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Summary
The blood-brain barrier (BBB) is the brain-specific capillary barrier that is critical for preventing
toxic substances from entering the central nervous system (CNS). In contrast to vessels of
peripheral organs, the BBB limits the exchange of inflammatory cells and mediators under
physiological and pathological conditions. Clarifying these limitations and the role of chemokines
in regulating the BBB would provide new insights into neuroprotective strategies in
neuroinflammatory diseases. Because there is a paucity of in vitro BBB models, however, some
mechanistic aspects of transmigration across the BBB still remain largely unknown. In this review,
we summarize current knowledge of BBB cellular components, the multi-step process of
inflammatory cells crossing the BBB, functions of CNS-derived chemokines and in vitro BBB
models for transmigration, with a particular focus on new and recent findings.
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Cellular components of the blood-brain barrier
The blood-brain barrier (BBB) is primarily formed by microvascular endothelial cells,
which are surrounded by basement membranes, pericytes, and astrocytes (Fig. 1). The
endothelial basement membrane delimits the vascular aspect of the perivascular space.
Astrocytic endfoot processes form the glia limitans, which, along with its own basement
membrane, provide the parenchymal aspect of the perivascular space (1) (Fig. 2). This
endothelial layer and glia limitans represent physical barriers to cellular entry to the central
nervous system (CNS) parenchyma. Neuronal and microglial processes also contribute to
the glia limitans. Interactions between endothelial cells and these surrounding cells and
processes enhance BBB function and consequently result in the maintenance of proper brain
homeostasis (2). More detail about each cell type is provided below.

Corresponding to: Richard M. Ransohoff, Neuroinflammation Research Center, Department of Neurosciences, Lerner Research
Institute, Cleveland Clinic, Mail Code NC30, 9500 Euclid Avenue, Cleveland, OH 44195, USA., Tel.: +1 216 444 0627, Fax: +1 216
444 7927, ransohr@ccf.org.

The authors have no conflicts of interest to declare.

NIH Public Access
Author Manuscript
Immunol Rev. Author manuscript; available in PMC 2013 July 01.

Published in final edited form as:
Immunol Rev. 2012 July ; 248(1): 228–239. doi:10.1111/j.1600-065X.2012.01127.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Endothelial cells
Brain microvascular endothelial cells (BMVECs) directly mediate BBB function. Resting on
a basement membrane, which consists mainly of collagen IV, fibronectin, laminin, and
proteoglycans, BMVECs act as mediators between the blood and brain (3). They have
specialized transport systems, uniform thickness with no transendothelial fenestrations, low
pinocytic activity, continuous intercellular tight junctions, and high mitochondrial volume
(4, 5). In addition, they have a negative luminal surface charge that repulses negatively
charged compounds (5). Owing to no fenestrations and the diminished pinocytic activity,
paracellular flux is limited. Uptake of essential molecules occurs through specific carrier and
transport systems (6, 7). In addition, because of the presence of continuous tight junctions
and adherens junctions, the paracellular space between adjacent lateral endothelial
membranes is almost completely sealed (7–11). As they have a greater number and volume
of mitochondria compared with endothelia in other organs, brain endothelial cells can
provide energy and regulate the selective transport and metabolism of substances from blood
to brain as well as from the parenchyma back to the systemic circulation (12).

Astrocytes
Astrocytes are important components of the BBB. Astrocytic endfeet ensheathe 99% of the
surface of brain microvessels from which their endfoot processes are separated only by a
thin basal membrane (13). Astrocytes are a source of important regulatory factors such as
transforming growth factor-β (TGF-β) (14), glial-derived neurotropic factor (GDNF) (15),
and the fibroblast growth factor (FGF) (16), and they can provide these secreted factors to
endothelial cells (17). The current predominant view is that astrocytes regulate various
aspects of BBB physiology with secreted factors and influence particular BBB features such
as permeability, leading to tight junction formation and expression in endothelial cells (18).

