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Repo-Man-PP1
A link between chromatin remodelling and nuclear envelope reassembly
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Coordination of late mitotic events is
crucial for the maintenance of

genome stability and for the control of
gene expression after cell division.
Reversible protein phosphorylation reg-
ulates this process by de-phosphorylation
of mitotic phospho-proteins in a sequen-
tial and coordinated manner: this allows
an orderly sequence of events to take
place during mitotic exit. We have
identified Repo-Man/PP1 as a phospha-
tase complex that regulates temporally
and spatially chromatin re-organization
and nuclear envelope re-formation during
anaphase-telophase.

Following CDK inactivation at anaphase
onset, a pool of Repo-Man/PP1 localizes
homogeneously to the anaphase chro-
matin, where it removes the major mitotic
phosphorylations on Histone H3 (Thr3,
Ser10 and Ser28). We have shown that
this de-phosphorylation mediated by
Repo-Man/PP1 is essential for the re-
establishment of heterochromatin in post-
mitotic cells.

A second pool of Repo-Man/PP1
targets to the periphery of chromosomes
slightly later in anaphase. There, it con-
tributes to the recruitment of Importin β
to the chromatin. This fraction of Repo-
Man appears to be important in the
regulation of nuclear pores and lamina
re-assembly since depletion of the complex
leads to an abnormal lamina morphology
and nuclear shape in G1 cells.

In summary Repo-Man/PP1 represents
a molecular coupler between chromatin
re-modeling and nuclear envelope (NE)
re-formation that coordinates these pro-
cesses during mitotic exit.1

Introduction

Within the cell cycle, mitosis is a key
process for the maintenance of genome
stability. Progress through mitosis is highly
regulated, and reversible protein phos-
phorylation is one of the key features that
allows an orderly and timely execution of
cell division.2

Once sister chromatids have separated,
the various biochemical and structural
changes that have supported the entry
into mitosis need to be reversed in order
to start a new cell cycle.3 This part of cell
division is termed mitotic exit.

During mitotic exit, the compact
structure of mitotic chromosomes needs
to be dismantled and the chromatin de-
condensed to allow transcription to be
resumed in G1. At the same time, major
rearrangements of the cytoskeleton take
place to allow physical separation of the
two daughter cells. Finally, in organisms
in which the nuclear envelope (NE)
breaks down during mitosis (open
mitosis), the nuclear-cytoplasmic barrier
must re-form. All these events take place
in a brief time period (about 10 min in a
human cell) and they are coordinated in
space and time.4

How the coordination of events during
mitotic exit is achieved is an important
open question, but the rapidly emerging
picture is that this process is driven by a
tug-of-war between kinases and phospha-
tases and their relative affinity for their
substrates.2,5-10 Thus, while prometaphase/
metaphase is driven by high levels of CDK
and low phosphatase activity, mitotic exit
is dominated by a burst in phosphatase
activity and the decreasing phosphoryla-
tion of CDK substrates.
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In view of this, it is now of great interest
to identify the phosphatases that regulate
mitotic exit in space and time and to
identify their specific substrates.3,11,12

Chromatin Re-Organization
During Mitotic Exit

During early mitosis, chromatin is orga-
nized as highly compacted structures
known as mitotic chromosomes. At ana-
phase onset, when the sister chromatids
start their journey to the opposite spindle
poles, the chromatin undergoes several
important changes that are essential for the
reformation of a functional interphase
nucleus. While several chromosomal pro-
teins (histones and non-histones) are
dephosphorylated but remain in place,
others leave the chromosomes (e.g., the
chromosomal passenger complex (CPC))
and still others are recruited to anaphase
chromosomes.

Several studies have suggested that
protein phosphatase 1 (PP1) is important
for cells to progress from mitosis to G1.
For example, PP1 mutants in Drosophila
show abnormal sister chromatid segrega-
tion and excessive chromosome condensa-
tion.13-15 This phosphatase has also been
suggested to promote histone dephosphor-
ylation during mitotic exit.16,17 However,
the PP1 targeting subunits responsible for
these chromatin re-organisations are not
known.

