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Abstract
Neonatal seizures have unique properties that have proved challenging for both clinicians and
basic science researchers. Clinical therapies aimed at neonatal seizures have proven only partially
effective and new therapies are slow to develop. This article will discuss neonatal seizures within
the framework of the barriers that exist to the development of new therapies and the challenges
inherent in bringing new therapies from the bench to the bedside. With the European Union and
United States creating national collaborative project infrastructure, improved collaborative
resources should advance clinical research on urgently needed new therapies for this disorder.
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Introduction
Neonatal seizures constitute one of the most common neurologic issues in the newborn
period and have engendered significant study and debate among neurologists. They are
unique in many facets including their pathophysiology, treatment and outcome compared to
seizures later in life. Much of this debate focuses on whether intensive treatment of neonatal
seizures is necessary, as their impact on outcome remains unclear. In addition, the current
treatments are often ineffective in controlling the seizures acutely and do not seem to impact
the development of later epilepsy. This article will discuss the evidence supporting the
deleterious effects of neonatal seizures in humans and animal models, future treatments, and
the challenges in moving those therapies from the lab to clinical practice.

Neonatal seizures are common, with an incidence of 1.8–3.5 per 1000 live births (Saliba et
al., 1999, Lanska et al., 1995). However, they can be difficult to identify clinically and are
challenging to differentiate from a variety of normal, poorly coordinated, neonatal
movements. Continuous EEG is currently the gold standard for identifying neonatal
seizures, which may be subclinical >50% of the time (Scher et al., 1993). In a study
comparing clinical identification of neonatal seizures by healthcare professionals with
continuous EEG monitoring, only 27% of clinical seizures were correctly identified and
73% of presumed clinical seizure had no electrographic correlate - leading to overdiagnosis
(Murray et al., 2008).

Neonatal seizures are most commonly associated with perinatal hypoxic-ischemic
encephalopathy (Tekgul et al., 2006). This entity has been extensively studied and has a
complicated pathophysiology that is mediated by excitatory amino acids, inflammatory
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cytokines, and free radical formation. Other common etiologies include vascular events,
brain malformations, infections, and inborn errors of metabolism. Table 1 lists common
etiologies associated with neonatal seizures and attempts that have been made to recreate
these in rodent models for laboratory study. The etiology of the neonatal seizures is
important to identify as it may have a significant effect on treatment (e.g. – pyridoxine-
responsive seizures) and directly relates to outcome.

Why is the neonatal brain uniquely susceptible to seizures?
The incidence of seizures is highest in the first year of life (Hauser et al., 1993) and the risk
of seizures is greatest in the neonatal period (Ronen et al., 1999, Saliba et al., 1999). Basic
science research studies suggest that, compared to the mature brain, the developing brain is
more excitable. The amount of chemoconvulsant required to induce seizures in immature
animal is much lower than that required for induction of seizures in adult animals
(Strafstrom et al., 1992). The enhanced excitability of the developing brain can be attributed
to a variety of factors including early and exuberant development of excitatory
neurotransmitter systems and comparatively delayed development of inhibition (for review
see Holmes, 1997; Rakhade & Jensen, 2009). The increased neural activity associated with
the enhanced excitation in the immature brain is essential for numerous activity-dependent
developmental processes, but it also renders the developing brain more susceptible to
seizures. Glutamate is the major excitatory neurotransmitter in the CNS that mediates its
action via two types of receptors, metabotropic and ionotropic. The ionotropic receptors are
further subdivided into N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-
methyl-4-isoxazol propionic acid (AMPA), and kainic acid (KA) receptors. During early
postnatal development, NMDA and AMPA glutamate receptors are transiently
overexpressed as compared to the mature brain and have a subunit composition that
enhances excitability. Compared to the adult brain, for example, the immature brain has
higher levels of NMDA receptor (NR) 2B proteins and lower levels of NR2A proteins
(Monyer et al., 1994). The NMDA receptor that contains NR2B subunit, in place of NR2A
subunit, has been shown to have a longer current decay time (Flint et al., 1997).

γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the adult brain.
However, due to developmental differences in the chloride gradient, GABA is excitatory in
immature neurons (Ben-Ari et al., 1989). Potassium/chloride cotransporter 2 (KCC2), a
cation chloride co-transporter channel important in extruding chloride out of the intercellular
space, does not reach mature levels until after the neonatal period (Rivera et al., 1999). The
chloride transporter sodium/potassium/chloride co-transporter 1 (NKCC1) predominates in
the neonatal period and actively transports chloride into the cell (Plotkin et al., 1997; Dzhala
et al., 2005). When GABAA receptors (a subtype of GABA receptors) are activated in
immature neurons, the neuronal membrane is depolarized and there is a net excitatory effect,
unlike the inhibitory effect of activating GABAA receptors in adult brain. Depolarizing
GABA currents are critically important for normal activity-dependent developmental
processes including neuronal proliferation, migration, targeting & synaptogenesis (LoTurco
et al., 1995; Owens et al., 1996; Ben-Ari et al., 1997; Leinekugal et al., 1997). Moreover, in
comparison to the adult brain, the immature brain has lower levels of GABAA receptors
(Swann et al., 1989; Brooks-Kayal & Pritchett, 1993) and smaller GABA-mediated currents
(Brooks-Kayal et al., 2001). Also, early in life, the subunit composition of GABAA
receptors is different than that of the adult brain and this difference in subunits makes them
less sensitive to benzodiazepine augmentation (Gibbs et al., 1996; Kapur & Macdonald
1999, Brooks-Kayal et al., 2001).
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Deleterious effects of neonatal seizures
Results from animal research suggest that neonatal seizures may exacerbate hypoxia-
ischemia induced brain injury (Dzhala et al., 2000; Wirrell et al., 2001; Björkman et al.,
2010; but also see Towfighi et al., 1999). Björkman and colleagues (2010) observed that
newborn piglets that were exposed to hypoxia and had seizures had greater brain injury
compared to piglets without seizures. Neonatal seizures in rats have also been shown to
cause long-term neurological problems. Adult rats that experienced flurothyl-induced
recurrent neonatal generalized tonic-clonic seizures do not exhibit spontaneous seizures but
have reduced seizure threshold (Isaeva et al., 2010). Multiple studies performed in various
animal models suggest that rats develop cognitive and behavioral deficits in later life
following early-life seizures (Lee et al., 2001; Sayin et al., 2004; Cornejo et al., 2008; Kleen
et al., 2011). An elegant study by Cornejo and colleagues (2008) found that even a single
episode of neonatal seizure in rats is sufficient to cause life-long alterations in working
memory.

While basic science research would suggest that neonatal seizures can be harmful to the
developing brain, there is a limited, but growing, literature supporting that this occurs in
humans. Legido et al. (1991) found seizure frequency to be a strong predictor of the risk of
developing a poor outcome and cerebral palsy in patients with asphyxia. However, this study
did not use continuous EEG monitoring and likely underdiagnosed seizures. Similar results
were found in a study evaluating neonates at risk for seizures, with the occurrence of
electrographic seizures being associated with microcephaly and severe cerebral palsy
(McBride et al., 2000). A 2002 study attempted to correlate the severity of seizures with
MRI and 1H-MRS findings (Miller et al., 2002). The study found significant changes in
the 1H-MRS spectra correlated to seizure severity suggesting that neonatal seizures in
patients with hypoxia were associated with worsened brain injury. A study evaluating the
utility of selective head cooling found that the presence of neonatal seizures at enrollment
was associated with an unfavorable outcome at 18 months (Gluckman et al., 2005). A more
recent study followed neonates with hypoxic-ischemic injury and clinical neonatal seizures
to assess neurodevelopmental outcome at four years of age (Glass et al., 2009). They found
that patients with HIE and neonatal seizures had worse motor and cognitive outcomes than
those without seizures independent of the severity of their MRI findings. There is, of course,
an inherent “chicken vs. egg” conundrum with studies of neonatal seizures in humans, and it
is not possible to be certain that seizures “cause” additional brain injury and worsened
outcome rather than being simply a marker of more severe underlying brain injury that may
not be detectable by history, exam or current neuro-imaging techniques. However, with this
caveat and in combination with studies in rodent models, the preponderance of the evidence
seems to support a contributory role of neonatal seizures to brain injury and subsequent
neurological disability.

