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Formulae for insect wingbeat frequency
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Abstract
A formula is developed connecting the wingbeat frequency of insects with their masses and wing 
areas. It is derived first theoretically, using dimensional analysis, and then it is compared with 
published measurements. The formula discovered involves two parameters which dimensional 
analysis alone cannot determine. One of these is evaluated using one among many proposed 
semi-empirical relationships (the only one that stands scrutiny); the other by fitting a published 
dataset. It is found that the resulting equation, applying to insects in general, accords well with 
observation, and indeed is very close to being optimal (in a sense to be defined).
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Introduction

The question of determining the wingbeat 

frequency of an insect has been the subject of 

many studies. Much of this is now readily 

available in a recent book (Dudley 2000), but 

there are also useful accounts by Azuma 

(2006) and Weis-Fogh (1977); another work 

(Greenewalt 1962) has achieved the status of a 

classic, and a more recent compendium of 

results, (Byrne et al. 1988) provides a lot of 

material in accessible and useful form. This 

last provides the basic data to be analyzed 

here.

The object of this study was to develop a 

formula for the wingbeat frequency n of an 

insect in terms of its mass m and its wing area 

A. The method used was dimensional analysis, 

which proceeds from a bare minimum of 

assumptions. In particular, it avoids the 

production of a detailed model of the process 

being analyzed; rather, it places necessary 

restrictions on more specific models that can 

be developed later. The basic assumptions are 

that a formula of the type sought actually 

exists, and that this formula should be 

independent of the units of measurement 

involved.

The formula to be derived may be classified 

as a “double allometry” in that the wingbeat 

frequency is given as a product of powers of 

mass and wing-area. This should be contrasted 

with the (single) allometric formulae 

advanced by earlier authors.

Several authors (e.g. inter alia Chadwick 

1953, Rashevsky 1960, Greenewalt 1962, 

Crawford 1971, Dudley 2000) have developed 

or promulgated suggested formulae for n.

These authors used various suggested physical 

characteristics of the insects under study. 

Many simply sought (single) allometries 

between n and some other variable, such as m

or a length-scale l. The present author (Deakin 

1970) proposed a new formula, and part of the 

purpose of the present paper is to show that it 

still remains a good one, in some important 

ways the best. Whereas the earlier paper 

developed much of the theory, it lacked an 

extensive and reliable dataset against which it 

could be checked. That deficiency is 

addressed in the present analysis.

Furthermore it is found that, of all the possible 

doubly allometric formulae giving n in terms 

of m and A, this one is optimal in the sense of 

minimizing the total least square error.

In addition to the variables n, m and A, three 

physical parameters are also discussed. These 

three parameters, although essentially 

constant, are nonetheless relevant to the 

process of flight and so must be considered as 

(at least potentially) occurring in the formula 

sought. These are: , the density of the air; ,

the viscosity of air; and g, the acceleration due 

to gravity.

The most controversial aspect (indeed really 

the only controversial aspect) of dimensional 

analysis lies in the initial choice of variables 

and parameters. In the present case there is 

little difficulty with the choice of parameters. 

However there has been some disagreement 

over the variables. That n and m should be 

involved is almost axiomatic, but the use of A

is not so generally adopted. Greenewalt 

(1962) lists various other variables that have 

been measured, either with a view to 

developing (simple) allometric equations or 

else in pursuit of some mechanical model or 

other. The most plausible of these other 

variables is wing-length, but others have also 

been tried (e.g. the moment of inertia of the 
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wings, whose accurate measurement is surely 

susceptible of great experimental difficulty).

However, as flight is dependent on the 

provision of a lift-force, it seems most natural 

to concentrate on the area of the lifting

surface: the wings. Moreover wing-area is 

readily measured. Thus, if a single variable is 

to be selected from the various candidates, 

then wing-area is a front-runner. This point is 

implicit in the work of Byrne et al. (1988), 

who chose to list this quantity rather than any 

of the others that have been proposed.

In the present context, the use of SI units is 

clumsy, as insects are too small to have their 

masses measured in kilograms and their wing 

areas measured in square meters. Instead the 

older cgs system in which masses are given in 

grams and wing areas in square centimeters 

was used. This is the convention adopted by 

Byrne et al. (1988), who provided the relevant 

values for m, A, and n in these units for a list 

of over 150 insect species. This is the dataset

to be used here. 

