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Summary

To correlate the variable clinical features of estrogen receptor positive (ER+) breast cancer with 

somatic alterations, we studied pre-treatment tumour biopsies accrued from patients in a study of 

neoadjuvant aromatase inhibitor (AI) therapy by massively parallel sequencing and analysis. 

Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, 

MYH9, MLL3 and SF3B1) previously linked to hematopoietic disorders. Mutant MAP3K1 was 

associated with Luminal A status, low grade histology and low proliferation rates whereas mutant 

TP53 associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression 

of proliferation upon AI treatment. Pathway analysis demonstrated mutations in MAP2K4, a 

MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in ER+ 

breast cancer are associated with specific patterns of somatic mutations that map into cellular 

pathways linked to tumor biology but most recurrent mutations are relatively infrequent. 

Prospective clinical trials based on these findings will require comprehensive genome sequencing.

Introduction

Estrogen receptor positive (ER+) breast cancer exhibits highly variable prognosis, 

histological growth patterns and treatment outcomes. Neoadjuvant aromatase inhibitor (AI) 

treatment trials provide an opportunity to document ER+ breast cancer phenotypes in a 

setting where sample acquisition is facile, prospective consent for genomic analysis can be 

obtained and responsiveness to estrogen deprivation therapy is documented1. We therefore 

conducted massively parallel sequencing (MPS) on 77 samples accrued from two 

neoadjuvant aromatase inhibitor clinical trials2,3. Forty-six cases underwent whole genome 
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sequencing (WGS) and 31 cases, exome sequencing, followed by extensive analysis for 

somatic alterations and their association with aromatase inhibitor response. Case selection 

for discovery was based on the tumour Ki67 level in the surgical specimen, since high 

cellular proliferation despite AI treatment identifies poor prognosis tumours exhibiting 

estrogen-independent growth4 (Supplementary Fig. 1). Twenty-nine samples displayed Ki67 

above 10% (“AI resistant tumours”, median Ki67 21%, range 10.3–80%) and 48 were at or 

below 10% (“AI sensitive tumours”, median Ki67=1.2%, range 0–8%), Cases were also 

classified as luminal A or B by gene expression profiling3. We subsequently examined 

interactions between Ki67 biomarker change, histological categories, intrinsic subtype and 

mutation status in selected recurrently mutated genes in 310 cases overall. Pathway analysis 

was applied to contrast the signaling perturbations in AI sensitive versus resistant tumors.

Results

The mutation landscape of luminal-type breast cancer

Using paired-end MPS, 46 tumour and normal genomes were sequenced to at least 30-fold 

and 25-fold haploid coverage, respectively, with diploid coverage of at least 95% based on 

concordance with SNP array data (Supplementary Table 1). Candidate somatic events were 

identified using multiple algorithms,5,6 then were verified by hybridization capture-based 

validation that targeted all putative somatic single nucleotide variants (SNVs) and small 

insertions/deletions (indels) that overlap coding exons, splice sites, and RNA genes (tier 1), 

high-confidence SNVs and indels in non-coding conserved or regulatory regions (tier 2), as 

well as non-repetitive regions of the human genome (tier 3). In addition somatic structural 

variants (SVs) and germline SVs that potentially affect coding sequences (Supplementary 

Information) were assessed. Digital sequencing data from captured target DNAs from the 46 

tumour and normal pairs (Supplementary Table 2 and Supplementary Information) 

confirmed 81,858 mutations (point mutations and indels) and 773 somatic SVs. The average 

numbers of somatic mutations and SVs were 1,780 (range 44 – 11,619) and 16.8 (range 0 – 

178) per case, respectively (Supplementary Table 3). Tier 1 point mutations and small indels 

predicted for all 46 cases also were validated using both 454 and Illumina sequencing 

(Supplementary Information). BRC25 was a clear outlier with only 44 validated tier 1–3 

mutations at low allele frequencies (ranging from 5% to 26.8%). Likely, this sample had low 

tumour content despite histopathology assessment, but the data are included to avoid bias.