Repo-Man was identified as a nuclear
protein that is a specific regulatory subunit
for PP1c,18 which targets to the chromatin
in anaphase. Repo-Man is mainly localized
diffusely in the cytoplasm in early mitosis
with a small fraction on mitotic chromo-
somes. At anaphase onset, Repo-Man is
rapidly enriched on the segregating chro-
matin where it stays until the following
entry into mitosis. Repo-Man localization
and dynamics are controlled by phosphor-
ylation. CDK1-CyclinB can phosphorylate
Repo-Man in vitro. Mitotic Repo-Man
(highly phosphorylated) has lower affinity
for chromatin. Indeed, the behavior of the
small chromosome-associated fraction in
early mitosis is very dynamic (Fig. 1A, A’
and C). Chemical inactivation of CDKs
by roscovitine causes the re-localization
of Repo-Man to chromosomes within a
few minutes.19,20 Repo-Man mutants that

cannot be fully phosphorylated by CDK
localize to the chromatin even during
prometaphase-metaphase. From anaphase
onset and in interphase, Repo-Man is
much less dynamic (Fig. 1B, B’ and C).

Besides regulating Repo-Man local-
ization, CDK phosphorylation has a
second important function: it regulates
the binding of PP1 to Repo-Man. This
phospho-regulation of the complex in
early mitosis is extremely important, since
it ensures that the Repo-Man/PP1 holoen-
zyme is not fully activated before anaphase
onset. The binding of Repo-Man to PP1
and targeting of the complex to the
chromosomes are both very brief and
highly dynamic in early mitosis.20 This
transient base-line activity is probably
necessary and sufficient to maintain the
correct level of H3 phosphorylation on the

chromosomes.21 This is particularly rel-
evant for the phosphorylation of Histone
H3 Thr3, as it represents the docking site
for the chromosome passenger complex
(CPC) on mitotic chromosomes.22-25

Repo-Man is both a targeting subunit
and substrate for PP1. This double
regulation of the complex appears to be
designed to act as a signal amplifier. In
fact, small changes in CDK activity can
result in enhanced binding of PP1 to
the Repo-Man RVTF motif (Repo-Man
docking site for PP1) and in Repo-Man
de-phosphorylation. The resulting holoen-
zyme thus has an increased affinity for the
chromatin and can effectively de-phos-
phorylate histone H3 and possibly other
chromosomal substrates (Fig. 1C).20

The phosphorylation status of the
Repo-Man regulatory subunit rather than

Figure 1. Repo-Man/PP1 complex regulation and function in mitosis. (A and B) Analyses of the
dynamic behavior of GFP:Repo-Man in prometaphase (A and A’) and interphase (B and B’) FRAP of
HeLa cells transiently expressing GFP-Repo-Man in prometaphase (A and A’) and interphase (B and
B’). Cells were bleached using 488 nm laser line of a confocal microscope. Images were taken before
bleaching and at the indicated time points after the end of the bleached pulse (dotted line) at every
2 sec. The bleached area is indicated by a blue circle. Graphs represent corresponding quantitative
data for fluorescence recovery kinetics for the bleached area on chromosomes, (blue line) and
unbleached area on chromosomes (red line) and, for the mitotic cells also the unbleached
cytoplasms (green line). Fluorescence intensities of GFP-Repo-Man in the bleached region were
measured and expressed as recovery rate. The values represent averages +/2 SD from 5 (mitosis)
and 5 (interphase) cells. (C) CDK and PP1 control the on/off-rate of Repo-Man onto the
chromosomes.
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PP1 itself directs the formation and
activity of the Repo-Man/PP1 holoen-
zyme. This appears to contrast with results
of a recent study, in which cell-cycle
regulation of PP1 was found to occur at
the level of the catalytic subunit, through
PP1 phosphorylation and inhibitor-1
binding.9 Our data suggest that there
may be two different mechanisms for the
regulation of PP1 activity in mitosis. It is
possible that both are used according to
the different substrates targeted.

