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The nucleoporin ELYS/Mel28 regulates nuclear
envelope subdomain formation in HeLa cells
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In open mitosis the nuclear envelope (NE) reassembles at the end of each mitosis. This process involves the reformation of
the nuclear pore complex (NPC), the inner and outer nuclear membranes, and the nuclear lamina. In human cells cell cycle-
dependent NE subdomains exist, characterized as A-type lamin-rich/NPC-free or B-type lamin-rich/NPC-rich, which are
initially formed as core or noncore regions on mitotic chromosomes, respectively. Although postmitotic NE formation has
been extensively studied, little is known about the coordination of NPC and NE assembly. Here, we report that the
nucleoporin ELYS/Mel28, which is crucial for postmitotic NPC formation, is essential for recruiting the lamin B receptor (LBR)
to the chromosomal noncore region. Furthermore, ELYS/Mel28 is responsible for focusing of A-type lamin-binding proteins
like emerin, Lap2a and the barrier-to-autointegration factor (BAF) at the chromosomal core region. ELYS/Mel28 biochemically
interacts with the LBR in a phosphorylation-dependent manner. Recruitment of the LBR depends on the nucleoporin
Nup107, which interacts with ELYS/Mel28 but not on nucleoporin Pom121, suggesting that the specific molecular
interactions with ELYS/Mel28 are involved in the NE assembly at the noncore region. The depletion of the LBR affected
neither the behavior of emerin nor Lap2a indicating that the recruitment of the LBR to mitotic chromosomes is not involved
in formation of the core region. The depletion of ELYS/Mel28 also accelerates the entry into cytokinesis after recruitment of
emerin to chromosomes. Our data show that ELYS/Mel28 plays a role in NE subdomain formation in late mitosis.

Introduction

In eukaryotes the nuclear envelope (NE) separates the nucleo-
plasm from the cytoplasm to coordinate the spatial and temporal
regulation of genomic functions.1,2 Therefore, it is important to
understand how the NE is formed, as this process is crucial to
determine the overall architecture and function of the nucleus.

In metazoans the NE consists of the outer nuclear membrane
(ONM), which fuses with the inner nuclear membrane (INM)3 at
places where the nuclear pore complexes (NPC) are embedded.4,5

The INM is attached to the nuclear lamina, a meshwork of A- and
B-type lamins.6 The NPC is a 125-MDa sophisticated assembly
of ~30 nucleoporins (Nups),7-9 subdivided into scaffold nucleo-
porins that constitute inner and outer rings, peripheral nucleo-
porins that constitute cytoplasmic fibrils, the nuclear basket, the
central channel forming a permeability barrier to mediate the
selective nucleocytoplasmic exchange of molecules10-12 and pore
membrane proteins.13-15 While the ONM is continuous with the
endoplasmic reticulum (ER), the INM has a subset of more than
60 INM proteins that interact with A- or B-type lamins.16 The

nuclear lamina, together with INM proteins, is important for
determining nuclear shape and integrity, and is involved in
chromatin organization. These properties of the nuclear lamina
link the NE to various human diseases, collectively called
laminopathies.17,18

Human cells possess two types of lamin: A-type and B-type.
Lamins are type V intermediate filaments and contain an
N-terminal globular head domain, a central a-helical rod domain,
and a C-terminal tail domain.6 Our group previously reported
that in human cells, A-type lamins are enriched in the NPC-free
regions of the NE, the so-called pore-free islands, while B-type
lamins are enriched in the NPC-rich region of the NE.19 Such NE
subdomains appear and disappear periodically during the cell
cycle. Different properties of A- and B-type lamins, which form
separate, but interacting networks or subdomains at the NE have
also been reported in different species and have been proposed to
be important for the nuclear function.20-22

In eukaryotic cells, which undergo open mitosis, the NE, NPC
and nuclear lamina disassemble at prophase to allow mitotic
spindle formation and reassemble at the end of mitosis.23 In
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human dividing cells the A- and B-type lamin-rich subdomains
are formed at the end of mitosis, where they correspond to the
core and noncore regions of mitotic chromosomes, respec-
tively.24,25 The core region is a part of the mitotic chromosomes
next to the spindle pole- and the central spindle areas in telo-
phase.25 The barrier-to-autointegration factor (BAF), an A-type
lamin-binding protein, initiates formation of the core region by
sequentially recruiting LEM domain-containing proteins, where
L, E and M stand for the INM proteins Lap2a, emerin and
MAN1, respectively.26

The noncore region is characterized by NPCs, lamin B and
the lamin B receptor (LBR). The LBR is one of the best-studied
INM proteins and is reported to interact directly with DNA27 and
many other proteins, such as lamin B,28 heterochromatin-binding
protein 1 (HP1),29 HA95,30 heterochromatic methyl-binding
protein (MeCP1)31 and importin β32,33 through its hydrophilic N-
terminus. The LBR displays a C-14 sterol reductase activity at its
C-terminus.34 Furthermore, the LBR has been reported to play an
important role in NE formation in Xenopus and sea urchin
in vitro systems,32,35,36 while the function of human LBR in
NE formation has been described as redundant along with other
INM proteins.37 Moreover, human LBR is linked to the Pelger–
Huët anomaly (PHA) through its function in granulocyte
differentiation.38