The overall mutation rate was 1.18 validated mutations per Mbp (tier 1:1.05; tier 2: 1.14; tier 

3: 1.20). The mutation rate for tier 1 was higher than observed for AML (0.18–0.23)6,7 but 

lower than reported for hepatocellular carcinoma (1.85)8, malignant melanoma (6.65)9 and 

lung cancers (3.05–8.93)10,11 (Supplementary Table 4). The background mutation rate 

(BMR) across the 21 AI resistant tumours was 1.62 per Mbp, nearly twice that of the 25 AI 

sensitive tumours at 0.824 per Mbp (P = 0.02, one-sided t-test). A trend for more somatic 

structural variations in the AI resistant group also was observed, as the validated somatic 

structural variation frequency in the 21 AI resistant tumour genomes was 21.69 versus an 

average of 12.76 in 25 AI sensitive tumours (P = 0.16, one-sided t-test) (Fig. 1). If 10 TP53 

mutated cases were excluded, the BMR still tended to be higher in the AI resistant group 

(P=0.08). To demonstrate a single tumour core biopsy produced representative genomic 
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data, whole genome sequencing of two pre-treatment biopsies was conducted for 5 of the 46 

cases. The frequency of mutations in the paired specimens showed high concordance in all 

cases (correlation co-efficiency ranged from 0.74 to 0.95) (Supplementary Fig. 2) and a 

somatic mutation was infrequently detected in only one of the two samples (4.65% overall).

Significantly mutated genes in luminal-type breast cancer

The discovery effort was extended by studying 31 additional cases by exome sequencing, 

producing an additional 1,371 tier 1 mutations. In total the 77 cases yielded 3,355 tier 1 

somatic mutations, including 3,208 point mutations, 1 dinucleotide mutation, and 146 indels, 

ranging from 1 to 28 nucleotides. The point mutations included 733 silent, 2,145 missense, 

178 nonsense, 6 read-through, 69 splice-site mutations, and 77 in RNA genes 

(Supplementary Table 5). Of 2,145 missense mutations, 1,551 were predicted to be 

deleterious by SIFT14 and/or PolyPhen15. The MuSiC package (Dees et al., manuscript 

submitted) was applied to determine the significance of the difference between observed 

versus expected mutation events in each gene based on the background mutation rate. This 

identified 18 significantly mutated genes (SMG) with a convolution FDR < 0.26 (Table 1 

and Supplementary Table 6). The list contains genes previously identified as mutated in 

breast cancer (PIK3CA12, TP5313, GATA314, CDH115, RB116, MLL317, MAP3K118 and 

CDKN1B19) as well as genes not previously observed in clinical breast cancer samples, 

including TBX3, RUNX1, LDLRAP1, STNM2, MYH9, AGTR2, STMN2, SF3B1, and CBFB.

Thirteen mutations (3 nonsense, 6 frame-shift indels, 2 in-frame deletions and 2 missense) 

were identified in MAP3K1 (Table 1 and Fig. 2), a serine/threonine kinase that activates the 

ERK and JNK kinase pathways through phosphorylation of MAP2K1 and MAP2K420. Of 

interest, a missense (S184L) and a splice-region mutation (e2+3 likely affecting splicing) in 

MAP2K4 were observed in two tumours with no MAP3K1 mutation (Fig. 2). Single 

nonsynonymous mutations in MAP3K12, MAP3K4, MAP4K3, MAP4K4, MAPK15, and 

MAPK3 also were detected (Supplementary Table 5). TBX3 harbored three small indels (one 

insertion and two deletions). TBX3 affects expansion of breast cancer stem-like cells through 

regulation of FGFR21. Two truncating mutations in the tumor suppressor CDKN1B were 

identified19. Four missense RUNX1 mutations were observed, with three in the RUNT 

domain clustered within the 8 amino acid putative ATP-binding site (R166Q, G168E, and 

R169K). RUNX1 is a transcription factor affected by mutation and translocation in the M2 

subtype of AML22 and is implicated in tethering ER to promoters independently of estrogen 

response elements23. Two mutations (N104S and N140*) also were identified in CBFB, the 

binding partner of RUNX1. Additional mutations included 3 missense (2 K700E and 1 

K666Q), in SF3B1, a splicing factor implicated in MDS24 and CLL25. One missense and 

one nonsense mutation, and two indels, were found in the MYH9 gene involved hereditary 

macrothrombocytopenia26 as well being observed in an ALK translocation in anaplastic 

large cell lymphoma27.

We also identified three SMGs (LDLRAP1, AGTR2, and STMN2), not previously implicated 

in cancer. A missense and a nonsense mutation were observed in LDLRAP1, a gene 

associated with familial hypercholesterolemia28. AGTR2, angiotensin II receptor type 2 

harbored two missense mutations (V184I and R251H). Angiotensin signaling and ER 
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intersect in models of tissue fibrosis29. STMN2, a gene activated by JNK family kinases30,31 

and therefore regulated by MAP3K1 and MAP2K4, harbored one frameshift deletion and one 

missense mutation. Three deletions and one point mutation (Supplementary Fig. 3) were 

identified in a large, infrequently spliced non-coding (lnc) RNA gene, MALAT1 (metastasis 

associated lung adenocarcinoma transcript 1), that regulates alternative splicing by 

modulating the phosphorylation of SR splicing factor32. Translocations and point mutations 

of MALAT1 have been reported in sarcoma33 and colorectal cancer cell lines34. Five 

additional MALAT1 mutations were found in the recurrent screening set (Supplementary 

Table 5d). The locations of these mutations clustered in a region of species homology (F1 

and 2 domains) that could mediate interactions with SRSF132 (Supplementary Fig. 4). Non-

coding mutation clusters were found in ATR, GPR126, and NRG3 (Supplementary 

Information and Supplementary Table 7).