At anaphase onset, Repo-Man/PP1
stably associates with the chromatin and
promotes Histone H3 de-phosphorylation
of Thr3,26,27 Ser1028 and Ser28.20,21 The
importance of these de-phosphorylations
during mitotic exit is not completely
understood. Removal of the Th3ph mark
could be involved in the mechanism of
CPC transfer to the spindle midzone,
however clear demonstration of such a
mechanism is still missing.

The removal of the Ser10 mark on
histone H3 seems to be involved in the
regulation of the binding of heterochro-
matin Protein 1 (HP1). HP1 recognizes
methylation of H3K9 to direct hetero-
chromatin formation.29,30 Aurora B phos-
phorylates Ser10 on H3 in prophase and
this promotes the dissociation of HP1
from pericentric heterochromatin. Re-
association of HP1 with chromatin can
occur after dephosphorylation of H3S10p.
We have shown that the Repo-Man PP1
complex is responsible for the phospho-
switching regulation that mediates the
re-establishment of heterochromatin in
post-mitotic cells.

Nuclear Envelope Re-Formation

The coordination of chromatin de-con-
densation with nuclear reassembly during
mitotic exit is not well understood.

Following CDK inactivation and the
extraction of polyubiquitinated Aurora B
by the AAA+ ATPase and ubiquitin-
dependent chaperone p97,31,32 NPC
re-assembly starts on the periphery of
the segregating chromatin and then pro-
ceeds in a step-wise manner.33 The first
re-assembly events initiate as early as
anaphase and much earlier than the
recruitment of nuclear envelope vesicles.
Detailed studies using the Xenopus in

vitro system have made great contributions
to clarify this process and to identify key
players.34 Moreover, recent studies on
the temporal re-association dynamics of
nucleoporins (Nups) during mitotic exit
have added to our understanding of the
post-mitotic assembly of the NPC. The
first Nups to accumulate at the chro-
mosome periphery are members of the
Nup107-160 complex followed by a small
fraction of Nup153 and Nup50.35-37 The
recruitment of the Nup107-160 complex
is mediated by Elys/MEL-28,38-41 which
can associate to chromatin via its AT-
hook.42 ELYS/MEL-28 seems to represent
an essential component in NPC re-
assembly both in vitro and in vivo.33

NPC reformation is regulated at several
levels by importin β. In mitosis, Importin
β binds to some of the Nups and pre-
vents their association. During anaphase,
RanGTP around chromatin directs the
release of the Nups from this inhibitory
complex with Importin β, therefore direct-
ing the spatial positioning of the NPC. As
stated above, it is believed that the first
NPC assembly step is conducted by the
seeding of single copies of the Nup107-
160 complex on the chromatin, mediated
by the molecular adaptor ELYS/MEL-28.
importin β negatively regulates the seeding
at these sites and subsequent assembly
steps are dependent on specific membrane
components.39,43,44 Depletion of ELYS/
MEL-28 abolishes the assembly of pores
at the chromatin periphery and causes
the formation of annulate lamellae (mem-
brane stacks of pores in the cytoplasm).
Also fundamental to this process are
the de-phosphorylation of nucleoporins,
chromatin associated factors and NE
membrane proteins.