What are the changes in the brain caused by neonatal seizures that may contribute to long-
term neurological disability in certain patients later in life? In human patients, it is very
difficult to parse out the effects of the etiology of the seizures and the effects of treatment
from the effects of seizures on the developing brain. Studies conducted in animal models
have identified cell death (Kadam & Dudek, 2007), aberrant synaptic connections (Grigonis
& Murphy, 1994; Sogawa et al., 2001; Kadam & Dudek, 2007; Xiu-Yu et al., 2007;
Rakhade et al., 2011), increases in thickness of prefrontal cortex (Kleen et al., 2011) and
changes in rate of neurogenesis (McCabe et al., 2001; Liu et al. 2003; Xiu-Yu et al., 2007;
for review see Porter, 2008) following neonatal seizures. In addition to structural
modifications, chronic suppression of inhibitory activity (Isaeva et al., 2009), a long-term
increase in excitatory activity (Isaeva et al., 2010) and modifications in subunit composition
of GABA (Zhang et al., 2004a; Laurén et al, 2005) and glutamate receptors (Zhang et al.,
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2004b; Silva et al., 2005; Swann et al., 2007; Cornejo et al., 2007) have been observed after
the occurrence of neonatal seizures (for review see Holopainen, 2008). Persistent changes in
inhibitory and excitatory pathways may explain some of the neurologic sequelae, such as
increased seizure susceptibility and memory impairment, observed in later life following
neonatal seizures. Cornejo and colleagues (2007) found impairment in working memory
associated with alterations in synaptic plasticity, increase in intracellular levels of GluR1
subunit (reduced expression at the membrane) and reduced levels of NR2A subunit.
However, currently these associations remain correlative and direct evidence that connects
neonatal seizures to adverse neurological outcome in later life remains elusive.

Challenges in treating neonatal seizures
Identification of neonatal seizures

One of the limitations for clinical research in neonatal seizures is accurate identification of
seizure activity. Amplitude-integrated EEG (aEEG) has become more widely available due
to its ease of application (fewer recording channels and can be applied by bedside nursing)
and lower cost compared to traditional EEG. Many recent studies have attempted to
correlate the seizures noted on aEEG with outcome to determine if the seizures are
independently associated with a worse outcome. This technique likely allows for better
screening of at-risk infants, though has well documented limitations with lower seizure
detection rates for brief, low amplitude, or focal seizures (Toet et al., 2002, review by Tao &
Mathur, 2011). In a retrospective study of patients who underwent aEEG and were found to
have neonatal status epilepticus (SE), the subgroup of patients with HIE and a poor outcome
had a longer duration of status epilepticus (van Rooij et al., 2007). Interestingly, this did not
hold true statistically for other causes supporting the idea that the HIE subgroup may be
particularly at risk for injury from neonatal SE. A recent randomized study evaluated the
treatment of clinical and subclinical seizures identified by aEEG in patients with HIE (van
Rooij et al., 2010). The study found that there was a significant correlation between the
severity of brain injury on MRI and the duration of seizure activity. Treatment of subclinical
seizures shortened the total duration of seizure patterns and reduced brain injury, suggesting
that patients at risk for HIE should be monitored electrographically to identify and treat
these subclinical seizures.

Lack or paucity of good treatment options
Effective treatment of neonatal seizures has proven challenging with studies suggesting that
traditional therapies are only modestly effective. In a study comparing the efficacy of
phenobarbital to phenytoin, seizure control was achieved in only about 45% of the patients
following administration of the first medication (Painter et al., 1999). The patients were then
given the alternate medication - increasing seizure control to only about 60%. This study
highlighted that 40% of patients continued to have seizures despite treatment with two
conventional antiepileptic medications. Benzodiazepines have been advocated for the
treatment of neonatal seizures and may be effective in refractory patients. In one study,
midazolam was effective in controlling electrographic seizures in patients who had failed
first-line therapy with phenobarbital or phenytoin (Castro Conde et al., 2005). Lidocaine has
also proven effective for neonatal seizures that have failed to respond to traditional
anticonvulsant medications; however, concerns for cardiac toxicity has limited its
widespread use (Malingré et al., 2006). Topiramate (Glass et al., 2011) and levetiracetam
(Abend et al., 2011) have shown some efficacy in preliminary retrospective studies. Table 2
lists neonatal seizure treatments and their presumed therapeutic targets. All of the currently
available antiepileptic drugs, including phenobarbital, have been developed using adult
animal models and tested clinically in adult patients. However, there are significant
anatomical, electrophysiological and neurochemical differences between the developing and
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mature brain. Therefore, immature brain may respond very differently than the adult brain to
both injury and treatment. As described above, in comparison to the adult brain, GABA as
an inhibitory system in early life is less well developed and even has an excitatory activity
that may explain the poor efficiency of phenobarbital and diazepam (which act by
augmenting GABAA receptor activity) to treat neonatal seizures. Another important factor to
be considered while treating neonatal seizures (in fact any disease), that is often neglected, is
the gender of the patient. A recent study demonstrated that the hyperpolarizing reversal
potential of GABAergic postsynaptic currents appear earlier in female than in male rat
hippocampus and neonatal seizures had very different immediate effects on the GABAergic
system in animals of different gender (Galanopoulou, 2008). These differences may affect
the efficacy of GABAergic drugs as well as later neurologic outcomes.