Pericytes
Pericytes are important cellular constituents of capillaries and post-capillary venules. They
share the same basement membrane with the endothelial cell (19) and cover 22–32% of the
capillaries in CNS (20). The extent of pericyte coverage of BBB vessels is highest among
the varied types of vessels (21). Pericytes regulate many neurovascular functions such as
angiogenesis, BBB formation in embryogenesis, maintenance, vascular stability, regulation
of capillary blood flow, and clearance of toxic cellular products (22). Pericytes can control
the expression of tight junction molecules in endothelial cells by secreting factors such as
TGF-β, (14) and angiopoietin (23). TGF-β enhances BBB function by inhibiting the
migration of leukocytes and the proliferation of endothelial cells. The release of angiopoietin
can induce remodeling and stabilization of capillaries. Platelet-derived growth factor-β
(PDGFβ), secreted by endothelial cells, is an essential factor for recruitment and
maintenance of pericytes on vessels and vascular maturation (24, 25).

Other cell types
The interaction between endothelial cells and neurons plays an essential role in the
neurovascular network. Neurons can regulate BBB function by expressing BBB-related
enzymes (26). Microglial endfoot processes, found in the perivascular glia limitans, are
hypothesized to influence BBB properties. However, their contribution to BBB function
remains unknown.
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Multi-step process of leukocytes crossing into the CNS
Intrusion of leukocytes into CNS

The CNS exhibits strictly controlled inflammatory reactions, in part because the BBB and
other vascular-tissue barriers limit the exchange of inflammatory cells and mediators. There
are several routes that leukocytes can use to enter into CNS: migration from the
microvessels into parenchymal perivascular space, migration via the choroid plexus into the
cerebrospinal fluid, and migration through post-capillary venules at the pial surface into
subarachnoid and Virchow-Robin perivascular spaces (27–29). A fourth route has also been
suggested that involves migration from subependymal vessels via the ependyma into the
ventricles (30). These routes involve crossing the BBB, the blood–cerebrospinal fluid (CSF)
barrier and the blood–spinal cord (BSC) barrier (27, 31).

Multi-step process of crossing into the CNS
Transendothelial leukocyte migration through the BBB is a multi-step process characterized
by a series of sequential and tightly controlled steps that follow the paradigm of leukocyte
extravasation across all vascular beds (1, 32–34) (Fig. 2). The steps are: (i) rolling: weak
adhesion of leukocytes to endothelial cells mainly through interactions between selectins
and their carbohydrate counter-receptors; (ii) activation: leukocyte activation through
chemokine stimulation of G-protein-linked receptors, resulting in functional activation of
adhesion molecules along their surface; (iii) arrest: leukocyte attachment to endothelial cells
through interactions between integrins associated with leukocytes and cell adhesion
molecules (CAMs) on endothelial cells; (iv) crawling: leukocytes seeking preferred sites of
transmigration across the endothelium; (v) transmigration: migration of leukocytes across
CNS endothelia into the perivascular space and progression across the glia limitans into the
brain parenchyma, a process driven in part by chemokine–chemokine receptor interactions.
By interacting pairs of selectins and their ligands, integrins and CAMs, and chemokines and
chemokine receptors, brain-specific processes are determined. Each of these steps and
interacting pairs is described in more detail below.

Rolling
This multi-step process starts with a short and initial transient contact of the circulating
leukocytes with the endothelial cell through E- and P-selectin and carbohydrate adducts on
their leukocyte ligand P-selectin glycoprotein 1 (PSGL1) (35). Very late antigen-4 (VLA-4)
can also support rolling. The interactions between selectins and their ligands are of low-
affinity and leukocytes roll along the vascular wall with gradually reduced velocity. Recent
studies have shown that despite the blockade or absence of P-selectin, immune-reactions
induced in mouse models of experimental autoimmune encephalomyelitis (EAE) are
indistinguishable from wildtype EAE (36, 37). This observation suggests that P-selectin is
not required for leukocytes to migrate across the CNS parenchymal vessels. On the other
hand, P-selectin is stored in the Weibel-Palade bodies of endothelial cells of meningeal and
the fenestrated choroid plexus capillaries (38, 39). P-selectin is believed to be important for
leukocyte recruitment across meningeal and choroid plexus vessels (40).

