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Abstract
Adenosine is an important neuromodulator, known to interact with both dopaminergic and
glutamatergic systems to influence psychostimulant action. In the present study, we examined the
effects of ATL444, a novel adenosine receptor antagonist, on motivation for cocaine in male and
female rats. Adult male and female Sprague-Dawley rats were trained to self-administer cocaine
(1.5 mg/kg/infusion) on a fixed-ratio 1 schedule with a daily maximum of 20 infusions. Following
5 consecutive sessions during which all 20 available infusions were obtained, motivation for
cocaine (0.5 mg/kg/infusion) was assessed under a progressive ratio (PR) schedule, and once
responding stabilized, the effect of treatment with ATL444 (0, 15, and 30 mg/kg, i.p.) was
examined. As a control, we also assessed its effects on PR responding for sucrose. Binding studies
revealed that ATL 444 was 3-fold, 25-fold, and 400-fold more selective for the A2A receptor as
compared to A1, A2B, and A3 receptors, respectively. ATL444 produced a significant increase in
motivation for cocaine on the day of treatment in females with a trend for an increase in males. In
addition, over the two PR sessions following ATL444 treatment a significant decrease in
responding was observed in males but not females. Responding for sucrose was unaffected by
ATL444 treatment. Our results reveal that adenosine receptor blockade may mediate both acute
increases in the reinforcing effects of cocaine, and longer term inhibitory effects on cocaine
reinforcement that differ according to sex.
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1. Introduction
Adenosine is a purine nucleoside that is widely distributed throughout the central nervous
system and is recognized as a modulator of neurotransmitter release and neuronal
excitability. Its physiological effects are mediated through the activation of four receptor

Corresponding author: Susan E. Doyle, sed5c@virginia.edu, Phone:434-243-0565, Fax:434-973-7031.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Pharmacol Biochem Behav. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
Pharmacol Biochem Behav. 2012 August ; 102(2): 257–263. doi:10.1016/j.pbb.2012.05.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



types (A1, A2A, A2B, and A3). Antagonistic interactions exist between different subtypes
of adenosine and dopamine receptors (Ferre et al., 1997). Adenosine, acting on both A1 and
A2A receptors modulates dopaminergic neurotransmission through its effects on dopamine
release and functional interactions between adenosine and dopamine receptors. Adenosine
A1 receptors, which are expressed widely throughout the brain, co-localize with dopamine
D1 receptors (Ferret et al., 1994; Gines et al., 2000). The A2A receptor is highly expressed
in the striatum, primarily in GABAergic striato-pallidal projection neurons that also express
dopamine D2 receptors (Augood and Emerson, 1994; Fink et al., 1992;Pollack et al., 1993;
Schiffmann et al., 1991) and to a lesser extent in excitatory synapses of cortico-striatal
terminals (Svenningson et al., 1999). A2A receptors have been shown to interact with
several neurotransmitter receptors, including dopamine D2 and metabotropic glutamate
subtype 5 (mGluR5) receptors (Ferre et al., 1991; 2002; Fink et al., 1992), with evidence for
both antagonistic and synergistic effects. Although little is known regarding the role of
adenosine A1 receptors in psychostimulant action and addiction-related behaviors, a large
number of studies have demonstrated a role for A2A receptors. Baldo et al. (1999) have
demonstrated that A2A agonists elevate brain stimulation reward thresholds, while
antagonists reverse this effect, suggesting that A2A receptors are involved in the mesolimbic
system regulation of reward, and signaling at this receptor is increasingly recognized as a
possible therapeutic target for addiction (for reviews, see Brown and Short, 2008; Ferre et
al., 2007; Shen and Chen, 2009).