Risk of treatment
A major consideration for physicians treating neonates with seizures is the potential for
deleterious effects of seizure treatment on the developing brain. Several studies have shown
that in utero exposure to certain antiepileptic drugs (AEDs) can increase the risk of cognitive
dysfunction later in life (Meador et al., 2009, for review see Bromley et al., 2009). In
children with seizures treated with AEDs, the effects of AED treatment on cognition can be
difficult or impossible to differentiate from those of the seizures and/or underlying cause of
the epilepsy; although, in the well-known study of children with febrile seizures randomized
to placebo or phenobarbital, Farwell and colleagues demonstrated a persistent decrease in
the mean IQ of the phenobarbital treated group (Farwell et al., 1990). No such placebo
controlled randomized studies in humans exist that examine potential cognitive effects of
AED treatment of neonates, however based on animal research there is potential risk. In
rodent models, there is evidence that neonatal AED exposure, especially with older drugs
such as phenobarbital, phenytoin, and valproic acid, alters a number of activity-dependent
developmental processes, including neuronal gene expression, migration, differentiation and
survival (for review see Marsh et al., 2006).

New treatment targets and options
NKCC1 transporter inhibitors

Bumetanide, a loop diuretic, may prove to be a valuable adjunctive therapy for neonatal
seizures. As described above, due to developmental differences in chloride transporter
expression (higher NKCC1 levels and lower KCC2 levels in immature brain), during early
development GABA has excitatory activity (Ben-Ari et al., 1989; Plotkin et al., 1997; Rivera
et al., 1999; Dzhala et al., 2005). Bumetanide inhibits the NKCC1 transporter, altering the
chloride gradient such that GABA channel opening is more hyperpolarizing and possibly
allowing GABAergic medications to be more effective. There are currently two multicenter
clinical trials evaluating the efficacy of bumetanide in neonates with hypoxic-ischemic
encephalopathy.

Hypothermia
Therapeutic hypothermia has proven effective in improving outcomes in moderate to severe
hypoxic-ischemic encephalopathy (Shankaran et al., 2005, Gluckman et al., 2005). Brain
cooling likely modulates multiple neurotoxic processes including decreased cerebral
metabolism, ion pump dysfunction, formation of cytotoxic edema, free radical formation,
and neuroinflammation (Polderman, 2009). Limited case series suggest that it may be
effective for status epilepticus in children and adults, but evidence for the efficacy of
hypothermia in the treatment of seizures in neonates is limited. (Rossetti, 2011). A recent
study of neonates undergoing therapeutic hypothermia found that 65% had electrographic
seizures during or immediately after cooling, suggesting that hypothermia may have limited
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impact on the incidence of seizures (Wusthoff et al., 2011). Harbert et al. reviewed patients
with focal neonatal stroke who underwent therapeutic hypothermia for neonatal
encephalopathy and compared them with subjects with neonatal stroke who did not receive
hypothermia. They found that none of the five patients with focal stroke and hypothermia
developed seizures, while 70% of those who did not receive hypothermia developed seizures
(Harbert et al., 2011). While therapeutic hypothermia may have a positive impact on
hypoxic-ischemic encephalopathy, its utility as a treatment option for neonatal seizures
remains questionable.