The nucleoporin ELYS/Mel28, initially identified as a putative
transcription factor in mouse,39 is essential in postmitotic NPC
assembly.40-44 The binding of ELYS/Mel28 to mitotic chromo-
somes through its AT-hook domain was suggested to trigger NPC
formation by recruitment of the Nup107-160 complex, followed
by recruitment of transmembrane nucleoporin Pom121 and the
Nup205–93 complex.44-46 These nucleoporins configure the NPC
scaffold. The NPC matures as peripheral nucleoporins become
incorporated to construct cytoplasmic fibrils, nuclear baskets
and permeability barriers.47 Recently, ELYS/Mel28 was shown to
have a second function in mitosis beyond NPC assembly. ELYS/
Mel28 localizes with the Nup107-160 complex to kinetochores
in mitosis.42 The Nup107-160 complex was suggested to play a
crucial role for the mitotic spindle function,48-50 and its com-
ponents such as Seh1 were shown to regulate the centromeric
localization of the chromosomal passenger complex (CPC).51 The
CPC consists of INCENP, survivin, borealin and Aurora B
kinase and is involved in the bipolar attachment of microtubule
(MT) fibers at kinetochores, chromosome condensation, the
spindle assembly checkpoint (SAC) and cytokinesis.52,53 It is
unclear if ELYS/Mel28 has parallel functions to the Nup107-160
complex with which it interacts.42

Several reports provide evidence that lamins, the INM proteins
and NPC distribution are closely connected structurally and
functionally during interphase.19,54-60 However, how reformation
of NPCs and the NE is coordinated on chromosomes during
mitosis is not understood.

In this study, we examined the coordination of the postmitotic
assembly of NPCs and the NE using HeLa cells, which display a
clear divergence of A-type and B-type lamins and their interact-
ing INM proteins on mitotic chromosomes. Through live cell
imaging and the small interfering RNA (siRNA) technique, we

found that recruitment of the LBR to the chromosomal noncore
region and the focusing of emerin at the chromosomal core region
were both dependent on ELYS/Mel28. The function of ELYS/
Mel28 on NE assembly at the noncore region probably relies on
a protein-protein interaction, besides its known interaction with
the Nup107-160 complex, because immunoprecipitation (IP)
experiments revealed that ELYS/Mel28 interacts specifically with
the LBR in a phosphorylation-dependent manner. Behaviors of
emerin or Lap2a were not affected upon depletion of the LBR,
suggesting that the effect of ELYS on the recruitment of the LBR
to the noncore region is different from its effects on INM pro-
teins at the core region. Furthermore, the depletion of ELYS/
Mel28 accelerated progression of late mitosis, particularly after the
recruitment of emerin onto the chromosomes, which could be
partially responsible for the improper formation of the core
region. Our data show, that ELYS/Mel28 plays a role in events
during late mitosis, including the NE subdomain formation.

Results

The depletion of ELYS/Mel28 perturbs targeting of the LBR to
chromosomes and focusing of emerin at the chromosomal core
region in post-mitosis. To examine the function of ELYS/Mel28
in postmitotic NE reformation, we followed recruitment and
localization of INM proteins to mitotic chromosomes using live
imaging with HeLa cells stably expressing the yellow fluorescent
protein (YFP) derivative Venus fused to the LBR and the super
enhanced cyan fluorescent protein (SECFP) fused to emerin
(Fig. 1A). We compared control cells (control: either untreated
or transfected with control oligo; see also Fig. S1) with cells
depleted of ELYS/Mel28 (ELYS/Mel28 kd) by RNA interference
(RNAi). The position of each cell observed with live imaging was
marked and checked for an efficient depletion of ELYS/Mel28
by immediate immunofluorescence (IF) staining with ELYS/
Mel28 antibody after live observation (see legend of Fig. 1).
Comparing the signal intensities of ELYS/Mel28 by IF staining
(Fig. 1C and D) in control cells and cells depleted of ELYS/
Mel28 showed an average depletion efficiency of 80%, which is
in agreement with the results obtained by western blotting
experiments (Fig. S2).

In the control cells, the LBR-Venus bound to the chromo-
somal noncore regions 8 min after anaphase onset (AO) (Fig. 1A).
From 8–14 min after AO, the LBR-Venus signal intensity
increased. SECFP-emerin, like the LBR-Venus, was targeted to
outer chromosome regions ~8 min after AO, but most of the
chromosome signals of emerin focused at the core region of
mitotic chromosomes ~12–14 min after AO, as reported pre-
viously24 (Fig. 1A, initial targeting of emerin is shown by arrows,
focusing at the chromosomal core region shown by arrow heads,
see also enlarged figures of emerin). About 20 min after AO,
the SECFP-emerin and LBR-Venus signal slightly dispersed
throughout the newly formed NE.

In ELYS/Mel28-depleted cells, chromosome recruitment of
the LBR-Venus was strongly impaired (Fig. 1B). Western blott-
ing demonstrated that ELYS/Mel28 reduction did not affect
protein levels of the LBR (Fig. S2A and B). On the other hand,

188 Nucleus Volume 3 Issue 2

http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf
http://www.landesbioscience.com/journals/NUCL/2011NUCLEUS0101R-Sup.pdf


© 2012 Landes Bioscience.

Do not distribute.

Figure 1. For figure legend, see page 190.
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in ELYS/Mel28-depleted cells, the SECFP-emerin signal appeared
at the noncore region similarly as in control cells after AO, but
unlike control cells, it did not focus to the core region and
significant fluorescent signals remained all around the chromo-
somes (Fig. 1B, see enlarged figures of SECFP-emerin). Loss
of ELYS/Mel28 did not affect the timing of SECFP-emerin
targeting to mitotic chromosomes after AO, but ELYS/Mel28-
depleted cells completed mitosis faster than control cells
(Fig. S1C). Quantified results clearly showed that in ELYS/
Mel28-depleted cells, the time from the chromosome recruitment
of emerin to cytokinesis (judged by DIC) was significantly
reduced (Fig. S1C). These results show that the depletion of

ELYS/Mel28 affects late mitotic events in NE-subdomain
formation.