A2A-D2 receptor heterodimers, through which A2A receptors might act to antagonize D2
receptor signaling, have been hypothesized to mediate A2A receptor effects on
psychostimulant reward. A2A-D2 receptor interactions have been demonstrated in vitro
(Canals et al., 2003; Fuxe et al., 1998; Hillion et al., 2002; Marcellino et al., 2010), and
functionally antagonistic interactions between A2A receptors and cocaine-mediated
behaviors involving D2 receptors (Adams et al., 2001; Kita et al., 1999; Ushijima et al.,
1995) have been reported. Given findings showing that D2 receptor antagonism attenuates
cocaine's reinforcing and addiction-related properties (Anderson et al. 2006; Mantsch et al.
2010; Milivojevic et al. 2004; Xi and Gardner 2007; but see Xue et al. 2011), adenosine
A2A receptors may be a potential therapeutic target for cocaine addiction treatment. Several
pharmacological studies indicate that adenosine A2A receptors influence the behavioral
response to cocaine, although the direction of these effects has been inconsistent. For
example, A2A receptor antagonists have been shown to increase cocaine sensitization and
enhance discriminative-stimulus effects of cocaine (Filip et al., 2006; Justinova et al., 2003),
whereas agonists reduce cocaine sensitization (Filip et al., 2006). Stimulation of A2A
receptors also reduces reinstatement of cocaine seeking elicited by cocaine and cocaine-
conditioned cues (Batchell and Self, 2009) while an A1/A2A receptor antagonist has been
shown to reinstate cocaine-seeking behavior (Weerts and Griffiths, 2003). However, there
have been very few studies characterizing the effects of adenosine receptor antagonism on
ongoing cocaine self-administration. Three studies have addressed the role of A2A receptors
in self-administering animals, and they have yielded mixed results. Justinova et al. (2010)
found that in squirrel monkeys, cocaine self-administration on a fixed-ratio 10 schedule was
not affected by treatment with the adenosine A2A receptor antagonist MSX-3. Soria et al.
(2006) reported that motivation for cocaine was decreased in A2A receptor knockouts, while
Knapp et al. (2001) found that initiation of cocaine self-administration on a fixed ratio 5
(FR5) schedule was reduced by treatment with adenosine A2A receptor agonists. This latter
experiment is furthermore difficult to interpret due to the possibility that the agonist may
have mimicked the effects of drug to produce satiation. A primary goal of our study was
therefore to more fully characterize the effects of adenosine receptor antagonism in self-
administering animals by examining its effects on motivation for cocaine using a
progressive ratio (PR) schedule which is believed to be a more sensitive measure of changes
in reinforcement efficacy than the fixed-ratio schedule.
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A second goal of this work was to compare the effects of adenosine receptor antagonism on
motivation for cocaine between males and females. The vast majority of treatment studies
for cocaine addiction in animals have focused exclusively on males. However, sex
differences have been demonstrated in many behavioral measures of cocaine addiction,
including the motivation to self-administer low doses of cocaine as assessed by responding
on a PR schedule (Carroll et al., 2002; Lynch and Taylor, 2004; Roberts et al., 1989).
Moreover, dopaminergic transmission has been shown to differ according to sex. Release of
dopamine in the striatum following cocaine is greater in females (Walker et al., 2006), and
differential effects of both dopamine D1 and D2 receptor manipulation with respect to acute
cocaine induced behaviors have been reported in male and female rats (Festa et al., 2006;
Schindler and Carmona, 2002; Walker et al., 2006). Given the role that adenosine receptors
play in modulating dopamine signaling, it is likely that the effects of adenosine receptor
antagonism will also vary according to sex. Although sex differences in the effects of A1
antagonism have been reported following withdrawal from ethanol (Butler et al., 2008,
2009), to date no studies have examined sex differences in the effects of A2A receptor
antagonism in addiction models.

In the present study, we examined the effect of a preferential A2A receptor antagonist on
motivation to obtain cocaine infusions in actively self-administering animals. Specifically,
the effects of pretreatment with systemic injection of the adenosine receptor antagonist
ATL444 were tested in Sprague-Dawley rats responding for cocaine under a PR schedule. In
addition, we evaluated the effects of ATL444 in both males and females in order to
determine the existence of sex differences in the response to adenosine receptor inhibition.
Separate groups of male and female rats responding for sucrose pellets were used to test for
behavioral specificity.