Activation
Rolling along the vascular wall slows circulating lymphocytes and permits factors such as
chemokines, immobilized on the endothelial cell surface, to activate integrins on leukocytes
(37, 41, 42). Chemokine receptors such as CXCR4 on rolling leukocytes interact with
chemokines such as CXCL12 on endothelial cells. Chemokine receptors enhance a G-
protein intracellular signal, which induces conformational changes of leukocyte integrins.
Chemokines activate several signaling pathways (PI3K, PLC, RAS- and RHO-family
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GTPase, and MAPK), leading to opened integrin conformation (43–45). As a result,
adhesion molecules such as LFA-1 and VLA-4 are activated on the leukocyte surface.
Integrin activation leads to enhanced avidity and affinity of the leukocyte integrin for its
endothelial ligands, specifically VCAM-1 or fibronectin CS1 epitope (46, 47) and
intercellular adhesion molecule-1 (ICAM-1).

Arrest
During arrest, adhesion molecules in leukocytes (VLA-4, LFA-1, and Mac-1) and
endothelial receptors such as ICAM-1 and VCAM-1 play important roles (32). ICAM-1 and
VCAM-1 are the major ligands for leukocyte integrins to attach to the endothelial cell
against shear flow. Under normal conditions, ICAM-1 is detected on a small number of CNS
microvessels and strongly upregulated by inflammatory stimuli (48). In contrast, VCAM-1
upregulation on human CNS microvessels is still matter of debate (49–51). Binding of these
integrins to their endothelial ligands, such as VLA-4/VCAM-1 and LFA-1, Mac-1/ICAM-1,
generates cytoplasmic signaling cascades in both leukocytes and endothelial cells. As a
result, leukocytes arrest on the endothelial cells.

Crawling
After leukocytes arrest, they crawl via tightly regulated integrin/CAM interactions (LFA-1/
ICAM-1, VLA-4/VCAM-1) (52). These interactions initiate essential signaling within the
endothelial cells and promote indentification of optimal sites for transmigration (53).
Leukocytes crawl inside blood vessels in a MAC1- and ICAM1-dependent manner (52, 54).
Recently an immobilized intravascular gradient of the chemokine CXCL-1 was shown to
guide crawling neutrophils to transmigration sites (55). It is unknown if CNS-derived
chemokines play a similar role by directing leukocytes crawling against the direction of
blood flow.

Transmigration
The last stage in the multi-step process is transmigration. It is not clear whether the
leukocytes cross the endothelial cell through tight junctions, via a large pore or vacuole in
the endothelial cell, or through some other site (56). Until recently, leukocyte migration
across the endothelial cell was thought to occur through the paracellular pathway only but
leukocyte migration through the transcellular route occurs in the CNS, and in various
inflammatory conditions (57, 58), and in vitro models (59–61). Transmigration of
leukocytes appears to be regulated by CAMs (ICAM-1, VCAM-1) and chemokine signaling
processes (32). If crawling is inhibited, transmigration is delayed and occurs preferentially
through the transcellular pathway as opposed to the paracellular pathway (53). While in
peripheral tissues migrated cells directly enter the tissue parenchyma, in the CNS, migrated
cells can only access perivascular spaces. To access the CNS parenchyma, they need to
reach beyond the glia limitans, which is unique to the architecture of the BBB. Currently,
there are no suitable in vitro BBB models to analyze transmigration of cells, therefore it
remains incompletely understood which molecules including chemokines and chemokine
receptors are critical for this process.

Chemokines and chemokine receptors
Chemokines

Chemokines play critical roles in the initial inflammatory recruitment of leukocytes. In
addition to leukocyte chemotaxis, chemokines are involved in neuronal positioning during
development, modulating synaptic transmission, regulating cell adhesion, phagocytosis,
cytokine secretion, matrix metalloproteinase release, T-cell differentiation and activation,
apoptosis, and angiogenesis (62–65).
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Chemokines are a group of small (8–14 kDa) structurally related molecules released by a
variety of cell types. Approximately 50 human chemokine genes have been identified to date
(Table 1). In spite of a variable amino acid sequence, all chemokines share a characteristic
tertiary structure called the ‘chemokine fold’(66). Chemokines are divided into four
subfamilies according to the configuration of two positionally conserved cysteine residues
near the N-terminus. These include the CC subfamily (CCL1-CCL28), CXC subfamily
(CXCL1-CXCL16), C subfamily (XCL1-XCL2), and CX3C subfamily (CX3CL1) and their
nomenclature has been reviewed (66, 67).

CC chemokines have a large spectrum of action and can attract monocytes, eosinophils,
basophils, T lymphocytes, natural killer (NK) cells, and dendritic cells. Most CC
chemokines are clustered on chromosome 17 in humans.