The recruitment of the LBR to mitotic chromosomes is
dependent on ELYS/Mel28 and the Nup107-160 complex. To
understand if ELYS/Mel28 specifically affects the recruitment
of the LBR to mitotic chromosomes rather than binding of the
LBR to other nucleoporins that interact with ELYS/Mel28, we
tested the dependency of the recruitment of the LBR on different
nucleoporins.

Transfection with two different siRNA oligos for ELYS/Mel28,
which depleted ELYS/Mel28 by about 70–80% (Fig. 2A and
D, and Fig. S2B) severely impaired the recruitment of the

Figure 2. The targeting of the LBR depends on ELYS/Mel28 and the Nup107–160 complex but not on the nucleoporin Pom121. Immunofluorescence (IF)
staining of mitotic cells depleted of (A) ELYS/Mel28 for 50 h, (B) Pom121 for 50 h, (C) or Nup107 after double transfection for 75–80 h. Two different siRNA
oligos were used to for ELYS/Mel28 depletion (I and II). (D) The depletion efficiency of ELYS/Mel28, Pom121 and Nup107-Venus, observed
in (A–C) respectively, was evaluated by comparing the IF signal intensities of the control cells and the depleted cells. (E) Endogenous Pom121,
ELYS/Mel28, and LBR were detected by IF staining after LBR-depletion with RNAi (LBR kd). (F) Endogenous Lamin B, LBR, and Nup62 were detected
by IF staining in ELYS/Mel28-depleted cells. Scale bars = 10 mm. The pictures are projections of image stacks (distance = 0.2 mm; three images).

Figure 1 (See previous page).The targeting of the LBR depends on ELYS/Mel28 and the Nup107-160 complex but not on the nucleoporin Pom121.
Immunofluorescence (IF) staining of mitotic cells depleted of (A) ELYS/Mel28 for 50 h, (B) Pom121 for 50 h, (C) or Nup107 after double transfection for
75–80 h. Two different siRNA oligos were used to for ELYS/Mel28 depletion (I and II). (D) The depletion efficiency of ELYS/Mel28, Pom121 and Nup107-
Venus, observed in (A–C) respectively, was evaluated by comparing the IF signal intensities of the control cells and the depleted cells. (E) Endogenous
Pom121, ELYS/Mel28, and LBR were detected by IF staining after LBR-depletion with RNAi (LBR kd). (F) Endogenous Lamin B, LBR, and Nup62 were
detected by IF staining in ELYS/Mel28-depleted cells. Scale bars = 10 mm. The pictures are projections of image stacks (distance = 0.2 mm; three images).
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endogenous LBR to mitotic chromosomes. As postmitotic NPC
formation was inhibited, the Pom121 signal was absent from
mitotic chromosomes and accumulated in the cytoplasm in ELYS/
Mel28-depleted cells, as reported previously.42 The depletion of
Pom121 by siRNA did not affect the recruitment and localization
of the LBR to chromosomes (Fig. 2B and D; Fig. S2C), indicat-
ing that ELYS/Mel28 had a primary effect on LBR recruitment.

Since the Nup107-160 complex interacts with ELYS/Mel28,
we examined if its depletion affected localization of the LBR.
We depleted Nup107, as a representative for the Nup107-160
complex, by RNAi in cells stably expressing Nup107-Venus. IF
staining showed that the binding of the LBR to mitotic chro-
mosomes was reduced when Nup107 was depleted about 80%
by RNAi (Fig. 2C and D; Fig. S2D). Notably, the localization of
ELYS/Mel28 was also affected by the Nup107-depletion; its
binding to chromosomes was decreased and ELYS/Mel28 was
partially dispersed into the cytoplasm. Conversely, the depletion
of the LBR did not change the recruitment of ELYS/Mel28,
Pom121 or other nucleoporins such as Nup153, Nup62 and
Nup214 to mitotic chromosomes (Fig. 2E; Figs. S3A and S3C).
Furthermore, the functionality of interphase NPCs in the LBR-
depleted cells was not changed when examined in an in vitro
transport assay.61 These results show that the LBR is not involved
in postmitotic NPC formation (Fig. S3D).

Consistent with the previous data, the LBR targets mitotic
chromosomes earlier than B-type lamin in anaphase.62,63 The
depletion of ELYS/Mel28 or LBR did not affect the chromo-
some binding of B-type lamin (Fig. 2F; Fig. S3B), indicating
that ELYS/Mel28 specifically targets the LBR to mitotic
chromosomes.

The LBR and ELYS/Mel28 interact in a phosphorylation-
dependent manner. Next, we examined the interaction between
the LBR and ELYS/Mel28 and the Nup107-160 complex. The
LBR C-terminally fused to EGFP (LBR-EGFP) and stably
expressed in HeLa cells (Fig. 3C) was immunoprecipitated with
anti GFP-antibodies, and coprecipitation of ELYS/Mel28 and
Nup107 was examined. Due to the insoluble properties of NPC
and NE proteins, solubilization and extraction of these com-
ponents were only successful with high-salt and detergent con-
ditions (see Materials and Methods). Immunoprecipitation of
LBR–EGFP from unsynchronized extracts did not yield copre-
cipitation of ELYS/Mel28 or other nucleoporins (Fig. 3A, left
blot). IP experiments using mitotic cell extracts, prepared either
from cells synchronized to prometaphase with nocodazole
(Fig. 3A, middle blot) or released from nocodazole for 60 min
to accumulate cells between metaphase and telophase (Fig. 3A,
right blot), showed that LBR-EGFP coprecipitates with ELYS/
Mel28, but with decreased efficiency as mitosis progressed to
telophase. No coprecipitation was observed with unsynchronized
extracts (Fig. 3A, left blot). Under the same conditions, LBR-
EGFP neither coprecipitated Nup107, other nucleoporins, nor
lamin B (Fig. 3A, left, middle and right blot). The endogenous
LBR coprecipitated with LBR-EGFP from all cell extracts, but
with less efficiency in mitotic extracts.

