearly impossible to infer the risk of an individual
to disease based on population-based studies of risk.

The potential importance of differences between individuals can be illustrated by what has
been learned about the vaginal microbiome. Cross-sectional studies have documented
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striking differences in the composition of vaginal bacterial communities [23,24]. At least
five bacterial community types (referred to as ‘states’) are common in healthy reproductive
age women, and the frequencies of these states vary among women of different ethnic
groups. More recent longitudinal studies have demonstrated these communities to be
dynamic within an individual and dramatic changes in the species composition can occur
over short time scales [38] and [Gajer et al., Unpublished Data]. At present, the patterns of
change seem highly individualized. An understanding of factors that influence that stability
of these communities and drive changes in composition is important to understanding a
woman’s risk to bacterial vaginosis (BV) a disease common in reproductive-age women that
results in millions of healthcare visits annually and increases risks to the acquisition of
sexually transmitted infections and adverse pregnancy outcomes. Although the etiology of
BV remains an enigma [39] there is growing evidence that the symptoms associated with the
disease are accompanied by, and perhaps caused by, alterations in the composition and
structure of vaginal microbial communities. During episodes of BV, species of bacteria that
produce lactic acid are commonly reduced in number and the community is ‘overgrown’ by
strictly anaerobic organisms. The notion that BV is linked to ecological disturbances in
vaginal communities is consistent with epidemiological data showing that various habits and
practices that alter the vaginal environment such as menstrual blood, new sexual partners,
frequent intercourse and vaginal douching are all risk factors for BV, which have in
common that they alter the vaginal environment. The disease is prevalent, with rates ranging
from 20-40% depending on the population of women sampled [40]. However, too little is
known about the relationship between vaginal community states and changes in community
composition that lead to the symptomatology associated with BV. This leads us to posit that
a failure to account for heterogeneity among individuals confounds the clinical diagnosis,
prevention and treatment of BV. Without accounting for differences among women there are
few mathematical approaches that can be employed to obtain a balanced view of vaginal
community properties at both individual and population levels.

When frailty modeling is used for BV risk analysis, the risk of each individual can be
described using an individual-specific hazard function such as in the following form
(Equation 24):

hij(t, 2)=ho(t)exp(zp+fi) Equation 24

where /yjis the risk of individual /with race group / (or some grouping based on another
factor such as age), /(9 is the baseline risk for a person with z= 0, zis a vector of
covariates or any observed factors that may influence BV risks, and f;is the frailty of
individual /caused by unobserved or unobservable factors. The development of frailty
models for BV require data on BV occurrence times (), and concurrent measures of
covariates (z) such as bacterial community composition, metatranscriptome data and
selected metadata. The requisite studies to gather these data are now in progress. In such a
model frailty Fcan be described with an assumed distribution model such as y, Weibull, or
PVF distributions. The choice of frailty distribution is a key step because it determines the
ability of the model to capture the influence of unobserved or unobservable factors. The
choice would be a compromise between mathematical tractability and biomedical realism of
the selected distribution model. For example, the y distribution could be used because of its
tractability, but PVF may be more realistic when the frailty distribution is highly skewed. In
simplified cases, frailty may be treated as constant within a subpopulation or group but
variable across groups, while in more complex analyses frailty could be treated as a
stochastic process. It should be noted that frailty may change over time, but this can be dealt
with via “distribution updating’ in frailty analysis. For more complex frailty models, readers
may refer to Hougaard [9], Ma and Krings [12] and Ma [13].
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Future perspective

The preceding discussion of frailty associated with vaginal microbial community diversity
and dynamics reveals an important difference between microbial-community-based diseases
such as BV and most single-pathogen-based infectious diseases. In single-pathogen-based
infectious diseases, the three frailties that Aalen ef a/. summarized may be sufficient for
modeling the diseases [11]. Those elements of frailty are essentially, ‘born’ differences
(genomics), heterogeneities in life experiences (e.g., stress from life), and information
heterogeneity (e.g., early vs late diagnosis). From a broad perspective, they correspond to
inherent individual differences, environment and information. Here, we argue that in
addition to these a fourth element of frailty — namely variation in the human microbiome —
must also be taken into account. Fortunately, it is now possible to investigate the
composition and variability of microbial communities associated with the human body given
the dramatic advances made by DNA sequencing and computational technologies, and the
simultaneous emergence of tools for data analysis and studies of molecular microbial
ecology. These make the study of microbial community diversity possible [41], and can be
used to illuminate and characterize heterogeneity in the microbiomes of humans, which will
lead to a better understanding of disease risks for specific individuals.
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