AMPA receptor modulators
AMPA receptors are constructed from GluR1-4 subunits. Different combinations of the
subunit produce AMPA receptors with distinct function. For example, the presence of
GluR2 subunits reduces permeability of AMPA receptors to calcium ions (Bochet et al.,
1994). The immature rodent and human brain have a higher number of AMPA receptors that
lack GluR2 subunits and gate greater amounts of calcium (for review see Jensen, 2002,
Talos et al., 2006a,b). Post-translational modifications, such as alternative splicing of the
AMPA receptor subunits, also affects AMPA receptor functional properties. Alternative
splicing of AMPA receptor subunits generates flip and flop isoforms of the subunits
(Rogawski et al., 1999). The AMPA receptor that has subunits with the flip configuration
desensitizes at much slower rate than the AMPA receptors whose subunits are in the flop
configuration (Rogawski et al., 1999). The immature brain has higher flip/flop ratio than the
adult brain, which might contribute to the hyperexcitability of the developing brain (Monyer
et al., 1991; for review see Dingledine et al., 1999). In fact, in a neonatal rat model of
hypoxia-ischemia, Jensen and colleagues (1995) observed that the AMPA receptor
antagonist NBQX effectively blocked acute seizures, whereas GABA agonists such as
phenobarbital were ineffective in stopping seizures. Similarly topiramate, which has been
shown to block AMPA receptor activity, was found to be effective in suppressing hypoxia-
ischemia induced neonatal seizures in rats (Koh & Jensen, 2001). In a more recent study,
pretreatment of neonatal rats with talampanel, a noncompetitive antagonist of AMPA
receptors, was found to be effective in preventing the development of seizures during
hypoxia exposure (Aujla et al., 2009). These studies suggest that AMPA receptor
antagonists may prove an effective treatment for neonatal seizures.

Potassium channel openers
Potassium channels play a uniquely important role in controlling excitability in the
developing brain because of the lower levels of GABAergic inhibition. Mutations in genes
encoding KCNQ2 and KCNQ3 subunits of voltage gated potassium channels cause benign
familial neonatal convulsions (BFNC), a genetic epilepsy syndrome (Singh et al., 2003).
One of the interesting characteristics of BFNC is that the seizures begin in the first week of
life and usually spontaneously remit after a few weeks or months. This suggests that the
potassium channels play a particularly critical role in controlling hyperexcitability during the
neonatal period and early infancy. A view further supported by a study in rodents that
demonstrated that the blockade of KCNQ2/3 channel activity in early development results in
development of severe epilepsy; whereas, blockade of KCNQ2/3 channel activity during
adulthood results in a much milder phenotype (Peters et al., 2005). These observations
suggest that a potassium channel opener can be a highly effective way to enhance inhibition
and treat neonatal seizures. A recent study showed excellent efficacy of flupirtine, a
potassium channel opener, in treating neonatal seizures in rats (Raol et al., 2009). Flupirtine,
unlike diazepam and phenobarbital, completely blocked neonatal seizures induced by
chemoconvulsants and when administered 15 minutes after rats had developed continuous
seizures effectively stopped electrographic and behavioral seizures.

Chapman et al. Page 6

Eur J Neurosci. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hurdles in development of novel treatments and challenges in bringing a
drug to the clinic

Bringing a new effective therapeutic treatment to market is an expensive and prolonged
process with multiple challenges. The ideal goal is to have a firm understanding of the
pathophysiologic processes leading to disease and tailor treatments to modify or block these
processes. While our understanding of neonatal seizures continues to grow, translational
research has proven difficult. Many of the features that make the neonatal brain uniquely
susceptible to seizures, such as differences in the chloride gradient that diminish the
inhibitory effects of GABA and exuberant expression of glutamate receptors that enhance
excitability, are critical for driving normal activity-dependent developmental processes.
Thus, treatments that target these mechanisms to reduce seizures have the potential to
produce deleterious effects on normal neurocognitive development that must be carefully
monitored (and somehow differentiated from those of the underlying brain injury and
seizures themselves). Essential to our ability to establish therapies for neonatal seizures that
are both safe and effective are improved animal models. Current models of neonatal seizures
are overly simplistic and largely unrepresentative of the typical etiologies of seizures in
human neonates. Further, many of the most concerning potential outcomes from neonatal
seizures, such as neurobehavioral and neurocognitive abnormalities of language and
executive function, are poorly assessed in most rodent models. In order to improve
translational research, better models and better methods of assessing cognitive and
behavioral outcomes after neonatal seizures need to be identified.