The CXC chemokines are distinguished by the presence or absence of a specific amino acid
sequence, called the ELR-motif (glutamic acid-leucine-arginine) located near the N-
terminus. The ELR+ CXC chemokines bind the neutrophil receptors CXCR2 and some also
bind CXCR1. On the other hand, the ELR- CXC chemokines are inactive towards
neutrophils but are potent chemoattractants for other leukocytes appropriate receptors (68).

The C chemokines, which comprise XCL1 and XCL2, are distinguished from the other
chemokine subfamilies by the presence of only two of the four conserved cysteine residues
(69). C chemokines chemoattract lymphocytes but not neutrophils or monocytes.

The CX3C chemokine is CX3CL1, which is characterized by the presence of three amino
acids between the first two cysteine residues as well as transmembrane and mucin-like
domains in C-terminal sequence. CX3CL1 can be soluble or membrane-bound (70) and acts
as an adhesion molecule or a chemoattractant for T lymphocytes, NK cells, and
mononuclear phagocytes (71).

Chemokine receptors
Chemokines exert their biological functions by binding to seven transmembrane-domain
receptors on target cells. Chemokine receptors are classified according to the ligand family
to which they respond (Table 2). The 19 known receptors often bind multiple chemokines in
a subclass-restricted manner although some (such as CCR1) are highly promiscuous, while
others (such as CCR8) respond only to a single unique ligand. Chemokine receptors are
rhodopsin-like G protein-coupled receptors, with an acidic N-terminal extracellular domain
and serine/threonine-rich intracellular C-terminal domain (72). Some chemokine receptors
are widely expressed throughout the entire body, whereas others are expressed in certain
specific cells or tissues or in specific activation or differentiation states of the receptor-
bearing cell (73).

CNS chemokines and receptors
The expression of chemokines and their receptors in the CNS has been described by several
authors through immunohistochemistry. It has been difficult to produce specific and
sensitive antibodies for chemokines and receptors. Unfortunately, many preliminary reports
could not be confirmed by critical studies using wildtype and gene-deficient mice (74). As a
result, compared to peripheral tissues, chemokine functions in the CNS are less known.
Chemokines and receptors that are constitutively expressed or developmentally regulated in
the CNS include CXCL12-CXCR4/CXCR7, CXCL1-CXCR2, and CX3CL1-CX3CR1.
CXCL12-CXCR4, which are selectively expressed in the developing and adult brain, control
the migration and survival of neural precursors and stimulate astrocyte proliferation. The
functions of CXCL12-CXCR7 still remain incompletely understood (75). CXCL1-CXCR2
are also implicated in the migration and proliferation of oligodendrocyte progenitors (76,
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77). CX3CL1-CX3CR1, which are constitutively expressed in CNS modify inflammatory
reactions of microglia and are required for recruitment of NK cells (78–82).

Chemokine control of cell migration
Chemokine signaling results in molecular and functional changes in leukocytes. Chemokines
and their receptors are involved in multiple steps during leukocyte transendothelial
migration (Fig. 2). Chemokines presented on luminal endothelial surfaces can trigger
integrin activation. As representative arrest chemokines, CXCL12, CCL11, and CCL21 can
trigger integrin-dependent adhesion of leukocytes, preceding crawling towards
interendothelial junctions (1, 83–88).

There are other important molecules in this step, namely Duffy antigen receptor for
chemokines (DARC) and D6. DARC can bind multiple chemokines from CXC and CC
subfamilies, although their binding does not induce G protein-coupled cellular responses
(89, 90). DARC is expressed on endothelium of capillaries and post-capillary venules,
transferring chemokines across the endothelium to the lumen where the chemokine can be
bound to glycosaminoglycans (GAGs) or ‘presented’ by Duffy (91,92). As a result,
chemokines can be immobilized at high local concentrations on endothelial cells in the
flowing blood. D6 another chemokine receptor like molecule that lacks G-protein coupling
can bind to at least 12 CC chemokines (93) and is expressed on lymphatic endothelial cells,
where it controls tissue concentration of CC chemokines by internalizing and degrading its
ligands (94, 95).

