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Abstract
Recent hardware and software advances have enabled simulation studies of protein systems on
biophysically-relevant timescales, often revealing the need for improved force fields. Although
early force field development was limited by the lack of direct comparisons between simulation
and experiment, recent work from several labs has demonstrated direct calculation of NMR
observables from protein simulations. Here we quantitatively evaluate recent molecular dynamics
force fields against a suite of 524 chemical shift and J coupling (3JHNHα, 3JHNCβ, 3JHαC
′, 3JHNC′, and 3JHαN) measurements on dipeptides, tripeptides, tetra-alanine, and ubiquitin. Of
the force fields examined (ff96, ff99, ff03, ff03*, ff03w, ff99sb*, ff99sb-ildn, ff99sb-ildn-phi,
ff99sb-ildn-nmr, CHARMM27, OPLS-AA), two force fields (ff99sb-ildn-phi, ff99sb-ildn-nmr)
combining recent side chain and backbone torsion modifications achieve high accuracy in our
benchmark. For the two optimal force fields, the calculation error is comparable to the uncertainty
in the experimental comparison. This observation suggests that extracting additional force field
improvements from NMR data may require increased accuracy in J coupling and chemical shift
prediction. To further investigate the limitations of current force fields, we also consider
conformational populations of dipeptides, which were recently estimated using vibrational
spectroscopy.

1 Introduction
Molecular dynamics (MD) simulation is a versatile computational tool that allows
investigation of condensed phase systems including neat alkanes,1 the many phases of
water,2 the solvation and binding of small molecules,3,4 and the folding dynamics of full
protein systems.5,6 Recent gains in computer performance, parallelized MD codes,7 and
optimizations for GPU8 and other specialized hardware9 have enabled simulations of
aqueous macromolecules over times exceeding 100 ns in single-day calculations. These
accelerations, however, have begun to reveal inaccuracies in current MD force fields.

By and large, molecular dynamics force fields are parameterized to reproduce quantum
mechanical calculations on small model systems,10–13 then adjusted to provide improved
agreement with higher-quality ab initio data,14 crystallographic structures,15 or experimental
data.16–18 Because of the many design choices inherent in parameterization, force fields
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yield considerable differences in predicted biophysical properties. For example, studies of
protein folding have revealed variation in folding rates between different force fields.19

Similarly, simulated proteins often have folding midpoint temperatures that err by 25 K or
more.6

Here, we systematically evaluate eleven recent force fields combined with each of five
widely-used water models (55 combinations) against a benchmark set of 524 NMR
measurements. The evaluated force fields include recent AMBER, CHARMM, and OPLS-
AA variants; the solvent models include recent implicit and explicit models. The 524 NMR
measurements include J coupling and chemical shift data of 32 model systems.
Measurements span all 19 non-proline amino acids and include dipeptide,20,21

tripeptide,22,23 tetrapeptide,22 and full protein systems;24 importantly, this systematic
benchmark contains model systems not previously considered in the parameterization of the
tested force fields. These comparisons, which comprise over 25 µs of aggregate simulation,
suggest that explicit solvent simulations with either the ff99sb-ildn-phi or ff99sb-ildn-nmr
force field recover NMR observables with an accuracy close to the uncertainty inherent in
current scalar coupling and chemical shift models. In addition to quantitative comparisons to
NMR experiments, we also compare conformational populations of the 19 dipeptides to
recent estimates made using vibrational spectroscopy.20,21

2 Methods
2.1 Benchmark Systems

For our benchmark, we selected 32 protein systems including capped dipeptides (Ace-X-
NME, X ≠ P), tripeptides (XXX, GYG, X ∈ {A, G, V}, Y ∈ {A, V, F, L, S, E, K, M}),
alanine tetrapeptide, and ubiquitin. Each of these systems has NMR data available in the
form of chemical shifts, J couplings, or both. Small peptides provide minimal model systems
that can sample the (ϕ, ψ) torsions that are a key component of secondary structure
formation. On the other hand, a different balance of forces is at play in larger systems, which
led us to include ubiquitin, a key model system in protein folding25 and NMR studies.24

2.2 Force Field Benchmark
We aggregated 524 measurements of chemical shifts and scalar couplings, summarized in
Table S1. Data was taken from the BioMagRes Database26 or several recent papers.20,22–24