Lack of good animal models
Since the discovery of the anticonvulsant activity of phenytoin in cats (Putnam & Meritt,
1937), experimental models of seizures and epilepsy have played a tremendously important
role in improving our understanding of the disease process and discovering newer treatment
options. A good animal model that replicates all of the important aspects of the disease it is
modeling is the most important tool required in the fight against disease. A good animal
model of an epilepsy disorder will accurately replicate the etiology of the disorder, the age
of onset of the disorder, the seizure phenotype, the EEG characteristics and the long-term
consequences of the disorder (Sarkisian, 2001; Stafstrom et al., 2006). As mentioned earlier
in this review and as pointed out in the report from the National Institute of Health (NIH)
workshop about models of epilepsy and epileptogenesis, the existing programs for
antiepileptic drug discovery have aimed at identifying therapies for the adult, rather than the
pediatric, population (Stables et al., 2002). The developing brain is not a smaller version of
the adult brain; therefore, to identify the most effective therapeutic intervention strategy, it is
imperative to target age-specific mechanisms and test new therapies in age-specific disease
models. In recent years, the NIH and the epilepsy research community has put a great
emphasis on the development of model systems specific for pediatric epilepsies (Stables et
al., 2002; Stafstrom et al., 2006). As a result, a significant increase in the research activity
directed towards the development of newer models for childhood epilepsies has occurred,
which is evident by three newly proposed animal models of infantile spasm in as many years
(Marsh et al., 2009; Price et al., 2009; Scantlebury et al., 2010). As shown in Table 1, there
are some animal models that replicate the etiology of human neonatal seizures, however
many (such as common chemoconvulsant models such as kainate and flurothyl) do not, but
rather model general phenomena of excitotoxicity. In addition, most of the animal models of
neonatal seizures have not been validated in terms of the presence of electrographic seizures
(which often do not have predictable behavioral correlates) and the development of epilepsy
in later life has not been established in many of these models. It is extremely challenging to
characterize behavioral or electrographic seizures in newborn animals due to their smaller
size (mouse and rat pup) and due to the fact that the newborns cannot be kept separate from
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the mother for a very long time. Moreover, almost all of the available animal models are
created using animals that are normal and do not have any brain pathology, which is in
contrast to what is observed in the majority of human patients (for review see Lombroso,
2007). The other challenge in developing a good neonatal seizure model is identifying an
age in the animal that accurately correlates with the human neonate (for review see Avishai-
Eliner et al., 2002; Watson et al., 2006). Studies of synaptogenesis, neuroanatomy,
metabolism and neurotransmitters receptors expression suggest that the first year of human
life is roughly equivalent to 7–14 days of life in the rat. However, the inter-species age
correlation may vary depending on the specific developmental factor considered for
comparison. A comparison of total brain weight gain as a percentage of adult weight suggest
that a 5 to 7 day old rat is equivalent to a human newborn (Dobbing & Sands, 1979),
whereas, a comparison of development of hippocampus between human and rat suggest that
the first week of life in rats might be comparable to the third trimester of gestation in a
human (Avishai-Eliner et al., 2002). Cortical glutamate decarboxylase activity in 7.4 to 9
days old rat is comparable to a 40 week post-conceptional human (Romijn et al., 1991),
whereas, comparison of electrical activity recorded using aEEG suggest that 10-day old
Wistar rat brain is equivalent to a new born (Tucker et al., 2009). Further, the developmental
changes in the brain often vary between two strains of the same species. For example, the
developmental changes in AMPA receptor subunit expression in the cortex occurs 2–3 days
earlier in Sprague-Dawley rats than in the Long-Evans rats, which could be due to
differences in the gestation period between the two strains (Talos et al., 2006b).