The LBR is phosphorylated by CDK1/cyclin B kinase and
SRPK1 kinase in mitosis.64,65 To test the effect of phosphorylation

in the interaction between the LBR and ELYS/Mel28, IP experi-
ments were performed on mitotic extracts treated with either
phosphatase or phosphatase inhibitors, for which the Pom121
signal served as an internal phosphorylation control (Fig. 3B).
ELYS/Mel28 coprecipitated with the LBR when a phosphatase
inhibitor was added, whereas the addition of phosphatase
hampered the coprecipitation. In contrast, the addition of phos-
phatase enhanced the coprecipitation of the endogenous LBR
while addition of phosphatase inhibitor decreased the coprecipita-
tion. In agreement with a previously reported interaction between
the LBR and importin β,32,33 importin β co-precipitated with
LBR-EGFP, while importin a did not.

We further performed pull-down experiments with a recom-
binant protein, consisting of the soluble N-terminal fragment
of the LBR (amino acids 1–211) fused to GST and GFP (GST-
LBR211aa-GFP; Figure 3D) from mitotic or unsynchronized
extracts. Since GST-LBR211aa-GFP contains a nuclear localiza-
tion sequence (NLS),66 we used a control fragment containing
the SV40 T antigen NLS sequence (GST-NLS-GFP). ELYS/
Mel28 bound to GST-LBR211aa-GFP from mitotic extracts
(Fig. 3F) and unsynchronized extracts (Fig. 3E). These pull-
down experiments show that the LBR interacts with ELYS
through its N-terminus (amino acids 1–211).

The biochemical interaction between the LBR and ELYS,
which is phosphorylation-dependent, could be involved in the
recruitment of the LBR to mitotic chromosomes as shown in
Figures 1A and B and Figure 2 (see Discussion).

ELYS/Mel28 is involved in proper localization of BAF,
Lap2a, and lamin A/C to the chromosomal core region. The
depletion of ELYS/Mel28 altered the recruitment of emerin to
the chromosomal core region (Figs. 1B and 5C). We next
examined whether the depletion affects other INM components
known to concentrate at the chromosomal core region in post-
mitosis. For this, we examined the localization of endogenous
Lap2a (Fig. 4A; Fig. S4D), lamin A/C (Fig. 4B), and BAF
(Fig. 4D; Fig. S4C and S4D) with IF staining in control cells
or cells depleted of ELYS/Mel28, using two RNAi oligos as
described above. In control cells, Lap2a and BAF often
accumulated first at both sides of the core region next to the
central spindle- and spindle pole area, and then focused at the core
region next to the central spindle area (Fig. S4A and S4B). In
ELYS/Mel28-depleted cells, Lap2a and BAF either bound all
around the chromosomes instead of accumulating mainly at the
core region, or only at the core region next to the spindle pole
area, which is the opposite to what was observed in control cells
(Figs. 4B and C, 5D; Fig. S4D: see arrows for localization at
the spindle pole side). Lamin A/C, like Lap2a and BAF, was
also affected by ELYS/Mel28 depletion, but differently, as it
bound all around mitotic chromosomes in telophase and did not
concentrate to a specific side or region (Fig. 4B). The protein
expression levels of lamin A/C were unchanged (Fig. S2B). More
than 90% of ELYS/Mel28-depleted cells displayed aberrant
localization of A-type lamin and Lap2a, as described above
(Fig. 4D).

Observation of BAF in control cells in telophase (Fig. 4D;
Fig. S4A) as judged by the post-anaphase progression (PA) index67
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(Fig. S4C) revealed that BAF localized to a clearly broad
chromosomal region in cells (Fig. S4A and 4D, upper panel of
control sample) with low PA indices (Fig. S4C), before it became
focused to the core region (Fig. 4D, lower panel of control
sample) in cells with high PA indices (Fig. S4C). A high PA
index indicates later mitotic stages (see figure legend of Fig. S4).
Conversely, in ELYS/Mel28-depleted cells, BAF did not focus

at the core region but stayed localized all around chromosomes
(Fig. 4D, upper panel of ELYS/Mel28 kd sample) in cells with
high PA indices (Fig. S4C). In some cases, however, BAF bound
at the spindle pole side of chromosomes, which is opposite from
the control cells, where BAF focuses at the chromosomal region
next to the central spindle area (Fig. 4D, lower panel of ELYS/
Mel28 kd sample; Fig. S4C).

Figure 3. The interaction between ELYS/Mel28 and the LBR is phosphorylation-dependent. (A) Coprecipitation of LBR–EGFP and ELYS/Mel28 was
examined from extracts of unsynchronized cells (Unsynchronized), cells synchronized to prometaphase with nocodazole treatment (Prometaphase), and
cells released from nocodazole treatment for 60 min (Meta/Telophase). The extracts were incubated with Protein G beads bound with (Anti-GFP-AB) or
without (control) anti-GFP antibody. Starting materials (Input), bound fraction to beads (IP), and unbound fractions (unbound) were subjected to SDS-
PAGE, followed by western blotting to detect LBR, ELYS/Mel28, Nup107, and lamin B. The upper membranes were probed with Mab414 antibody to
detect FG-nucleoporins. (B) Phosphorylation-dependency of the interaction between the LBR and ELYS/Mel28 was tested by addition of either l-protein
phosphatase (l-PPase) or phosphatase inhibitors to cell extract prepared from prometaphase synchronized cells (see Materials and Methods). HeLa cells
(HeLa), or HeLa cells stably expressing LBR-EGFP (HeLa LBR-EGFP) were used. Asterisks mark nonspecific signals. (C) A still image of HeLa cells stably
expressing LBR-EGFP used in A and B. Scale bar = 10 mm. (D) LBR contains eight transmembrane (TM) regions. The GST-LBR211aa-GFP fusion construct
contains the soluble, nucleoplasmic N-terminus of LBR, including a bipartite nuclear localization sequence (NLS). (E) Pull down experiments performed
with GST-LBR211aa-GFP from unsynchronized HeLa cell extract. (F) Same as E, except that pull down was performed from prometaphase synchronized
extract with nocodazole treatment.
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Our results demonstrate that the depletion of ELYS/Mel28
affected the behavior of multiple INM proteins that concentrate
to the chromosomal core region.