2. Methods
2.1. Subjects

Male and female Sprague-Dawley rats (approximately 90 days old and weighing 380-410 g
(males) or 280-310 g (females) were obtained from Charles River Laboratories. Animals
were housed in operant conditioning chambers (Med-Associates, Inc., St. Albans, VT) in a
temperature (20-22° C) and humidity (40-70 %) controlled vivarium, and were maintained
in a 12- hour light: 12-hour dark cycle (lights on 0700, off 1900h). Food (Purina rat chow)
and water were available ad libitum for the duration of the study. In order to facilitate
acquisition of cocaine self-administration, after an acclimation period of at least 3 days
following arrival, rats were briefly trained to lever press for sucrose pellets on a fixed-ratio 1
schedule. Training was considered to be complete after two consecutive 24-hour sessions
during which 100 or more sucrose pellets were obtained. Following training, rats were
anesthetized with a combination of ketamine (60 mg/kg) and pentobarbital (Nembutal, 5 mg/
kg) and implanted with a silicone catheter into the right jugular vein as previously described
(Lynch, 2008). During 3 days of recovery from surgery, animals received intravenous
gentamicin (2 mg) followed by 0.1 ml heparinized saline (8.3 IU heparin/ml 0.9%
physiological saline) to prevent infection and ensure catheter patency. Throughout the self-
administration period animal health was monitored daily, and rats were weighed and
catheters flushed with heparinized saline 3 times per week. All procedures were carried out
in accordance with the NIH Guide for the Care and Use of Laboratory Animals and
protocols were approved by the University of Virginia's Animal Care and Use Committee.

2.2. Drugs
Cocaine HCl was provided by the National Institute on Drug Abuse (Research Triangle
Park, NC) and was dissolved to a concentration of 0.7 mg/ml in sterile 0.9% saline and
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delivered at a constant rate of 0.025 ml/s through a 10 ml syringe housed in a motorized
syringe pump (Med-Associates, Inc., St. Albans, VT). The dose of cocaine/infusion, either
1.5 mg/kg or 0.5 mg/kg, was held constant across subjects while infusion duration varied
according to body weight (1 s/100 g). Cocaine solutions were made fresh weekly and
refrigerated, but were delivered from the syringes at room temperature. ATL444, a
preferential antagonist of A2A receptor adenosine receptors developed by Dogwood
Pharmaceuticals, Inc., was dissolved in a 1.0 ml solution containing 10% DMSO/10%
cremophor/80% saline.

2.3. Chemistry
ATL444 was synthesized using Comparative Molecular Field Analysis (CoMFA; Tripos,
Inc.), a widely used 3D qualitative structure-activity relationship (QSAR) methodology,
along with a host of similar compounds designed as agonists and antagonists of the A2A
receptor over a wide range of KDs (Sun et al., 2007). The structure of ATL444 and the
general synthetic scheme for this class of substituted adenine compounds are shown in
Figure 1. Briefly, guanosine, 4.1, is acetylated to protect the ribose during reductive
chlorination by POCl3/diethylaniline to form 6-chloroguanosine, 4.3. Non-aqueous
diazotization in the presence of elemental iodine in diiodomethane is a standard route to the
protected 6-chloro-2-iodonebularine, 4.4. Heating in methanolic ammonia deprotects the
sugar and displaces the 6-chloro substituent to form 2-iodoadensoine, 4.5. Palladium-
catalyzed coupling of 4.5 with a terminal alkyne generates 2-alkynyladenosine, 4.6. The
sugar moiety is cleaved with acid to form the 9H-adenine, 4.7. Alkylation with a halide
completes the synthesis of target 2,9-disubstituted adenine, 4.8. The requisite alkyne
synthesis (Fig. 1., bottom panel) occurs as follows: starting from the Boc-protected methanol
compound, the acetylene group is installed by displacing the tosylated alcohol using lithium
acetylide. The Boc group is then removed using TFA and ATL444 is realized by treating the
cycloalkylketone with ethynylmagnesium bromide. The structural features of ATL444
include the lack of a 7-ribose moiety normally required for agonist activity. ATL444 has
also been shown to cross the blood-brain barrier and was originally identified as a drug
candidate for Parkinson's disease (Adenosine Therapeutics, LLC internal data), producing
motor stimulant activity consistent with blockade of A2A receptors as previously
demonstrated in rodent models of Parkinson's disease (Ferre et al., 1997; Hauber et al.,
1998; Pinna et al., 1996).