The values of m in this dataset range from 

3.3x10
-5

 gm (for a small whitefly, Bemisia

tabaci; Homoptera: Aleyrodidae) to 2.809 gm 

(for a large moth, Oryba achemenides;

Lepidoptera: Sphingidae). The values of A

range from 0.0096 square cm (for another 

small whitefly, Trialeurodes abutilonea;

Homoptera: Aleyrodidae) to 120 square cm 

(for another large moth, the Great Peacock 

Moth, Saturnia pyri; Lepidoptera: 

Saturniidae). The values of n range from 6 

hertz (for a gracile butterfly, Pieris napi;

Lepidoptera: Pieridae) to 480 hertz (for the 

yellow-fever mosquito, Aedes aegypti;

Diptera: Culcidae).

In cgs units, the values of the parameters 

involved are:  = 1.2 x 10
-3

 gm/cc, μ = 1.8 x 

10
-4

 poise, and g = 980 cm/sec/sec.

Dimensional Analysis

Dimensional analysis proceeds by listing the 

variables and parameters involved in a 

problem and then looking at the types of 

measurements they involve. In the present 

context, there are three basic units (mass M, 

length L and time T) that come into

consideration. All the other quantities 

(variables and parameters, six in all) to be 

discussed are measured in terms of units 

derived from the three basic units and 

expressible as products of powers of them. 

These powers give the dimensions of the 

quantities.

The variables and parameters together with 

their dimensions are shown below

M mass M

A wing area L
2

n wingbeat frequency T
–1

density of air ML
–3

viscosity of air ML
–1

T
–1

g acceleration due to gravity LT
–2

If the formula sought is to be valid in all 

systems of units, then it must be expressible in 

terms of quantities that are free of units, so-

called dimensionless ratios. In the present 

context, the six quantities listed above involve 

the three basic units specified above. Because
of a result known as the Buckingham -
theorem (see, e.g. Barenblatt 1987), we expect 
three (3 = 6 - 3) independent dimensionless 

ratios to arise from this situation.

These three ratios may be constructed in many 

ways, all mathematically equivalent but some 

more useful than others. The following choice 

is convenient and moreover relates to 

specialist labels given to each of the ratios and 

named below:
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1=
mv

μ A

(essentially a Reynolds Number),

2 =
v 2 A

g

(essentially the square of a Froude number),

3 =
A3 / 2

m

(a buoyancy factor)

The lowest value of the Reynolds number  1

is 8.47 (for a small aphid, Aphis gossypii;

Hemiptera: Aphididae), but apart from a few 

species of aphids and whiteflies, values in 

excess of 100 and more typically of the order 

of 1000 are the rule. Large Reynolds numbers 

imply that viscosity is unimportant. The low 

values of  2 applying in the exceptional cases 

may underlie the observation of Byrne et al.

(1988) that such insects manifest different 

patterns from those applying to larger ones 

and their suggestion that their mechanisms of 

flight may be different. Thus, apart perhaps 

from these few possible exceptions, the 

neglect of viscosity is justified.

The values of  2 vary between 0.02 (for P.

napi) and 45 (for Ae. aegypti), with values 

between 1 and 10 being the usual case.

The buoyancy factor varies between 0.003 

(for Pieris brassicae; Lepidoptera: Pieridae) 

and 1.58 (for A. gossypii). Typically, this ratio 

is “small” with a mean value a little below 

0.1.

As we are neglecting the Reynolds Number 

1, the formula we seek is of the form F ( 2,

3) = 0 which may be rewritten as 

n g1/ 2A 1/ 4
3( ) g1/ 2A 1/ 4 A3 / 2

m

f(.) is an unknown function. Suppose however 

that f( 3) may be expanded by means of a 

Frobenius series (a very general functional 

form):

3( ) = k 3 1+ a1 3 + 3
2 + ...( )

where k,  are dimensionless constants, i.e. 

pure numbers.