In vitro dynamic model of BBB
After leukocyte arrest on the vascular lumen, signaling from chemokines on the abluminal
aspect of the endothelium may initiate leukocyte transmigration. Using a modified Boyden
chamber and human umbilical vein endothelial cells (HUVECs) under physiological flow
conditions, it was shown that CXCL12 on the luminal side induces two steps in
transendothelial migration for T-lymphocytes: arrest and crawling on activated HUVEC
layers under shear forces. These actions of CXCL12 enhance final transmigration to
abluminal CCL5, a weak subendothelial chemokine stimulus (96). This research set the
stage for development of a new generation of in vitro BBB models.

Leukocyte migration across the BBB has been shown in many neurological disorders such
as multiple sclerosis and stroke (97, 98), but the precise functions of chemokines in
mediating leukocyte-endothelial interactions at the BBB remain incompletely understood.
Models of the human BBB are being developed to address these issues. The existence of a
large number of different in vitro models suggest that there is no one perfect model system
and that certain models can be advantageous in specific situations. To closely mimic in vivo
conditions, in vitro BBB models should have four important properties. Initially, cells for in
vitro experiments should be isolated from human sources and their physiological and
morphological properties should remain consistent and BBB-like. Secondly, endothelial
cells should be co-cultured with other BBB components. Thirdly, the model should
incorporate shear forces. Finally, the model should allow the transendothelial migration of
inflammatory cells that can be recovered for further analysis. Further, the model should
permit addition of chemokines.

Cell lines for BBB experiments
Primary cultures of brain microvascular endothelial cells (BMECs) represent the closest
possible approximation to the in vivo BBB (99). The most widely used primary BMECs
originate from rat, mouse, pig, and cow (100). The use of human BMECs is rare and limited
(101, 102) due to the restricted availability of human brain tissue as well as the high cost and
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special skills necessary for isolation and culture of primary human BMECs. Unfortunately
most primary BMECs lose their specific characteristics in culture within limited passages
and rapidly cease being useful as in vitro models of the human BBB (103).

To address these issues, immortalized human BMECs were generated by expressing simian
virus 40 large T antigen (SV40-LT) (104,105), human papilloma E6E7 gene (106), E1A
adenovirus gene (107), or Rous sarcoma virus (108), as well as by incorporating human
telomerase (109). Well-characterized human BMEC lines include human cerebral
microvascular endothelial cells (hCMEC/D3) and transfected human brain microvascular
endothelial cells (THBMECs) (104,109). hCMEC/D3 were established by transducing
primary human brain endothelial cellswith lentiviral vectors incorporating human telomerase
and SV40-LT. They have high expression of junctional proteins and have been widely used
for cell signaling and drug transport studies (110–119). THBMECs were isolated from
human brain microvessels and immortalized by transfection with SV40-LT (104). They
share characteristics of primary human BMECs including expression of tight junction-
associated proteins, high transendothelial electrical resistance (TEER) (104,120), expression
of factor VIII-related antigen and gamma-glutamyl transpeptidase, and uptake of 1, 1′-
dioctadecyl-3, 3, 3, 3′-tetramethylindocarboxyamine perchlorate-labeled acetylated low-
density lipoprotein (121). However these human BMEC lines lack contact inhibition and can
lose the morphological and physiological properties of their in vivo siblings because of their
immortalization particularly at high passage number or super-confluence. Under those
conditions, they can present transudative intercellular junctions and lack paracellular barrier
properties, which limit their effective use as an in vitro BBB model (122). Moreover,
complex karyotype changes were recently reported in immortalized BMECs, rendering
important the genetic testing of cell lines before their application to in vitro studies (123). As
a general statement, there are few cell lines that are appropriate for in vitro BBB
experiments.

Anew conditionally immortalized human BMEC cell line was established recently using a
temperature-sensitive SV40-LT in order to improve BBB-like differentiated characteristics
of these immortalized cell lines (124). At 33°C, SV40-T antigen binds and inhibits p53 and
Rb, which are strong tumor suppressors, leading to continuous cell proliferation. At 37°C,
SV40-LT is inactivated, and the cells exhibit growth arrest and differentiate into endothelial
cells. These conditionally immortalized cells express occludin and claudin-5 at intercellular
boundaries as well as influx and efflux transporters. At 37°C, conditional immortalized
human BMEC cells retain the physiological and morphological properties of human BMECs
and may represent a usefull cellular model for in vitro experiments.