Preclinical studies
Drug development involves three major steps: (1) basic science research, (2) preclinical
studies and, (3) clinical trials. Basic science research is required to discover a physiological
target that can be manipulated to modify the disease. Preclinical studies help with
identification of a compound that can modulate the target. Preclinical studies also determine
pharmacological and toxic properties of the test compound in animal models. Translating
treatments from the rodent to the human can be particularly challenging as there are
significant differences between the species that may affect the utility of the treatment, such
as differences in metabolism or toxicity. Translation of neonatal treatments can be especially
challenging given the pharmacodynamic differences between adults and neonates (for
review see Stephenson, 2005). Funding is, of course, always a substantial challenge. In US,
the main source of funding for basic science and preclinical research is the NIH. Private
foundations, such as Citizens United for Research in Epilepsy (CURE) and other state and
federal programs, also provide vital support for the drug discovery research. For preclinical
development and early clinical trials, NIH provides resources such as the Rapid Access to
Interventional Development (RAID) pilot program, Small Business Innovative Research
(SBIR) program, Small Business Technology Transfer (STTR) program, Rapid Access to
Preventive Intervention Development (RAPID) program, and UO1 grant program. However,
in recent years research funding has become more scarce due to reductions in the NIH
budget. Moreover, because of the economic downturn, private foundations have seen
reductions in donations. Limitations on the amount of funding affects the development of
new drugs in multiple ways, including the ability to accurately translate rodent study data for
human use. For example, calculating an effective dose of a drug that does not have any side
effects in human based on the data from rodents is not only complicated, it can also be
inaccurate (Reagan-Shaw et al., 2008). If a drug is found to be effective in treating a disease
in a rodent model, it would be ideal to test its effects in a primate model before its use in the
humans. However, primate research is very expensive and involves complex ethical
questions.
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Clinical trials
Clinical trials in children and neonates are complicated by ethical, physiologic,
pharmacologic, neurodevelopental and economic concerns (Kern, 2009). Consent,
beneficence, confidentiality and equipoise are important considerations in the design of all
trials, but may be particularly challenging in neonates who are often critically ill. The varied
physiologic and pharmacologic responses and interactions of medications in neonates are
difficult to extrapolate from adult studies and critical phase I and II trials are often lacking,
making clinical trials difficult to formulate safely. There are economic concerns for drug
manufacturers when medications have a limited market – particularly in small affected
populations or rare diseases and with short treatment periods (most neonates are treated for
seizures for a period of only a few weeks). Companies often cite the limited market for some
of these drugs and the relatively poor return on investment in performing trials in children.
This process of bringing a drug to market typically takes between 8 and 12 years and is
estimated to cost $403 million of dollars per drug (DiMasi et al., 2003). Typically only one
of five thousand to ten thousand compounds actually becomes approved for marketing. A
recent study found that only 8% of CNS drugs that entered clinical testing were successful in
achieving clinical approval, the lowest of all therapeutic classes (DiMasi et al., 2010). There
has been an increasing complaint from drug manufacturers that there are limited affected
patients available for studies in the United States and Europe. Sponsors have found it
challenging to find sufficient US investigators and subjects and have been conducting more
trials overseas in central Europe and Asia (Krall et al., 2011). This can be particularly
problematic for studies in children and neonates for diseases that have a low prevalence in
the population. In the absence of adequate support from the pharmaceutical industry,
funding from governmental agencies such as NIH will be critical. Due to their relatively low
prevalence, adequate clinical trials for neonatal seizures will require involvement of multiple
sites and a long follow-up period of 5–10 or more years will be needed to adequately assess
neurodevelopmental outcome, making such studies both expensive and logistically complex.

Possible solutions for bringing drugs to market
Childhood cancer trials have been enormously successful at lowering mortality rates for
relatively rare childhood cancers through a network of national and multinational research
groups. Neonatal seizures, while relatively common, may benefit from a similar framework
for amassing patients and funneling promising projects through a series of academic centers
with the expertise to conduct high-quality research in a collaborative way. The European
Union and United States have created programs with the goal of streamlining research and
drug approval. In the European Union, the Innovative Medicine Initiative (IMI) and the
European Seventh Framework Programme (FP7) are building collaborative research efforts
between academic centers as well as commercial biomedical partners. For example, The
Treatment of Neonatal seizures with Medications Off-patent: evaluation of efficacy and
safety of bumetanide (NEMO) trial is funded through the FP7 program. This study will
evaluate the efficacy of bumetanide in neonates following hypoxic-ischemic injury. A
similar trial is underway in the United States, with both of these trials striving toward a
successful transition from bench to bedside with government sponsored support.