Each of the 32 systems was simulated using Gromacs 4.5.47 using all combinations of the
GBSA,27 TIP3P, SPC/E, TIP4P-EW,28 and TIP4P/20052 water models with the ff96,10

ff99,11 ff03,12 ff03w,16 ff03*,17 ff99sb*,17 ff99sb-ildn,14 ff99sb-ildn-phi,18 and ff99sb-ildn-
nmr,29 CHARMM27,30,31 and OPLS-AA32 force fields. Here, ff99sb-ildn-phi refers to a
force field combining the ff99sb-ildn side chain optimizations14 with a recently modified ϕ′
potential.18 Compared to ff99sb-ildn, ff99sb-ildn-phi differs by a modification of the
periodicity two (n = 2) ϕ′ torsional potential; this term has strength 2.00 kcal / mol and 1.80
kcal / mol, respectively, for the ff99sb-ildn and ff99sb-ildn-phi force fields. The ff99sb-ildn-
nmr force field refers to the combination of the ff99sbildn side chain optimizations with the
NMR-optimized backbone torsions of the ff99sb-nmr force field.29

Each production simulation was 25 ns (20 ns for dipeptides) in length and held at constant
temperature and pressure; simulations for peptides were started from conformations
generated by PyMol. Ubiquitin simulations were started from the crystal structure (PDB:
1UBQ).33 For error analysis, simulations were repeated with independent starting velocities.
For the peptide systems, the independent runs also used different starting conformations; for
ubiquitin, the second set of runs began from the crystal structure, had independent starting
velocities, and were 50 ns in length. J couplings were estimated using empirical Karplus
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relations parameterized by the Bax group;34 chemical shifts were estimated using the Sparta
+ program35 (in Figure S1, we consider alternative models for J couplings and chemical
shifts).

All simulations were performed with Gromacs7 4.5.4. Starting conformations were solvated,
neutralized with Na+ or Cl−, minimized, and equilibrated before production runs. For
explicit solvent, electrostatics were treated using particle mesh ewald36 with a real-space
cutoff of 1.0 nm. Van der Waals interactions were switched off between 0.7 and 0.9 nm.
Temperature control was achieved using the velocity rescaling thermostat.37 Pressure
control (1 atm) was achieved using either the Berendsen barostat (for equilibration) or the
Parrinello-Rahman38 barostat (for production). For implicit solvent simulations (GBSA),
temperature control was achieved using a Langevin integrator. The temperatures were
chosen to match experimental conditions; dipeptides were held at 303K, GXG tripeptides at
298K, homotripeptides at 300K, and ubiquitin at 303K. For ubiquitin, the protein was held
fixed during the minimization and equilibration steps.

3 Results
3.1 Optimal performance from ff99sb-ildn-nmr and ff99sb-ildn-phi

Converting all 524 measurements into an uncertainty-weighted objective function

 allows a force field evaluation based on all available data (Figure 1).
We estimate the errors in each comparison as the uncertainty in the relationship between
conformation and NMR observable; these errors (Table S2, Table S3) were estimated during
the parameterizations of the various Karplus relations and the Sparta+ chemical shift model.
Based on this comprehensive analysis, the early (ff96, ff99) force fields are easily rejected in
favor of more recent modifications. Furthermore, ff99sb-ildn-nmr and ff99sb-ildn-phi most
accurately recapitulate the chosen NMR experiments. Raw data for TIP4P-EW with several
force fields are shown in Figure S4–Figure S13.

3.2 Accuracy for Dipeptides, Tripeptides, Tetrapeptides, and Ubiquitin
The model systems in this work consist of ubiquitin, alanine tetrapeptide, tripeptides, and
the 19 capped dipeptides (e.g. Acetyl-Ala-N-methylamide). Because these systems differ
considerably in size, it is important to ask whether force fields perform well for all classes of
model system. In particular, it is important to avoid overfitting to experiments probing only
small systems, as that could compromise accuracy on larger systems where less protein is
solvent-exposed. We find that ff99sb-ildn-phi and ff99sb-ildn-nmr provide good
performance for all three classes of systems (Figure 2).