The depletion of ELYS/Mel28 affects NE formation of
the chromosomal noncore region and core region differ-
ently. Depletion of ELYS/Mel28 specifically inhibited
recruitment of the LBR to mitotic chromosomes, whereas
lamin B was unaffected. Additionally, multiple INM
proteins like BAF, emerin, Lap2a and A-type lamin, which
bind to the core region, spread to the noncore region, when
ELYS/Mel28 was reduced. Moreover, the depletion of
ELYS/Mel28 clearly shortened the time from the chro-
mosome recruitment of emerin to cytokinesis. We tried to
address whether these effects of ELYS/Mel28-depletion were
due to a failed recruitment of the LBR or caused via a
specific function of ELYS/Mel28.

Therefore, we examined the effect of LBR-depletion
using live imaging with LBR-Venus and SECFP-emerin
stably expressing HeLa cells as in Figure 1. The deple-
tion efficiency of the LBR in all cells, examined by live
imaging was confirmed by the reduction of Venus
signals (average depletion efficiency was about 80%; see
Fig. S5A). Different from the ELYS/Mel28-depletion, the
depletion of the LBR did not affect the timing of SECFP–
emerin to target mitotic chromosomes after AO (Fig. S5B).
The depletion of the LBR slightly affected the duration
of mitosis after emerin recruitment until cytokinesis,
however, the effect could be negligible compared with the
effect of the ELYS/Mel28-depletion (for comparison, see
Fig. S5B). Therefore, such acceleration could be caused by
a function of ELYS/Mel28 unrelated to the recruitment of
the LBR.

We further examined whether the altered behavior of
emerin or Lap2a upon ELYS/Mel28-depletion was a con-
sequence of the absence of the LBR at mitotic chromo-
somes. Live imaging analysis showed that the LBR-depletion
did not influence the accumulation of emerin at the chro-
mosomal core region (Fig. 5A–C). When examined by IF
staining, depletion of the LBR did not change the behavior
of Lap2a as it accumulated onto both chromosomal regions

next to the spindle pole- and the central spindle area (Fig. 5D and
E). We thus concluded that the effects caused by ELYS/Mel28-
depletion on INM proteins at the core region are different from

Figure 4. ELYS/Mel28 is involved in proper localization of BAF,
Lap2a, and lamin A/C to the chromosomal core region. (A and B)
Endogenous Lap2a, Pom121, Lamin A/C, Nup62, or ELYS/Mel28
was examined in HeLa cells (Control) or HeLa cells depleted of
ELYS/Mel28 for 60 h (ELYS kd) by IF staining. Pictures are
projections of image stacks (distance = 0.2 mm; three images).
Scale bars = 10 mm. (C) Quantification results of (A and B) are
shown. Localization at the core region of lamin A/C (n = 33 for
the control, n = 29 for the ELYS/Mel28 kd) and Lap2a (n = 49 for
the control, n = 38 for the ELYS/Mel28 kd). (D) Endogenous LBR
and BAF were examined in HeLa cells (control) or HeLa cells
depleted of ELYS/Mel28 for 50 h (ELYS kd) by IF staining. The
pictures were deconvoluted using Softworx. Scale bars = 10 mm.
White arrows in (A, B and D) indicate the localization of the A-type
lamin-binding proteins to the chromosomal region adjacent to the
spindle pole area.
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those on the LBR at the noncore region, indicating that ELYS/
Mel28 has specific, but distinct roles during late mitosis in NE
subdomain formation at the chromosomal noncore and core
regions.

Discussion

ELYS/Mel28 and the Nup107-160 complex recruit the LBR to
the mitotic chromosomal noncore region. In this study, by using

Figure 5. The depletion of the LBR does not inhibit focusing of emerin and Lap2a at the core region. Live imaging was performed with cells stably
expressing LBR-Venus/SECFP-emerin, like described in Figure 1 . (A) Untreated cells (control). (B) Cells depleted of LBR by RNAi for 48 h (LBR kd).
Arrowheads show SECFP-emerin accumulating at the core region, and arrows show initial targeting of SECFP-emerin to the chromosomes.
Scale bars = 10 mm. (C) The duration time of SECFP-emerin at the core region as observed in live imaging in Figures 1A and B , 5A and B (n = 24 for
the control, n = 15 for the ELYS/Mel28 kd, n = 10 for the LBR kd). (D) Endogenous Lap2a was examined by IF staining in HeLa cells stably expressing
LBR-Venus/SECFP-emerin depleted of ELYS/Mel28 as in Figure 1B , or depleted of LBR as in Figure 5B. Scale bars = 10 mm. (E) Quantification results of D
are shown. Control cells (n = 40), ELYS/Mel28 kd (n = 39) and LBR kd cells (n = 25).
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RNAi, we found that the recruitment of the LBR to the mitotic
chromosomal noncore region relied on the nucleoporins ELYS/
Mel28 and the Nup107-160 complex (Figs. 1B, 2A and C).
Biochemical data supported an interaction between ELYS/Mel28
and the LBR (Fig. 3), which was phosphorylation-dependent.
Pull down experiments showed that ELYS interacts with the
N-terminal region of the LBR (Fig. 3E and F).