In the United States, the NIH created the Clinical and Translational Science Awards (CTSA)
to partner 60 academic centers and the private sector to facilitate utilization of scalable
assets for investigator use. The NINDS has recently introduced the NeuroNEXT program to
provide a standardized and accessible infrastructure to support Phase II trials in pediatric and
adult neurologic diseases. This program will centralize the institutional review process,
provide statistical support and assist researchers in trial design and applying for funding.
This will hopefully bridge some of the gap between basic science and clinical research.
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Trials looking to enroll patients with rare diseases will be able to utilize the multicenter
approach to identify and enroll patients.

Neonatal seizures are heterogeneous and complex and it will require improved
understanding of basic mechanisms, improved disease models, and better strategies for
performing clinical trials to successfully bring effective therapies to market for clinical use.
With new programs in Europe and the United States addressing some of these concerns,
there will hopefully be an improved transition of new therapies from the basic science lab to
the isolette.
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Table 1

Etiology of neonatal seizures and available animal models

Etiology Animal model available

Hypoxic-ischemic encephalopathy Yes (Jensen et al., 1991; Kadam and Dudek, 2007)

Excitotoxicity Yes (Stafstrom et al. 1992; Lee et al., 1995; Santos et al., 2000; Isaeva et al., 2010)

Intracranial hemorrhage Yes (Cherian et al., 2003; Alles et al., 2010, for review see Balasubramaniam and Del
Bigio, 2006) but lack seizure characterization

Ischemic stroke Yes (Comi et al., 2005; Kadam and Dudek, 2007)

Cerebral sinovenous thrombosis No

Acute Infection

• Bacterial meningitis

• Viral meningoencephalitis

Yes (Leib et al., 1998) but lack seizure characterization
Yes (Pedras-Vasconcelos et al., 2008; for review see Bonthius and Perlman, 2007) but
lack seizure characterization

Intrauterine TORCH infection Yes (for review see Tsutsui et al., 2005 and Schleiss, 2006) but lack seizure
characterization

Metabolic abnormalities

• Hypoglycemia

• Hypocalcemia

Yes (Gardiner, 1980; McGowan et al., 1995; Kim et al., 2005; Zhou et al., 2008) but lack
seizure characterization
Yes (Yoshizawa et al., 1997; Li et al., 1997; Eyles et al., 2003; Kalueff et al., 2006) but
lack seizure characterization

Cerebral dysgenesis Yes (Backman et al., 2001; Meikle et al., Ljungberg et al., 2009; Way et al., 2009; for
review see Crino, 2009) but neonatal seizures not characterized; spontaneous seizures
variably observed later in life

Inborn errors of metabolism

• Nonketotic hyperglycinemia

• Pyridoxine-responsive seizures

Yes (Gomeza et al., 2003; Kojima-Ishii et al., 2008) but neonatal seizures not
characterized; seizure susceptibility determined in later life
Yes (Waymire et al., 1995; Narisawa et al., 2001)

Genetic abnormalities

• Benign familial neonatal convulsions

– KCNQ2

• Early infantile epileptic
encephalopathy

– STXBP1

– ARX

Yes (Singh et al., 2008)
Yes (Verhage et al 2000) but lack seizure characterization
Yes (Marsh et al., 2009; Price et al., 2009)
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Table 2

Treatment of neonatal seizures

Treatment Therapeutic Targets/Mechanism of Action

Conventional

 • Phenobarbital Enhance GABA inhibition

 • Phenytoin Inhibit voltage-dependent sodium channels

 • Benzodiazepines Enhance GABA inhibition

 • Lidocaine Inhibit voltage-dependent sodium channels

 • Pyridoxine Cofactor for multiple enzymatic process for neurotransmitters

Off-label

 • Levetiracetam Interacts with synaptic vesicle protein (SV2A)

 • Topiramate Multiple – modulation of AMPA, sodium, GABA channels. Carbonic anhydrase inhibitor.

• Therapeutic hypothermia Numerous potential mechanisms

Future Therapies

 In clinical trials

  Bumetanide Inhibits NKCC1 transporter

 In preclinical development

  K+ channel openers Enhances activity of KCNQ2/3 type of K+ channels

  AMPA receptor blockers Inhibits AMPA receptor mediated excitation
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