3.3 Performance By Experiment
For five out of ten experiments, ff99sb-ildn-phi and ff99sb-ildn-nmr achieve accuracy

comparable to the uncertainty of the comparison (e.g. ; see Table S4, Figure S14–
Figure S23). Moderate deviations are found for two experiments (3J(HNC′), 3J(HαN)), but
large deviations are found for carbonyl chemical shifts (CS−C), 3J(HαC′), and 3J(HNHα).
First, large errors in carbon chemical shifts are found for all choices of force field and water
model. This error may indicate systematic error in either the chemical shifts estimated by
Sparta+ or the conformational propensities of all force fields evaluated here. Because Sparta
+ is parameterized empirically using a neural network approach, it is challenging to further
dissect errors in chemical shift predictions. Second, moderate errors in 3J(HαC′) are
observed; inspection of individual errors (Figure S24) identifies GGG as the largest error
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contributor. The failure for GGG is consistent with previous observations18 that improved
Karplus parameterizations may be required for glycine residues. Finally, moderate errors
in 3J(HNHα) are observed. However, ff99sb-ildn-phi and ff99sb-ildn-nmr perform
significantly better than their predecessors ff99sb-ildn and ff99 (Figure 3). The 3J(HNHα)
analysis suggests that correcting backbone torsions16–18,29 has led to real improvements in
force field accuracy.

3.4 Performance By Amino Acid
Another key question is whether force field performance is consistent among the different
amino acids. Large variations in quality between different amino acids might indicate an
easy way to improve force fields. To formalize the agreement with experiment, we calculate

values of reduced χ2. Values of  under 1 suggest that errors are within the measurement
uncertainty. This analysis leaves 6/19 amino acids open to further optimization, including
ALA, GLY, SER, VAL, ILE, and ASP. Force field improvements for these residues could
lead to reduced errors in the present benchmark. For the remaining amino acids, improved
accuracy in chemical shift and J coupling estimation may eventually reveal force field
inadequacies that are within the uncertainty of the present comparison.

3.5 Populations of 19 Dipeptides
A recent analysis21 used NMR and vibrational spectroscopy to estimate the αR, β, and PII
populations of 19 capped dipeptides. Here, we use (ϕ, ψ) state definitions39 to estimate
conformational populations from simulation (Figure 5, Figure S25). Because of uncertainties
in state definitions and the fitting procedure used in the experimental analysis,21 this
comparison is less direct than the NMR comparisons above; despite this limitation,
population analysis provides several key insights.

First, with the exception of ff96, the MD force fields uniformly over-emphasize αR in
dipeptide simulations. Second, the GBSA implicit solvent model aggravates this error,
leading to even further bias towards helical conformations. Third, recent force fields (ff03*,
ff99sb-ildn, ff99sb-ildn-phi, ff03w, ff99sb-ildn-nmr) combined with explicit solvent show
close agreement with the conformational populations estimated using a PDB-derived coil
library.39 This may suggest that current force fields perform better in the context of a full
protein system or that direct comparison of simulation to IR-based population estimates is
hindered by systematic error.

Although the over-estimation of αR in dipeptides suggests that further decreasing αR may
improve current force fields, such changes are not always feasible. As an example, we point
out that ff99sb is known to under-emphasize17 αR in the helix-forming Ac-(AAQAA)3-
NH2.40,41 Thus, it may be challenging for fixed-charge force fields to simultaneously
achieve accurate helical propensities in both dipeptide and longer protein systems. To
further investigate, we simulated Ac-(AAQAA)3-NH2 using both ff99sb-ildn-phi and
ff99sb-ildn-nmr (Figure S26). Based on this test, ff99sb-ildn-phi is somewhat under-helical,
while ff99sb-ildn-nmr is somewhat over-helical. This suggests that a future modification of
ff99sb-ildn-nmr with slightly reduced helical content could lead to modest improvements in
force field quality.

4 Discussion
4.1 Optimal choice of force field and water model

The overall χ2 analysis (Figure 1) suggests that the ff99sb-ildn-phi and ff99sb-ildn-nmr
force fields (with explicit water) are best able to recapitulate the 524 NMR measurements in
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the present benchmark. These results are robust to different models for J couplings and
chemical shifts (Figure S1), to sampling uncertainty in the simulations (Figure S2), and to
the relative importance placed on J coupling versus chemical shift experiments (Figure S3).