The LBR has been reported to bind lamin B28 and interacts
with truncated Pom121137–513aa.57 However, we did not detect
any interactions between endogenous lamin B or Pom121 with
the LBR-EGFP under the present experimental conditions.
Transient associations between the LBR and lamin B and
Pom121 could have been destroyed during extraction. On the
other hand, the LBR also interacted with importin β (Fig. 3B),
as reported.32,33 It was previously shown, that binding between the
human LBR and importin β is not phosphorylation-regulated,68

corroborating our result, that the precipitation of importin β
with the LBR did not change upon addition of phosphatase
or phosphatase inhibitor (Fig. 3B). Our IP data indicated that
dephosphorylation strengthens the homotypic interaction of the
LBR, as it was suggested before for oligomerization and chro-
matin binding of the LBR.68,69 Phosphorylation of the LBR,
on the other hand, enhanced its interaction with ELYS/Mel28.
Although there was no detectable coprecipitation between the
full-length LBR and ELYS/Mel28 from interphase extracts, GST-
LBR211aa-GFP precipitated ELYS/Mel28 from the interphase
and mitotic extracts. The N-terminal fragment of the LBR is
likely more accessible for interaction with ELYS/Mel28.

The Nup107-160 complex and ELYS/Mel28 interact physi-
cally and functionally, although whether they bind as a stoichio-
metric tight complex is not known.70,71 Our results (Fig. 2)
indicate that a mutual binding of ELYS/Mel28 and the Nup107-
160 complex is required for recruitment of the LBR to mitotic
chromosomes in late anaphase/telophase. However, coprecipita-
tion of Nup107 with the LBR-EGFP was not detected in IP
experiments (Fig. 3A and B), indicating Nup107 could interact
with the LBR through ELYS/Mel28. The biochemical data
showed that the phosphorylation-dependent interaction between
ELYS/Mel28 and the LBR was strongest in prometaphase and
decreased as mitosis progressed to telophase (Fig. 3A). Live imag-
ing demonstrated that the LBR normally localizes to chromatin
in anaphase/telophase (Fig. 1), where the interaction with ELYS/
Mel28 should be weaker than in prometaphase. However, LBR is
unable to target to chromatin in the absence of ELYS/Mel28
(Figs. 1 and 2). We therefore hypothesize that ELYS/Mel28 and
the Nup107-160 complex together are required for targeting
but not for anchoring the LBR to chromatin. The LBR itself is
known to possess DNA-binding activity.27,28 Altogether, depho-
sphorylation of the LBR would decrease the interaction with
ELYS/Mel28 but would promote oligomerization or a compet-
itive interaction with other proteins to bind stably to chromatin.
Furthermore, our data support that the recruitment of the LBR
to chromosomes relies on an interaction with single or few
nucleoporins, instead of the NPC structure, because later-
recruiting Pom121 did not affect the localization of the LBR
(Fig. 2B). Thus, the targeting of the LBR and the first steps of

NPC assembly take place concomitantly in an ELYS/Mel28-
controlled fashion, leading to the assembly of the NE at the
noncore region. Importantly, the LBR was unnecessary for
postmitotic NPC formation (Fig. 2E; Fig. S3), implying that
ELYS/Mel28 contributes to NPC assembly independently of its
role in recruitment of the LBR.

The ELYS/Mel28-depletion affects the behavior of INM
proteins at the chromosomal core region. Our results demon-
strate that ELYS/Mel28 affects the focusing of several INM
proteins like BAF, emerin, Lap2a and A-type lamins to the core
region (Fig. 4; Fig. S4). Emerin and Lap2a behaved normally
upon depletion of the LBR (Fig. 5), indicating that ELYS/Mel28
regulates localization of INM proteins to the core and noncore
region by different mechanisms.

Formation of the core region is initiated by localization of
BAF and takes place by the subsequent recruitment of Lap2a,
emerin, and other LEM-domain containing proteins.26 Each
protein localizes to broader chromatin regions at first in anaphase
and gradually concentrates at the core region during telophase
(Fig. S4A and B).25,72 Closer examination of the dynamic
localization of Lap2a and BAF using the PA index (Fig. S4C),
clearly indicated that these proteins did not accumulate at the
core region when ELYS/Mel28 was reduced but bound to all over
chromatin or to chromosomal regions adjacent to the spindle
pole area. Since BAF is necessary for other LEM-containing
proteins to bind chromosomes and for a stable formation of the
core region,73,74 we cannot exclude the possibility that ELYS/
Mel28 primarily affects BAF.

ELYS/Mel28-depleted cells entered cytokinesis after emerin
recruitment to chromosomes earlier than control cells (Fig. S5B),
which significantly shortened the time of emerin at the core
region (Fig. 5C). This implies that the stable formation of the
core region and events that lead to cytokinesis might be con-
nected. ELYS/Mel28-depletion was reported to increase the
number of cells with a midbody structure, which supported a
role of ELYS/Mel28 in cytokinesis.42

Through what molecular mechanism does the depletion of
ELYS/Mel28 hinder the accumulation of the INM proteins at
the core region? Considering that ELYS/Mel28 interacts tightly
with the Nup107-160 complex,42 and that this complex regulates
the localization of the CPC,51 it is plausible to speculate that
phenomena seen in ELYS/Mel28-depleted cells were the con-
sequences of a disturbed function of the CPC. We actually
observed the mislocalization of CPC components, survivin and
Aurora B, from centromeres and in later stages at the midzone
of the central spindle (Fig. S5C, D and E). Many processes are
regulated by the CPC through the activity of Aurora B kinase
during mitosis.52 It is necessary to identify the relevant sub-
strates of Aurora B kinase to understand the role of the CPC in
localization of the INM proteins at the core region. In addition
to spindle dynamics, as suggested previously,75 the state of chro-
matin might be regulated by the CPC. Alternatively, INM
proteins might be phosphorylated by the CPC.