2.4. ATL444 Competition Binding Experiments
The binding methodology has been described previously (Sullivan et al., 1999). In brief, all
subtypes of recombinant rat adenosine receptors were stably expressed in HEK-293 cells.
Crude membrane preparations from these transfected cells were diluted in HE buffer (50
mM HEPES; 1 mM EDTA pH 7.4) at concentrations ranging from 2-50 μg/tube in a volume
of 150 μL and adenosine deaminase added at 2 U/mL. Dilutions of the test article were
prepared at 10× concentration in HE containing 10% DMSO. An appropriate radioligand
(125I-ABA for A1A receptor and A3A receptor, 125I-ZM241385 for A2A receptor, or
125I-ABOPX for A2B receptor) was diluted in HE containing 14.7 mM MgCl2. Diluted test
article (25 μL) was added to each membrane sample (150 μL). The radioligand was added
in a 75 μL volume, the tubes incubated for 1.5 – 3.0 hours at room temperature and then
filtered through glass fiber filters and counted in a Wallac Wizard 1470 gamma counter
(Perkin Elmer, Boston MA). The non-specific binding of radiolabeled ligand was measured
in the presence of the non-selective adenosine receptor agonist, NECA (100 μM). Within
each assay, a minimum of three repeats were analyzed. Competition binding curves were
constructed and IC50 values calculated using a 4-parameter logistic fit (PRISM 5.0,
GraphPad Software, San Diego, CA). The value of Ki for the displacement of radioligand
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binding by agonist was calculated using the Cheng-Prusoff equation (Cheng and Prusoff,
1973).

2.5. Cocaine Self-Administration Procedure
Rats (n=10 males, n=10 females) were trained to self-administer cocaine (1.5 mg/kg per
infusion) under a fixed-ratio 1 schedule with a maximum number of 20 infusions available
per day. This relatively high dose of cocaine was used to ensure rapid and maximal rates of
acquisition. Each response on the left lever under the daily session resulted in an infusion of
cocaine and was accompanied by the sound of the infusion pump and illumination of a
stimulus light above the lever for the duration of the infusion. Responses on the right lever
were recorded, but not reinforced. After two consecutive days during which all 20 available
infusions were obtained, the dose of cocaine available was lowered to 0.5 mg/kg per
infusion since pharmacological manipulations are more readily revealed under low to
moderate dose conditions. After 3 additional days during which all 20 available infusions
were obtained, rats were given access to cocaine under a PR schedule, with daily 23-hour
sessions initiated at 1200h. With this schedule, the response requirement to receive a cocaine
infusion increases throughout the session until responding ceases. The steps were as follows:
1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 62, 77, 95, 118, 145, 178, 219, etc. (for reference see
Arnold and Roberts, 1997). Under these conditions, responding typically ceases within 2-3
hours. Breakpoints were defined as the final ratio completed (i.e., number of infusions
delivered) each session. Once responding was stable under the PR schedule (defined as 3
consecutive sessions with no increasing or decreasing trends in the number of infusions
obtained, and in which self-administration behavior did not vary by more than 3
breakpoints), the adenosine A2A receptor antagonist ATL444 was administered via
intraperitoneal (IP) injection 20 minutes before the start of the PR session. Each animal
received injections of vehicle, 15 mg/kg and 30 mg/kg ATL444. These doses were selected
based on previous pharmacokinetic and pharmacodynamic work done with ATL444
showing that at these doses stimulate locomotor activity beginning within 5 minutes of
treatment, reaching a peak within 20 minutes, and lasting for approximately 60 minutes
(Adenosine Therapeutics, LLC internal data). The order of dose presentation was
counterbalanced and at least 5 days of stable PR sessions separated each injection. Daily
sessions were conducted 7 days per week.