Correlations between mutations, AI response biomarkers, and histology

To study clinical correlations, mutation recurrence screening was conducted on an additional 

240 cases (Supplementary Table 8 and Supplementary Fig. 1). By combining WGS, exome, 

and recurrence screening data, we determined the mutation frequency in PIK3CA to be 

41.3% (131 of 317 tumours) (Supplementary Table 5a-d and Supplementary Fig. 3). TP53 

was mutated in 51 of 317 tumours (16.1%) (Supplementary Table 5a-d and Supplementary 

Fig. 3). Additionally, 52 nonsynonymous MAP3K1 mutations in 39 tumours and 10 

mutations in its substrate MAP2K4 were observed representing a combined case frequency 

of 15.5% (Supplementary Table 5a-d and Fig. 3). Of note, 52 of the 62 non-silent mutations 

in MAP3K1 and MAP2K4 were scattered indels or other protein truncating events strongly 

suggesting functional inactivation. In addition, 13 tumours harbored two non-silent 

MAP3K1 mutations, indicative of bi-allelic loss and reinforcing the conclusion that this gene 

is a tumour suppressor. Twenty nine tumours harboured a total of 30 mutations in GATA3, 

consisting of 25 truncation events, one in-frame insertion, and 4 missense mutations 

including 3 recurrent mutations at M294K (Supplementary Table 5a-d and Supplementary 

Fig. 3). BRC8 harboured a chromosome 10 deletion that includes GATA3. CDH1 mutation 

data were available for 169 samples and, as expected, its mutation status was strongly 

associated with lobular breast cancer15 (Table 2). We applied a permutation-based approach 

in MuSiC (Dees et al., submitted) to ascertain relationships between mutated genes. 

Negative correlations were found between mutations in gene pairs such as GATA3 and 

PIK3CA (P = 0.0026), CDH1 and GATA3 (P = 0.015), and CDH1 and TP53 (P = 0.022). 

MAP3K1 and MAP2K4 mutations were mutually exclusive, albeit without reaching 

statistical significance (P = 0.3). In contrast, a positive correlation between MAP3K1/

MAP2K4 and PIK3CA mutations was highly significant (P = 0.0002) (Supplementary Table 

9).

Two independent mutation data sets from these clinical trial samples were analyzed 

separately and then in combination, with a false discovery rate (FDR) corrected P value to 

gauge the overall strength and consistency of genotype/phenotype relationships (Table 2 and 

Supplementary Fig. 1). TP53 mutations in both data sets correlated with significantly higher 

Ki67 levels, both at baseline (P = 0.0003) and at surgery (P = 0.001). Furthermore, TP53 

mutations were significantly enriched in luminal B tumours (P = 0.04) and in higher 
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histological grade tumours (P = 0.02). In contrast, MAP3K1 mutations were more frequent 

in luminal A tumours (P = 0.02), in grade 1 tumours (P=0.005) and in tumours with lower 

Ki67 at baseline (P = 0.001) with consistent findings across both data sets. GATA3 mutation 

did not influence baseline Ki67 levels but was enriched in samples exhibiting greater 

percentage Ki67 decline (P = 0.01). This finding requires further verification because it was 

significant in SET1 (uncorrected P value 0.003) but was a marginal finding in SET2 (P = 

0.08). However, it suggests GATA3 mutation may be a positive predictive marker for AI 

response.

Structural variation and DNA repair mechanisms

Analysis of copy number alterations (CNAs) revealed arm-level gains for 1q, 5p, 8q, 16p, 

17q, 20p, and 20q and arm-level losses for 1p, 8p, 16q, and 17p in the 46 WGS tumour 

genomes (Supplementary Fig. 5). A total of 773 SVs (579 deletions, 189 translocations, and 

5 inversions) identified by WGS were validated as somatic in 46 breast cancer genomes by 

capture validation. No recurrent translocations were detected but six in-frame fusion genes 

were validated by RT-PCR (Supplementary Information and Supplementary Tables 10–13). 