In contrast to ELYS/Mel28-depleted cells, which entered
cytokinesis faster, cells depleted of Seh1, another component of
the Nup107-160 complex, often became binucleated as a result
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of cytokinesis failure.51 It might be possible that the behavior
of the Nup107-160 complex changes due to the presence or
absence of ELYS/Mel28, as suggested recently,70,71 which in turn
might affect the function of the CPC. Instead, we cannot exclude
the possibility that ELYS/Mel28 could interact with other
important factors for cytokinesis.

In summary, our study showed that the nucleoporin ELYS/
Mel28 regulates postmitotic NE formation, revealing new aspects
how the postmitotic reassembly of NPCs, and the NE is
coordinated. ELYS/Mel28 governs the formation of the B-type
lamin/NPC-rich subdomain through its role in NPC assembly40-44

and recruitment of the LBR. ELYS/Mel28 also affects formation
of the A-type lamin/NPC-free subdomain, which might be
connected to the function of the CPC. These results underline the
versatile character of the nucleoporin ELYS/Mel28, which has a
structural role at the NPC and contributes to mitotic processes;
however, further studies are required to understand the function
of ELYS/Mel28 in the structural organization of NE subdomains
throughout the cell cycle.

Materials and Methods

Cell lines and siRNA transfection. HeLa cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen)
supplemented with 10% fetal bovine serum (FBS, SH30070,
Thermo Scientific) under 5% CO2 at 37°C.

To obtain stable expression clones, a HeLa cell line with
FRT sites was used with the Flp-In

TM

System (Invitrogen) with
the plasmids described below. For stable LBR-Venus/SECFP-
emerin expression under the EF1a promoter, a tandem expres-
sion vector was used, separating LBR-Venus and SECFP-emerin
with insulator sequences (Ix2) as described by Yahata et al.76

For stable LBR-EGFP expression, pFRT/V5-EF1a-LBR-EGFP
(a gift from Dr Imamoto, Osaka University) was applied.

Transfections were performed with Oligofectamine
TM

reagent
(12252–011, Invitrogen) and OptiMEMI

TM

serum (31985–062,
GIBCO) according to the instruction manual. For live imaging
and immunofluorescence staining, cells were treated with dsRNA
for 50 h and for 72 h, respectively, except Nup107 depletion. For
Nup107 depletion, cells were transfected twice 24 h apart (in
total: 75–80 h incubation with dsRNA). The following siRNA
oligos were used in this study: siRNA against ELYS/Mel28
(HSS146608 and HSS146610; Invitrogen), LBR (HSS105977;
Invitrogen), Nup107 according to Boehmer et al.77 (Integrated
DNA Technologies) and Pom121 according to Funakoshi et al.78

(Integrated DNA Technologies). As control, cells were treated
with transfection reagent only or with the siRNA oligo against
firefly luciferase GL2 according to Elbashir et al.79 (Qiagen).

Plasmid construction. The plasmid pGEX2T-NLS-GFP was a
gift from Dr. Yoneda, which contains GST fused to the SV40
large T-antigen nuclear localization sequence (PPKKKRKVEDP)
and GFP (S65T). The pGEX-GST-LBR211-GFP was con-
structed by exchanging the NLS region of pGEX2T-NLS-GFP
to LBR1-633nt amplified from human LBR cDNA by PCR with
the primers 5'-GGGAAGCTTATGCCAAGTAGGAAATTT
GCC and 5'-AAAGGGCCCTCCTCCAAACTCCAAGTCC.

Cell synchronization. To examine mitotic cells in live imaging
and IF staining, cells were synchronized with 2 mM thymidine
(T1895, SIGMA) for between 12–16 h and released by washing
for 10 h. For preparation of cell extracts for immunoprecipitation
(Fig. 3), HeLa cells expressing LBR-EGFP were synchronized
with 2 mM thymidine overnight, released for 8 h and incubated
with 0.1 mg/ml nocodazole for 2 h and either harvested directly
(Prometaphase) or released for 60 min into mitosis (Meta/
Telophase).