2.6. Sucrose Controls
Rats (n=6 males, n=5 females) were trained to self-administer sucrose pellets on an FR1
schedule until (100 pellets were obtained over 2 consecutive days, and then placed on a PR
schedule for 2 hours per day with daily sessions beginning at 1000h. PR steps were identical
to those used for cocaine and all animals reached their breakpoint for sucrose responding
within the two-hour session limit. IP injections of ATL444 (15 and 30 mg/kg) and vehicle
were administered as described above. As with the cocaine self-administering animals,
sucrose controls were ad lib fed.

2.7. Data Analysis
The effect of ATL444 injections on PR responding for cocaine in males and females was
determined by comparing percent change from baseline responding using repeated measures
ANOVA. Mean baseline was obtained by averaging the number of cocaine infusions across
each of the 3 days preceding the test day. Statistical analyses were performed with PASW
18 (SPSS, Inc.). Within-subjects factors were baseline change in the number of cocaine
infusions self-administered during the PR sessions beginning the day of treatment and
ending 3 days after treatment. Posthoc comparisons were made using the Bonferroni
corrected t-test. The alpha level for statistical significance was set at 0.05.
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3. Results
The results of competition binding experiments to all 4 subtypes of rat adenosine receptor
using the A2A receptor antagonist, ATL444, are shown in Table 1. The specific radioligand
and number of replicates for each receptor subtype are indicated. For each receptor subtype
the Ki is given in nanomolar. The data indicate that ATL444 binds with high affinity to the
rat A2A receptor. The Ki of ATL444 for the A2A receptor was determined to be 2.5 ± 0.8
nM (mean ± SD), and for the A1 receptor, A2B receptor and A3 receptor was determined to
be 7.0 ± 0.7 nM, 61.8 ± 9.3 nM and >1000 nM, respectively. ATL444 exhibited 3-fold
selectivity for the A2A receptor as compared to the A1 receptor, 25-fold selectivity for the
A2A receptor as compared to the A2B receptor, and more than 400-fold selectivity for the
A2A receptor compared to the A3 receptor.

Consistent with previous research, breakpoints at baseline were higher in females than males
(14.0 ± 1.0, 12.0 ± 0.8, respectively). Although this difference did not reach statistical
significance under these moderate dose conditions (Fig. 2, top panels), the effects of
ATL-444 in males and females were analyzed as percent change from baseline to correct for
baseline sex differences. ATL444 treatment resulted in time- and sex-dependent changes in
cocaine self-administration (sex, F1,46=8.9, P<0.01; day, F3,138=23.8, P<0.001; day by dose,
F6,138=23.8, P<0.001; and sex by dose F2,46=4.0, P<0.05). On the day of treatment, there
was in an increase in the number of cocaine infusions selfadministered from baseline
(overall effect of dose, F2,46=11.3, P<0.001). Within females, PR responding on the day of
treatment with 15 and 30 mg/kg ATL444 was significantly increased from baseline (22 ±
4% and 18 ± 1%, respectively; P's<0.01). Although responding also tended to increase in
males on the day of treatment (15 ± 4% and 13 ± 10% for the 15 and the 30 mg/kg dose,
respectively), these changes did not reach statistical significance (P=0.08). In contrast, in
males we saw a persistent decrease in PR responding for cocaine following treatment with
ATL444, but no significant changes in the days following treatment in females (P>0.05).
Posthoc comparison within males revealed that this effect was due to a significant decrease
in responding on the 2 days following treatment with the 15 mg/kg dose (Post 1, P<0.01;
Post 2, P<0.05) and a significant decrease on the 2nd day after treatment following the 30
mg/kg dose (P<0.05).