The leading power is written as negative for 

later convenience. Because 3 is small, neglect 

all terms beyond the leading one, and so find

n = kg1/ 2A 1/ 4 A3 / 2

m
= kg1/ 2 m A

3

2

1

4 = Km A (1)

where K (=kg
1/2

) is a constant to be 

determined (but not a dimensionless one), and

=
6 +1

4
(2)

Equation (1) has the form described above as 

a “double allometry”.

Further analysis

Equation (1), supplemented by (2), is as far as 

dimensional analysis alone can take us. The 

further determination of K and must depend 

either on experimental evidence or else on 

some more sophisticated analysis.

f f

f
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Many of the proposed empirical laws use 

some (simple) allometric equation or other to 

provide data for further analysis. Greenewalt 

(1962) in particular considered all insects (and 

also bats and birds other than humming-birds)

to be approximately geometrically similar, 

although he recognized the difficulty of 

pushing such analysis too far. For insects, he 

proposed (his Figure 12) the relation n 

n l
-1.15

 where l is the wing-length. His Figure 

1 thus allows the deduction n m
-0.383

  because 

he has m scaling as l
3
 similarity theory would 

predict.

However, other such relations have also been 

posited. Rashevsky (1960) posited on 

theoretical grounds that for “approximately 

similar” insects n m
-1

 and found some

support for this view in the literature. Weis-

Fogh (1977, p. 416) has n l
-1

 and thus n m
-

1/3
Dudley (2000, figure 

3.3B) derives a relation n m
-0.24

. It is clear 

that there is no agreement on this matter. 

Neither Greenewalt nor Dudley are very 

convincing. Greenewalt (1962) offers a graph, 

which only achieves its result after the insects 

have been divided (rather arbitrarily) into four 

distinct groups. Dudley (2000), in an 

incompletely described graph, includes 

humming birds along with insects and 

achieves a value r
2
 = 0.17, i.e. a correlation 

coefficient of 0.41 for a line of best fit through 

a very scattered cloud of points. Rashevsky 

(1960) considered only a small dataset and 

also misdescribed the relevant graph. Weis-

Fogh (1977) offers a theoretical analysis for 

his “general interspecific rule,” but does not 

test it against field data. The same law is 

attributed by Dudley (2000, p. 90) to Hill 

(1950), but Hill does not discuss insects.

Any attempt to derive a formula on the basis 

of geometrical similarity encounters the 

Figure 1. A plot of ln( )versus –ln (m) for butterflies. If any of the proposed allometric laws applied to butterflies, these 
points would exhibit significant positive correlation, but they do not. High quality figures are available online.
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difficulty of deciding quite when insects are 

“approximately similar.” Clearly one cannot 

regard all insects as “approximately similar”, 

i.e. approximate scale models of one another. 

Diptera, for example, have quite different 

shapes from Lepidoptera. On the other hand, 

if any such formula is to be useful, it must not 

be so restricted in scope as to find no 

application at all. Here it is proposed as a test 

that if any such formula is to be meaningful, 

then it should apply to butterflies

(Nymphalidae, Papilionidae, and Pieridae), 

and that we should find an approximate 

proportionality n  m
-
 for butterflies, where

is a constant. That is to say that there should 

be significant positive correlation between the 

values of ln (n) and – ln (m) Instead, however, 

the result is as depicted in Figure 1. The 

correlation coefficient is -0.053 which (as well 

as being negative) is not significant. 

Thus the attempt to find and use simple 

allometry between n and m will not provide 
the value of .

Other proposed empirical laws

Other laws have been advanced. Deakin 

(1970) considered two relationships proposed 

by Rashevsky (1960). The first of these has 

just already been discussed and dismissed (as 

it was, on rather less secure grounds, in that 

earlier paper). Rashevsky’s other suggestion 

was that for insects of the same mass 

n m/A  the wingload, L.

If this is adjoined to the analysis, we find that 

Equation (1) becomes 

n = Km
m

L

3

2

1

4
= Km 2

1

4L
3

2
+
1

4 L
3

2
+
1

4

in the event that m is constant. If the index in 

this final term is to be 1, as the Rashevsky had 

it, then, as was shown in the earlier study, it 

follows at once that  = .