Seven tumours had multiple complex translocations with breakpoints suggestive of a 

catastrophic mitotic event (“chromothripsis”; Supplementary Table 11). Analysis of the SV 

genomic breakpoints shows the spectra of putative chromothripsis-related events are the 

same as seen for other somatic events, with the majority of SVs arising from non-

homologous end-joining. We classified somatic (mitotic) and germline (meiotic) SVs into 

four groups: variable number tandem repeat (VNTR), non-allelic homologous 

recombination (NAHR), microhomology-mediated end joining (MMEJ), and non-

homologous end joining (NHEJ), according to criteria described in Supplementary 

Information. The fraction of each classification is shown for germline and somatic (mitotic) 

events (Supplementary Table 14). There were significantly more somatic NHEJ events in 

tumour genomes than the other three types (P < 2.2e-16).

Pathways in luminal breast cancer relevant to AI response

Pathscan 35 analysis (Supplementary Table 15 and Supplementary Information) indicated 

that somatic mutations detected in the 77 discovery cases affect a number of pathways 

including caspase cascade/apoptosis, ErbB signaling, Akt/PI3K/mTOR signaling, TP53/RB 

signaling, and MAPK/JNK pathways (Figure 4a). To discern the pathways relevant to AI 

sensitivity, we conducted separate pathway analyses for AI sensitive versus AI resistant 

tumors. While the majority of top altered pathways (FDR <= 0.15) in each group are shared, 

several pathways were enriched in the AI resistant group, including the TP53 signaling 

pathway, DNA replication, and mismatch repair. Specifically, 38% of the AI resistant group 

(11 of 29 tumours) have mutations in the TP53 pathway with three having double or triple 

hits involving TP53, ATR, APAF1, or THBS1. In contrast, only 16.6% (8 of 48 tumours) of 

the Ki67 low group had mutations in the TP53 signaling pathway, each with only a single hit 

in genes TP53, ATR, CCNE2, or IGF1. (Supplementary Table 16).

GeneGo pathway analysis of MetaCore interacting network objects was used to identify 

genes in the 77 luminal breast cancers with low-frequency mutations that cluster into 

pathway maps. Eight networks assembled from significant maps encompassed mutations 
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from 71 (92%) of the tumours (Fig. 4b). Many of the network objects shared pathways with 

SMGs such as TP53, MAP3K1, PIK3CA, and CDH1. GeneGo analysis also revealed that 

several genes with low-frequency mutations were actually subunits of complexes, resulting 

in higher mutation rates for that object, e.g., the condensin complex (4 mutations in 4 genes) 

and the MRN complex (4 mutations on 3 genes). Several pathways without multiple SMGs, 

such as the apoptotic cascade, calcium/phospholipase signaling, and G-protein coupled 

receptors, were significantly affected by low-frequency mutations. Grouping tumours by 

SMGs and pathway mutation status showed that while 55 (71%) of the tumours contained 

SMGs in significant pathways, an additional 16 (21%) contained only non-SMGs in these 

pathways. Thus, tumours without a given SMG often had other mutations in the same 

relevant pathway (Fig. 4b, Supplementary Fig. 6, Supplementary Table 17, and 

Supplementary Information).

We also applied PARADIGM36 to infer pathway-informed gene activities using gene 

expression and copy number data to identify several “hubs” of activity (Supplementary Fig. 

7, Supplementary Fig. 8 and Supplementary Information). As expected, ESR1 and FOXA1 

were among the hubs activated cohort-wide while other hubs exhibited high but differential 

changes in AI resistant tumours including C-MYC, FOXM1, and C-MYB (Supplementary 

Fig. 8). The concordance among the 104 MetaCore maps from GeneGo analysis described 

above is significant, with 75 (72%) matching one of the PARADIGM subnetworks at the 

0.05 significance level after multiple test correction (P < 4.4×10−6; Bonferroni-adjusted 

hypergeometric test) (Supplementary Fig. 9). We identified significant subnetworks 

associated with Ki67 biomarker status (Supplementary Fig. 10 and Supplemental 

Information) involving transcription factors controlling large regulons.

The PARADIGM-inferred pathway signatures were further used to derive a map of the 

genetic mechanisms that may underlie treatment response. A sub-network was constructed 

in which interactions were retained only if they connected two features with higher than 

average absolute association with Ki67 biomarker status (Supplementary Fig. 10 and 11 and 

Supplemental Information). Consistent with the PathScan results, among the largest of the 

hubs in the identified network were a central DNA Damage hub with the second highest 

connectivity (55 regulatory interactions; 1% of the network) and TP53 with the 14th highest 

connectivity (26 connections; 0.5% of the network). Additional highly connected hubs 

identified in order of connectivity were MYC with 79 connections (1.4%), FYN with 45 

(0.8%), MAPK3 with 43, JUN with 40, HDAC1 with 40, SHC1 with 39, and HIF1A/ARNT 

complex with 39 (Supplementary Fig. 11).