These sex and time effects at the 0 and 15 mg/kg dose of ATL-444 are further illustrated in
Fig. 2 (middle and lower left panels). Although no significant sex or time-dependent
changes were observed following treatment with vehicle (Fig.2, middle left panel; P>0.05),
within the 15 mg/kg dose, there was a significant effect of day (F3,36=11.7, P<0.001) and
sex (F1,12=7.1, P<0.05) with males, but not females, showing a reduction in cocaine intake
on the days following treatment (Fig.2, middle right panel). Post hoc comparison between
males and females revealed a significant sex difference on the first 2 days following
treatment (P<0.05). No significant sex difference was observed at the 30 mg/kg dose (data
not shown). A scatter plot of the results at the 15 mg/kg dose for each individual animal is
shown in Fig. 2 (lower left panel).

In order to further establish these time and sex-dependent changes following ATL444
treatment, two animals were given a second treatment with the 15 mg/kg dose. The second
round of treatment was tested after the animals had returned to pre-treatment baseline. As
shown in Fig. 2 (lower right panel), these findings replicate the sex and time-dependent
changes observed for the group after a single treatment. For both the initial treatment and at
retest, responding was initially increased in both the male and female on the day of
treatment, but decreased only in the male on the days following treatment.
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As a control for non-specific effects of A2A receptor blockade on PR responding, we also
measured its effect on responding for sucrose under a PR schedule (Table 2). Average levels
of responding did not differ between cocaine and sucrose self-administering animals, with
mean number of deliveries of 12.5 ± 0.37 and 11.5 ± 1.42, respectively. As there was no
significant overall effect of sex, data for males and females were pooled. No significant
overall effects of treatment were found, indicating that the observed effects of ATL444
treatment on PR responding were specific to cocaine.

4. Discussion
The findings of this study demonstrate that preferential blockade of adenosine A2A/A1
receptors with ATL444 produces time- and sex-specific changes in motivation to obtain
cocaine in self-administering animals. In females, ATL444 treatment produced an acute
increase in motivation for cocaine on the day of treatment, but no persistent changes beyond
the day of treatment. In males, although motivation for cocaine also tended to be higher on
the day of treatment, this increase was followed by a decrease in motivation that persisted
for two days following treatment. That these effects were observed for cocaine, but not
sucrose, indicates that they are not due to non-specific effects of ATL444, but instead are
specific to cocaine reinforcement.

The acute increase in PR responding for cocaine after ATL444 treatment is in agreement
with previous studies that have examined the effects of different A2A receptor antagonists
on acute cocaine-related behaviors. The A2A receptor antagonist MSX-3 has been shown to
increase cocaine-induced locomotor activity and sensitization in rats (Filip et al., 2006).
Another A2A antagonist, DMPX (3,7-dimethyl-1-propargylxanthine), and was found to
enhance cocaine-induced hyperactivity in mice (Poleszak and Malec, 2002). Concomitant
with the increase in behavioral responses to cocaine associated with adenosine A2A receptor
antagonists, stimulation of A2A receptors has been shown to inhibit cocaine-induced
conditioned place preference (Poleszak and Malec, 2002), attenuate sensitization to cocaine
(Filip et al., 2006), and inhibit the initiation of cocaine self-administration on an FR5
schedule (Knapp et al., 2001). Taken together, these pharmacological data support a role of
acute A2A receptor activation in opposing and A2A receptor blockade in stimulating the
reinforcing effects of cocaine. Interestingly, dose-dependent effects of these A2A receptor
antagonists were not found in previous studies, and we likewise saw no difference in the
enhancement of PR responding by 15 or 30 mg/kg dose of ATL444. The reasons for this
lack of dose-dependent effects remain unclear. Furthermore, while ATL444 did not
significantly elevate PR breakpoints in male rats, it is possible that males may be less
sensitive than females to ATL444, and a significant effect might be seen in males at a
slightly higher dose.