Live imaging and indirect immunofluorescence. Immuno-
fluorescence staining (IF) and live imaging were performed as
described by Funakoshi et al.57 with minor modifications. Cells
were seeded onto a glass-bottom dish with a grid to mark the
position of each cell. Before live imaging observations, the
medium was changed to DMEM without phenolred (21063-029,
Gibco) supplied with 10% FBS. Time-lapse images of metaphase
cells were captured every 2 min by a DeltaVisionRT microscopy
using PlanApo 60x/1.40 (Olympus), 10 h after releasing cells
from the thymidine treatment. To evaluate the knockdown
efficiency, cells were immunostained with anti-ELYS/Mel28
antibody immediately after live imaging. The position of each
cell observed with live imaging on the grid was used to find
cells after IF staining and to monitor the IF signal intensities of
ELYS/Mel28 of control cells and cells depleted of ELYS/Mel28.
IF Signal intensities were analyzed with Softworx software’s
polygon tool by comparing the signal of the same area for
ELYS/Mel28 at the nuclear rim subtracted from the background
signal outside the cell. For BAF staining cells were fixed with
3.7% paraformaldehyde and 0.2% glutaraldehyde supplied in
medium for 15 min, permeabilized with 0.1% Triton X-100 for
5 min and incubated with anti-BAF antibody at 4°C over
night. In all IF stainings, DAPI (4',6-diamidino-2-phenylindole;
10236276001, Roche) in a final concentration of 1 mg/ml was
used for chromatin staining. The following antibodies were
used in this study: rabbit anti-BAF (H00008815-M01, Abnova),
mouse anti-ELYS/Mel28 (BMR00513, Biomatrix Research),
mouse anti-Lamin A/C (SC-7292, Santa Cruz), goat anti-Lamin
B (SC-6217, Santa Cruz), rabbit anti-Lap2a (IQ175,
ImmuQuest), rabbit anti-LBR (1398–1, Epitomics; IF staining),
rat anti-Nup62 according to Maeshima et al.19 and rat anti-
Pom121 according to Funakoshi et al.78 Secondary antibodies
(Molecular Probes, Invitrogen) were goat anti rabbit Alexa 488
(A21206), goat anti rabbit Alexa 594 (A11037), goat anti mouse
Alexa 594 (A11005), goat anti mouse Alexa 488 (A11001), goat
anti rat Alexa 647 (A21235), donkey anti goat Alexa 594
(A11058), donkey anti-rat Alexa 488 (A21208), donkey anti-
rabbit Alexa 647 (A31573), and donkey anti mouse Alexa 488
(A21202). The images were captured with a DeltavisionRT
microscope (Applied Precision) using PlanApo 60x/1.40
(Olympus), acquired by Softworx (Applied Precision), processed
by ImageJ (http://rsb.info.nih.gov/ij) and arranged in Photoshop
CS (Adobe).

Immunoprecipitation. Unsynchronized LBR-EGFP expressing
HeLa cells were directly used for extraction or synchronized to
harvest cells in different mitotic stages as described above. Protein
extraction was performed according to Hawryluk-Gara et al.55

196 Nucleus Volume 3 Issue 2



© 2012 Landes Bioscience.

Do not distribute.

About 5–6 � 106 cells were resuspended in lysis buffer A (10 mM
Tris, pH 7.4, 400 mM NaCl, 1% Triton X-100, 2 mM EDTA,
1 mM DTT, and 1� protease inhibitor cocktail; complete mini,
04 0693 124001, Roche), sonicated, centrifuged at 14,800 rpm at
4°C for 15 min, and diluted 3.75� with dilution buffer (10 mM
Tris, pH 7.4, 2 mM EDTA, 1 mM DTT, and 1� protease
inhibitor cocktail; complete mini, 04-0693-124001, Roche). The
extracts were treated with 0.6 U/ml of lambda-protein phosphatase
(l-PPase; P0753, New England BioLabs) at 4°C for 30 min.
Untreated samples contained phosphatase inhibitors (PhosSTOP;
04-906-837-001, Roche) from lysis onward. The samples were
precleared with magnetic Dynabeads1 Protein G (100.03D,
Invitrogen). Finally, the precleared samples were incubated with
2 mg anti-GFP-antibody (11-814-460-001, Roche) bound to
Dynabeads1 Protein G for 1 h, washed with wash buffer (= lysis
buffer 3.75x diluted with dilution buffer), and resuspended with
sodium dodecyl sulfate-PAGE (SDS-PAGE) sample buffer. 1/2 of
the precipitate and 1/30th of the input (extract before IP) was
used for SDS-PAGE. The proteins were blotted to a poly-
vinylidene fluoride (PVDF) membrane and probed with an anti-
LBR antibody and anti-ELYS/Mel28 antibody used for IF
staining. To detect importins and nucleoporins, Nup153 and
Nup358, following antibodies were used: rat anti-importin a
(D168-3, MBL), rabbit anti-importin β (SC-11367, Santa Cruz)
and mAb414 (MMS-120P, Covance).

Protein purification and pull down. GST-LBR211aa-GFP and
GST-NLS-GFP were purified from Escherichia coli strain BL21
after induction with 0.3 mM IPTG at 20°C overnight. The
bacteria were resuspended and incubated in lysis buffer B
(50 mM Tris, pH 7.4, 200 mM NaCl, 5 mM MgCl2, 1 mM
DTT, 1 � protease inhibitor cocktail; complete mini, 04-0693-
124001, Roche) with 0.3 mg/ml lysozyme (126-02671, Wako)
for 20 min, sonicated, incubated with lysis buffer B containing
1% Triton X-100 for 30 min, and centrifuged at 12,000 g at
4°C for 30 min. The recombinant proteins were isolated from
the final supernatants with Glutathione-Sepharose

TM

4B beads
(17-0765-05, GE Healthcare) and eluted with elution buffer

(50 mM Tris, pH 8.0, 10 mM L-glutathione; G6529, Sigma).
The eluates were dialyzed against dialysis buffer (10 mM Tris,
107 mM NaCl, 0.3% Triton X-100, pH 7.4, 2 mM EDTA,
1 mM DTT, and 1� protease inhibitor cocktail; complete mini,
04-0693-124001, Roche). Then, 1.0–3.5 mg of either GST-NLS-
GFP or GST-LBR211aa-GFP, immobilized on 10 ml Glutathione-
Sepharose

TM

4B beads, were incubated with mitotic or unsyn-
chronized HeLa cell extracts, prepared as described for IP with
phosphatase inhibitors (PhosStop; 04-906-837-001, Roche)
under rotation at 4°C for 1 h. After repeated washing with IP
washing buffer, beads were resuspended in sample buffer and the
proteins were separated by SDS-PAGE (7% polyacrylamide gels),
blotted, and probed with an anti-LBR antibody and anti-ELYS/
Mel28 antibody used in IF staining.
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