As a test of validity, we thus search the 

dataset for subsets of insects with 

approximately the same mass. This 

examination reveals:

1.A group of 8 species with masses around 

0.025 gm

2.A group of 7 species with masses around 

0.07 gm

3.A group of 10 species with masses around 

0.1 gm

4.A group of 10 species with masses around 

0.55 gm.

However, analysis of these sets shows only 

partial support for the effect claimed. If we 

look at the actual (observed) values of n, and 

compare these with those predicted by the 

empirical “law,” we find coefficients of 

correlation as set out below. 

Set r Level of significance

 1 0.69 Not significant

 2 0.89 Significant at 5%

 3 0.98 Significant at 0.1%

 4 0.79 Significant at 5%

This provides some evidence that the 

relationship holds, but it is not as strong as 

one might like. However if we accept this 

“law” and its consequence  = , then the 

formula sought becomes 

n = k
g m

A
= K

m

A
(3)

where k is a dimensionless constant, and thus 

K is also a constant, although not a 

dimensionless one. This was the result of the 

earlier analysis (Deakin 1970). A derivation of 

Equation (3) was later supplied by Crawford 

(1971), who employed a simple physical 

model. This is the double allometry mentioned 

above; it has the values  = 0.5,  = 1.
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Test of Equation (3)

If we test Equation (3) against the data from 

Byrne et al. (1988), we find the situation 

depicted in Figure 2, where the predicted 

values of the wingbeat frequency are given by 

means of the formula

n 317
m

A
(4)

and the correlation coefficient r between this 

and the observed reality is 0.866, a highly 

significant figure (p < 0.001), and 

corresponding to r
2
 = 0.75 so that Equation (4) 

explains 75% of the variance in n.

Fitting Equation (1)

Although Equation (3) provides good fit, it is 

possible to examine Equation (1) 

independently of the hypothesis that led to the 

specialization (3). A best fit of the form lnn = 

lnK + lnm –  lnA to the data yields the 

relation

n 187m0.3A 0.7
(5)

(i.e.  = 0.3,  = 0.7). As the theory predicts, 

Equation (2) is satisfied but the value of  is 

not what Equation (3) gives. The use of 

logarithmic variables in testing allometric 

relationships is widely used because it reduces 

the problem of finding a nonlinear regression 

to the computationally simpler problem of a 

linear one.

However, a best fit in the logarithmic sense is 

not necessarily a best fit in the original 

variables. A device adopted for computational 

convenience can actually produce incorrect 

answers. This effect is exemplified here. The 

values  = 0.3,  = 0.7, K = 187 produce a 

total squared error of 308,083.5 whereas the 

choice  = 0.5,  = 1, K = 317 gives 

257,905.6. Indeed a computer search in the 

region of ( , , )-parameter space close to 

Figure 2. Predicted and observed values of . High quality figures are available online.
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these values shows that this choice is almost 

optimal in the sense of minimizing the total 

squared error in n. (The best result in this sum 

of squared errors sense is given by the values 

 = 0.5,  = 0.98, K = 325, which does not 

represent a significant difference.) Equation 

(4) is thus not only better than Equation (5) 

but results in the best simple fit that can be 

achieved for an equation of the double 

allometric type.

Discussion

The application of dimensional analysis to the 

problem of insect wingbeat frequency 

succeeds, producing good agreement with 

observation. However, the “empirical laws” 

formerly used to supplement it do not stand 

scrutiny so well. It might be said that the 

resulting equation is better than its derivation.

Nevertheless Equation (4) provides as good an 

agreement as can be hoped from a simple 

formula applied to so complex a problem. It 

explains 75% of the variance in n, whereas 

other claimed fits do not do nearly so well. 

Compare, for example, Dudley’s (2000) value 

of 17%.

An interesting corollary follows from such 

studies. Comparing (e.g.) Pieridae with 

Apidae, we note the relatively gracile bodies 

and larger wings of the former and the 

relatively small wings and large masses of the 

latter group. This difference is compensated 

by the higher frequency of wingbeat in the 

latter group. The calculated values of n

resulting from Equation (4) lead in such 

comparisons to the need for asynchronous 

flight muscle in order to achieve the 

frequencies required. This consequence was 

noted in the author’s earlier study (Deakin 

1970).
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