One of the most intriguing aspects of our study is the persistent decrease in motivation for
cocaine observed in males following ATL444 treatment. This type of longer term decrease
in self-administration behavior has not been reported in previous pharmacological studies
with adenosine antagonists, which have been limited to the examination of acute cocaine-
induced locomotor effects, conditioned place preference, and fixed ratio responding on the
day of treatment. However, global or forebrain-specific genetic inactivation of A2A
receptors in mice produces a decrease in cocaine self-administration under both fixed-ratio
and PR schedules (Chen et al., 2000; Soria et al., 2006), and in a recent study by Justinova et
al. (2010), MSX-3 did not affect fixed-ratio responding for a low dose of cocaine in squirrel
monkeys. While the reasons for the discrepancies among these genetic and pharmacological
data are not entirely clear, it has been suggested that A2A receptor inactivation may play a
differential role in psychostimulant effects depending on which populations of striatal A2A
neurons are involved, and this may be affected by molecular adaptations that occur over
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time in the cortico-accumbens pathways involved in drug taking and seeking behavior
(Brown and Short, 2008; Shen et al., 2008). In support of this idea, striatum-specific A2A
receptor knockout mice (Shen et al., 2008) show an increase in cocaine-induced
psychomotor activity. Therefore two populations of A2A receptors may differentially affect
striatal neurotransmission and psychostimulant effects. Selective inactivation of striatal A2A
receptors enhances psychostimulant effects, while forebrain or extra-striatal A2A receptor
inactivation produces inhibitory effects (Brown and Short, 2008; Shen et al., 2008).
Although the specific effects of ATL44 on the populations of pre- and post-synaptic A2A
receptors in these different brain regions are unknown, it is possible that ATL444 exerts
differential time-dependent effects on striatal and extra-striatal A2A receptors, to increase
and decrease motivation for cocaine, respectively. Another possibility is that the time-
dependent effects of ATL444 may be partially mediated through its effects at the A1
receptor. Although no studies have directly examined the role of A1 receptors in cocaine
self-administration, there is evidence, albeit controversial, that the A1 receptor may
influence cocaine reward. For example, one study showed that A1 receptor antagonism
potentiates the discriminative stimulus effects of cocaine (Justinova et al., 2003), and
another showed that such treatment decreased cocaine-induced place preference (Poleszak
and Malec, 2002). Although these results are inconclusive for a role of A1 receptors in
cocaine-mediated behavior, we cannot exclude them as a potential mechanism for our
current findings. In addition, adenosine A1 and A2A receptors, which are colocalized in rat
motor nerve terminals, have been shown to exert opposite regulatory actions on
neurotransmitter release (Correia-De-Sa et al., 1996), and more recently, opposite
modulatory roles for adenosine A1 and A2A receptors on dopamine and glutamate release in
the nucleus accumbens have been described (Quarta et al., 2004).

The persistent decrease in motivation for cocaine that we found in males following
antagonist treatment was not observed in females. Although the mechanism for this sex
difference is not yet known, previous work suggests that it may be a result of increased
sensitivity of the D2/A2A receptor system in females. Following either extended access
cocaine self-administration or under the PR schedule using lower-doses than the one used in
the present study, females show a higher motivation for cocaine than males (Carroll et al.,
2002; Lynch and Taylor, 2004; Roberts et al., 1989) as well as higher levels of subsequent
reinstatement responding (Lynch and Carroll, 2000). Dopaminergic signaling is believed to
be the primary mediator of cocaine reinforcement, and among several molecular adaptations
that occur in response to cocaine, females show signs of greater dopamine D2 signaling in
the medial prefrontal cortex compared to males (Sun et al., 2010). Marcellino et al. (2007)
have shown that A2A receptors increase in the NAc following withdrawal from cocaine self-
administration, and they suggest that this A2A receptor up-regulation occurs as a
compensatory response to increased D2 signaling. Thus, females may also show greater
cocaine-induced A2A receptor increases compared to males, and hence altered D2/A2A
receptor dynamics.