A variety of evidence in the literature
supports the involvement of PP1 and
PP2A in nuclear membrane assembly at
the M/G1 transition.45-47

PP1 appears to be the major mitotic
lamin phosphatase responsible for removal
of mitotic phosphates from lamin B45 and
the A-kinase anchoring protein AKAP149
recruits PP1 at the nuclear envelope (NE)
upon somatic nuclear reformation in
vitro.46 PP1 targeting to the NE is also
a prerequisite for assembly of B-type
lamins. In Drosophila, reassembly of the
NPC is blocked by the specific PP1/PP2A

inhibitor okadaic acid.47 Although the
identity of the phosphatase responsible
for de-phosphorylation of NUPs remains
unknown, there are indications that at
least NUP153 and NUP 50 can interact
with PP1.48

During our studies aimed at identifying
the targets of Repo-Man/PP1 complex on
anaphase chromatin we discovered a
specific and direct interaction between
Repo-Man and importin β. This binding
is negatively regulated by Cdk phosphor-
ylation of the N-terminal domain (aa 1–
135) of Repo-Man. This interaction
appears to be important for targeting at
least a fraction of importin β to the
periphery of the anaphase chromosomes
and it seems to represent a direct structural
function of Repo-Man rather than requir-
ing catalytic activity of the Repo-Man/PP1
holoenzyme.

At this stage of mitotic exit, Repo-
Man also interacts with NUP50 and
NUP153.49 However more work is
required to understand how Repo-Man
interacts with this subset of nucleoporins
and to determine its biological relevance
at the transition from mitosis to G1.

The importin β targeting function of
Repo-man may represent an important
step in NE re-assembly since it has been
shown, at least in vitro, that Importin β
levels are critical for proper NE re-
assembly.41,44 In addition, it has been
suggested that the pathway of nuclear
pore complex assembly could be regulated
at sequential points by transportin and
importin β but also that other effectors
could exist, particularly for the FG nucleo-
porins Nup358, Nup153 and Nup50.39,44

Our experiments showed that lack of
Repo-Man compromises the process of
NE reformation: Importin β is not pro-
perly recruited to the nuclear rim but
form cytoplasmic aggregates that co-
localize with NUPs (possibly annulate
lamellae) and the nuclear lamina fails to
form a smooth structure after cells have
completed cytokinesis.

Current knowledge leads us to propose
the following model. Very early during
mitotic exit, the NUP107/160 complex is
recruited to regions at the chromosome
periphery via the chromatin binding
protein ELYS/MEL-28. This is negatively
regulated by importin β and transportin
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(Fig. 2A). In the vicinity of these seeding
regions, Repo-Man docks to the chro-
matin (directly or indirectly) and brings
importin β and an early pool of NUP153/
NUP50 (Fig. 2B). In this respect Repo-
Man could act either as an assembly factor
for these FG NUPS or as a spacer by
enriching some regions for importin β and
preventing the seeding of more NUP107/
160 complex.

Although the binding and recruitment
of importin β by Repo-Man seems to be
independent of the catalytic activity of the
Repo-Man/PP1 holoenzyme, it is plausible
to assume that, once the complex is
targeted to a localized region of the
chromosome periphery, it could be
involved in local de-phosphorylation
processes either of NUPs or the lamina
during the later steps of the nuclear
re-assembly process (Fig. 2C).

Further studies will be required to
elucidate the global functions of Repo-
Man at this stage of mitosis and to
identify substrates critical for nuclear
re-assembly. In particular it will be
important to clarify the mechanisms and
role of the interactions between Repo-
Man and NUP15350,51 during mitotic
exit. It will also be important to deter-
mine whether the fraction of Repo-Man

bound to the nuclear periphery has a role
in the organization and function of the
interphase chromatin.

Future Prospective

Contrary to what is was believed, the
emerging view is that protein phosphatase
complexes show stringent and selective
substrate specificity.11,52,53 The modifica-
tions of chromatin during mitotic exit
and the re-formation of a nuclear envelope
both require the de-phosphorylation of

several proteins in a local and timely
manner. To date only three major PP1
targeting subunits have been found to
be involved in these chromosome modifi-
cations in anaphase: Repo-Man,18-21

PNUTS54,55 and AKAP149.46,56,57

Clearly other targeting subunits must be
involved in this complex process and we
can hypothesize that the anaphase chro-
mosomes will give us more PP1 targeting
subunits that will have specific functions
regulating the transitional steps at the M/
G1 boundary.
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