In vitro BBB model for co-culture experiments
Co-culture systems, incorporating communication between endothelial cells and other BBB
components, provide a closer reproduction of in vivo conditions. A significant step towards
the understanding of co-culture models was the discovery that glial cells enhanced BBB
properties (125). After hollow fibers with transmural microperforations were generated,
many in vitro co-culture models incorporating brain endothelial cells and glial cells were
developed.

Astrocyte endfeet are the cell components in closest proximity to brain capillary endothelial
cells (126–130). Most co-culture BBB models focused on reconstructing the brain
microenvironment by incorporating astrocyte co-cultures, or astrocyte-conditioned medium,
to further induce BMECs (126, 131–135). It is now possible to evaluate endothelial cells in
the presence of other types of cells, such as pericytes (136, 137), neurons (138), and
microglia (139). Moreover, studies have been conducted with triple cultures of BMVECs,
astrocytes, and pericytes (103,140), as well as with BMVECs, astrocytes and neurons (141),
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all extracted from rodent brain. The establishment of human multi- culture systems using
BMECs and other BBB components is challenging because of the limited availability of
human cell lines and the complexity of these multi- culture systems (142–145).

Dynamic model of BBB for shear stress
There is increasing evidence that shear stress affects endothelial-leukocyte interactions in a
complex and subtle fashion (146). This understanding led to the development of dynamic in
vitro models. Among the first dynamic models were co-cultures of bovine aortic endothelial
cells and glial cells (135, 147). Recently a dynamic model allowing pulsatile flow and using
hCMEC/D3 cell line and astrocytes was developed (134, 148). The model showed much
higher TEER than static models. Now that it is clear that shear stress allows in vitro
endothelial cells to incorporate many physiological, anatomical, and biochemical BBB
characteristics, including leukocyte transmigration and drug-resistant properties (134, 135,
149, 150), flow-based models are beginning to be applied for in vitro BBB studies.

Dynamic model of BBB for transmigration in response to chemokines Pioneering flow-
based models showed convincingly that shear forces in the presence of chemokines control
the processes of leukocyte transmigration, including arrest and crawling (83, 96, 151, 152).
Recently, due to the construction of more physiological shear stress systems and the
development of hollow fiber technology, some attractive artificial BBB models for
migration have been developed (149, 153). For example, Man et al. (149) constructed a
model that allows the transendothelial migration of inflammatory cells with the addition of
chemokines. This model demonstrated that monocytes selectively adhered to BBB
endothelium in response to CXCL12 and facilitated lymphocyte migration across BBB. This
model provides a three-dimensional, controllable and physiologically relevant environment
where vascular endothelial cells can be exposed to physiological levels of flow and
chemokines, and might be useful for future transmigration experiments.
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Fig. 1. Cellular structure of the BBB
Endothelial cells have luminal tight junctions and form the capillary and the barrier. There is
a basement membrane that surrounds the pericyte and astrocyte outside endothelial cells.
Astrocytic endfeet are in close proximity to all of these structures.
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Fig. 2. Multi-step recruitment of leukocytes into the CNS
The five steps are shown. Rolling: the binding of P-selectin and PSGL-1 in leukocytes and
VCAM1 and VLA-4 in leukocytes allows the leukocyte to slow on endothelial cells;
Activation: chemokines on the endothelial cells activate the rolling leukocyte; Arrest:
activated leukocyte upregulates the VLA-4 and LFA-1. Binding to VCAM-1 and ICAM-1
on the endothelial cell allows the activated leukocyte attach to endothelial cells; Crawling:
arrested leukocyte crawls to preferred site for migration; Migration: crawling leukocytes
migrate across the endothelial cell via the paracellar or transcellar pathway. Luminal
chemokines allow the crawling leukocyte to cross the endothelial cell. By abluminal
chemokines leukocytes migrate to the CNS across the glia limitans. Key molecules involved
in each step: PSGL-1, P-selectin glycoprotein ligand 1; VLA-4, very late antigen 4;
VCAM-1, vascular cell adhesion molecule; LFA, lymphocyte function-associated antigen 1;
ICAM-1, intercellular adhesion molecule-1. Adapted from (1).
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Table 1

Chemokines and their related receptors (67, 72,154–157).