Ovarian hormones may also play a role in modulating the D2/A2A receptor interactions that
-differentially affect cocaine self-administration in males versus females. D2 receptors in the
striatum of females have been shown to be down-regulated by estradiol (Bazett and Becker,
1994). Therefore, depending on estrous cycle phase females may have different D2 receptor
availability and responses to A2A receptor antagonism. Although we did assess for estrous
cycle phase in the current study, the variability in cycle phase both within and between
females tested here did not allow for an analysis of the effects of ATL-444 by estrous cycle
phase. Future studies will be necessary to explore the relationship between levels of ovarian
hormones and the effects of A2A signaling on cocaine self-administration.
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5. Conclusions
In conclusion, the present findings underscore the important role played by adenosine
receptor signaling in motivation to self-administer cocaine and suggest that A2A/A1
receptors may be an effective therapeutic target for cocaine addiction in males, but not
females. Our results give evidence for two different effects of A2A/A1 receptor blockade:
an acute increase in the motivation to self-administer cocaine, followed by a longer-term
decrease in motivation that exhibits a sex difference. These differential time- and sex-
dependent responses to A2A/A1 receptor blockade should be considered in the development
of any pharmacological treatment strategy.
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Highlights

• Adenosine A2A receptor blockade alters the motivation to self-administer
cocaine in rats in a time- and sex-dependent manner.

• In females, ATL44, a preferential A2A antagonist, acutely increased motivation
for cocaine.

• In males, ATL444 treatment produced long-term decreases in motivation for
cocaine.

• Differential responses to A2A receptor blockade should be considered in the
development of treatment strategies for cocaine addiction.
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Fig. 1.
Structure and synthetic scheme for ATL444. Top panel: Structure of ATL444. Middle and
bottom panels: Outline of the general synthesis scheme for ATL444. Middle panel:
Synthesis of the target 2,9-disubstituted adenine. Bottom panel: Alkyne synthesis.
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Fig. 2.
Effect of ATL-444 on PR responding for cocaine. Top panels: mean (SEM) infusions and
corresponding breakpoints observed for the baseline session (Base), the day of treatment
(Treat) and the 3 post-treatment sessions that followed (P1, 2, 3) in males (left) and females
(right). * indicates significant difference between vehicle and 15 mg/kg treatment group. **
indicates significant difference between vehicle and both 15 and 30 mg/kg treatment groups.
Middle panels: mean (SEM) percent change from baseline number of cocaine infusions on
the day of treatment (Treat) and for the 3 sessions that followed treatment (P1, 2, 3) with
vehicle (left) or 15 mg/kg ATL-444 (right). * represents a significant difference between
males and females. Lower left panel: individual female (left) and male (right) values for
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percent change from baseline number of cocaine infusions on the day of treatment with 15
mg/kg ATL444 (Treat) and for the 3 sessions that followed treatment (P1, 2, 3). Lower right
panel: replicate of the effects of the 15 mg/kg dose of ATL444 in a representative male and
female that received a repeat treatment with this same dose.
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Table 1

Characterization of the adenosine A2A receptor antagonist, ATL444, by radioligand binding in recombinant rat
receptors (mean ± SD).

Ki (nM)

Receptor A1 A2A A2B A3

Radioliganda 125I-ABA 125I-ZM241385 125I-ABOPX 125I-ABA

ATL444 7.0 ± 0.7
(n=5)

2.5 ± 0.8
(n=3)

61.8 ± 9.3
(n=4)

>1000
(n=5)

a
Chemical names of radioligands used: 125I-ABA = N6– (4-amino-3-[125I]iodobenzyl)adenosine; 125I-ZM241385 = [125I]-4-(2-[7-amino-2-2-

furyl1,2,4triacolo2,3-a-1,3,5triazin-5-yl-amino]ethyl)phenol; 125I-ABOPX=3-(3-[125 I]iodo-4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-
propylxanthine.
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