Explicit water models (TIP3P, SPC/E, TIP4P-EW, and TIP4P/2005) outperform GBSA.
However, choosing between TIP3P, SPC/E, TIP4P-EW, and TIP4P/2005 is difficult, as the
results are force field dependent. However, our current analysis does suggest that variants of
ff99sb give reasonable performance with TIP4P-EW (and, to a lesser extent, TIP4P/2005).
Recent four-point water models have vastly improved thermodynamic properties;2,28 our
results recommend their broader use in protein simulations, although further validation of
their nonbonded interactions may be necessary.

4.2 Future Force Field Development
With the simple functional forms used, how much can current force fields be improved?
Given the many small but measurable improvements recently published,14,16–18 it is likely
that the current functional forms may allow further increases in accuracy. The best path for
improvement, however, is complex. The non-bonded terms, including partial charges, are
based on decade old calculations; increasing computational resources allow increasingly
accurate QM data to be used for parameterization. More accurate bonded terms might also
be possible. Another possibility is the use of amino-acid specific torsional potentials, rather
than identical potentials for all (non-glycine) residues. Such a procedure would allow
researchers to refine force fields for amino acids where performance is presently inadequate.

For further developments, a key question is whether to use ab initio14 or experimental
data16–18,29 when fitting parameters. Fitting to ab initio data is hindered by the difficulty of
modeling solvent effects during parameterization. Furthermore, parameters such as partial
charges may not be transferable between gas and condensed phase environments–or even
between hydrophobic and solvent-exposed environments. Fitting to experimental data is
currently hindered by two key limitations. First, only limited data is available for model
systems. Second, the quantitative connection between simulation and experiment typically
relies on parameterized relationships such as the Karplus relationship or the chemical shift
predictions of Sparta+. These parameterizations have large uncertainties (typically larger
than the statistical errors in either simulation or experiment), may contain systematic errors
(such as amino-acid specific biases18), and rely on protein structural models that are
ensemble averaged (possibly blurring important short-timescale dynamics42). We point out
that the current analysis focuses on agreement with NMR (chemical shift and J coupling)
experiments, which emphasize local bonded interactions. Other experimental data, such as
solvation free energies, may be critical for evaluating other aspects of force field
performance.

5 Conclusions
Molecular simulation promises atomic-detail modeling of key processes in chemistry and
biophysics, but only if the underlying force field has demonstrated accuracy. Here, we have
shown that recent force field enhancements lead to increased accuracy in recapitulating a
benchmark set of 524 NMR measurements. Simulations performed in explicit water with
either the ff99sb-ildn-phi or ff99sb-ildn-nmr force field achieve RMS errors that are
comparable to the uncertainty in calculating the experimental observables. Future work may
require advances in both force field development and accurate calculation of NMR
observables.
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Figure 1.
The overall χ2 quantifies the agreement with all 524 experimental measurements.
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Figure 2.
For each class of model system, χ2 quantifies the agreement between simulation and
experiment.
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Figure 3.
The errors in 3J(HNHα) suggest that the ff99sb-ildn-phi and ff99sb-ildn-nmr force fields
correct a significant bias in the ϕ potential of the ff99sb-ildn force field. Values are shown
for TIP4P-EW.
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Figure 4.
Reduced χ2 is shown for all 19 amino acids, indicating force field quality as a function of
individual amino acid. Values are shown for TIP4P-EW with five well-performing force
fields. Reduced χ2 values near 1 indicate that force field error is comparable to the
experimental uncertainty, while values much larger than 1 indicate possible room for force

field improvements. Errors for reduced χ2 are given by , where n is number of
measurements available for that amino acid. Plotted error bars underestimate the true error,
as error estimates include only the contribution of the Karplus and chemical shift prediction.
This contribution tends to be the dominant source of error in the present benchmark.
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Figure 5.
The conformational populations for the 19 dipeptides (averaged over all 19) are shown for
various force fields. Individual amino acid predictions are given in Figure S25. Grid ticks
represent population increments of 0.1; the corners of the triangle represent the distributions
with all β, αR, and PII, respectively. Also shown are experimental estimates21 and statistics
from a PDB-derived coil library.39
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