Subfamily

 Subgroup

  Chemokine name Alternative name Chemokine Receptor

CXC family

 ELR motif(+)

  CXCL1 Gro-alpha, MGSA, N51/KC, MIP-2 CXCR2

  CXCL2 Gro-beta, MIP-2 alpha CXCR2

  CXCL3 Gro-gamma, MIP-2 beta CXCR2

  CXCL5 ENA-78 CXCR2

  CXCL6 GCP-2 CXCR1, CXCR2

  CXCL7 beta-TG, CTAP-III, NAP-2 CXCR2

  CXCL8 IL-8 CXCR1, CXCR2

  CXCL15 Lungkine Unknown

 ELR motif(−)

  CXCL4 Platelet factor 4(PF4) Unknown

  CXCL9 MIG CXCR3

  CXCL10 IP10, CRG-2 CXCR3

  CXCL11 I-TAC, beta-R1, IP9, H174 CXCR3, CXCR7

  CXCL12 SDF-1 alpha, SDF1 beta, PBSF CXCR4, CXCR7

  CXCL13 BCA-1, BLC CXCR5

  CXCL14 BRAK, bolekine Unknown

  CXCL16 SR-PSOX CXCR6

CC family

  CCL1 I-309 CCR8

  CCL2 MCP-1 CCR2

  CCL3 MIP-1, LD78 CCR1, CCR5

  CCL4 MIP-1, Act-2 CCR5

  CCL5 RANTES CCR1, CCR3, CCR5

  CCL6 mC10 CCR1

  CCL7 MCP-3, FIC, MARC CCR1, CCR2, CCR3, CCR5

  CCL8 MCP-2 CCR1, CCR2, CCR3, CCR5

  CCL9/10 MIP-1gammma CCR1

  CCL11 Eotaxin CCR3, CCR5

  CCL12 MCP-5 CCR2

  CCL13 MCP-4, CK10 CCR1, CCR2, CCR3, CCR5

  CCL14 HCC, CK1 CCR1

  CCL15 HCC-2, MIP-5, MIP-1 CCR1, CCR3

  CCL16 HCC-4, CK12 CCR1
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Subfamily

 Subgroup

  Chemokine name Alternative name Chemokine Receptor

  CCL17 TARC CCR4

  CCL18 DC-CK1, PARC, MIP-4, CK7 Unknown

  CCL19 MIP-3 CCR7, CCR11

  CCL20 MIP-3, LARC, Exodus-1, CK4 CCR6

  CCL21 SLC, 6Ckine, Exodus-2, TCA4 CCR7, CCR11, CXCR3,

  CCL22 MDC CCR4

  CCL23 MPIF-1, CK8, MIP-3 CCR1,CCR12

  CCL24 MPIF-2, CK6, Eotaxin-2 CCR3

  CCL25 TECK, CK15 CCR9, CCR11

  CCL26 Eotaxin-3, MIP-4 CCR3, CCR10

  CCL27 CTAK, Eskine CCR10

  CCL28 skinkine, MEC CCR3, CCR10

C family

  XCL1 Lymphotactin alpha, SCM-1 alpha,ATAC alpha XCR1

  XCL2 Lymphotactin beta, SCM-1 beta, ATAC beta XCR1

CX3C family

  CX3CL1 Fractalkine CX3CR1
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Table 2

Chemokines receptors and their related chemokines (68, 71,157–160).

Receptor Chemokine Ligands

CXC family

 CXCR1 CXCL6, CXCL8

 CXCR2 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8

 CXCR3 CXCL9, CXCL10, CXCL11

 CXCR4 CXCL12

 CXCR5 CXCL13

 CXCR6 CXCL16

 CXCR7 CXCL11, CXCL12

CC family

 CCR1 CCL2, CCL3, CCL5, CCL6, CCL7, CCL8, CCL9/10, CCL13, CCL14, CCL15, CCL16, CCL23

 CCR2 CCL2, CCL7, CCL8, CCL12, CCL13

 CCR3 CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL24, CCL26, CCL28

 CCR4 CCL17, CCL22

 CCR5 CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15

 CCR6 CCL20

 CCR7 CCL19, CCL21

 CCR8 CCL1

 CCR9 CCL25

 CCR10 CCL27, CCL28

 CCR11 CCL19, CCL21, CCL25

 CCR12 CCL23

C family

 XCR1 XCL1, XCL2

CX3C family

 CX3CR1 CX3CL1
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