To identify higher-level connections between mutations and clinical features, we compared 

the samples based on pathway-derived signatures. For each clinical attribute and each SMG, 

we dichotomized the discovery samples into a positive and negative group for pair-wise 

comparisons (see details in Supplementary Information). We then computed all pair-wise 

Pearson correlations between pathway signatures and clustered the resulting correlations 

(Fig. 5). The entire process was repeated using validated mutations and signatures derived 

from the validation set (Supplementary Fig. 12). In line with expectation, PIK3CA, 

MAP3K1, MAP2K4, and low risk preoperative endocrine prognostic index (PEPI) scores 

(PEPI is an index of recurrence risk post neoadjuvant AI therapy4) cluster with the luminal 
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A subtypes and with each other, and are supported by the validation set analysis. The 

luminal B-like signatures included TP53, RB1, RUNX1 and MALAT1, which also associated 

with other poor outcome features such as high baseline and surgical Ki67 levels, high grade 

histology and high PEPI scores. The TP53 and MALAT1 associations in the discovery set 

also were supported by the validation set analysis.

Druggable gene analysis

We defined mutations in druggable tyrosine kinase domains including in ERBB2 (a V777L 

and a 755–759 LRENT in frame deletion homologous to gefitinib-activating EGFR mutations 

in lung cancer 37), as well as in DDR1 (A829V, R611C), DDR2 (E583D), CSF1R (D735H, 

M875L), and PDGFRA (E924K). In addition, pleckstrin homology domain mutations were 

observed in AKT1 (C77F) and AKT2 (S11F) and a kinase domain mutation was identified in 

RPS6KB1 (S375F) (Supplementary Table 18).

Discussion

The low frequency of many SMGs presents an enormous challenge for correlative analysis, 

but several statistically significant patterns were identified, including the relationship 

between MAP3K1 mutation, luminal A subtype, low tumour grade and low Ki67 

proliferation index. On this basis, for patients with MAP3K1 mutant luminal tumors, 

neoadjuvant AI could provide a favorable option. In contrast, tumors with TP53 mutation, 

which are mostly AI resistant, would be more appropriately treated with other modalities. 

MAP3K1 activates the ERK family, thus, loss of ERK signaling could explain the indolent 

nature of MAP3K1 deficient tumours20. However, MAP3K1 also activates JNK through 

MAP2K4, which also can be mutated38. Loss of JNK signaling produces a defect in 

apoptosis in response to stress, which would hypothetically explain why these mutations 

accumulate39,40. PIK3CA harbored the most mutations (41.3%) but was neither associated 

with clinical nor Ki67 response, confirming our earlier report41. However, the positive 

association between MAP3K1/MAP2K4 mutations and PIK3CA mutation at both the 

mutation and pathway levels suggests cooperativity (Fig. 4a).

The finding of multiple SMGs linked previously to benign and malignant haematopoeitic 

disorders suggests that breast cancer, like leukemia, can be viewed as a stem cell disorder 

that produces indolent or aggressive tumours that display varying phenotypes depending on 

differentiation blocks generated by different mutation repertoires 42. While only MLL3 

showed statistical significance in the analysis of 46 WGS cases, multiple mutations in genes 

related to histone modification and chromatin remodeling are worth noting (Supplementary 

Table 19). An array of coding mutations and structural variations was discovered in 

methyltransferases (MLL2, MLL3, MLL4, and MLL5), demethyltransferases (KDM6A, 

KDM4A, KDM5B, and KDM5C), and acetyltransferases (MYST1, MYST3, and MYST4). 

Furthermore, our analysis identified several adenine-thymine (AT)–rich interactive domain–

containing protein genes (ARID1A, ARID2, ARID3B, and ARID4B) that harbored mutations 

and large deletions, reinforcing the role of members from the SNF/SWI family in breast 

cancer.
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Pathway analysis enables the evaluation of mutations with low recurrence frequency where 

statistical comparisons conventionally are underpowered. For example, the eight samples 

with MAP2K4 mutations were sufficient to derive a reliable pathway-based gene signature 

in PARADIGM that aligns with MAP3K1. This approach also pointed to a putative 

connection between MALAT1 and the TP53 pathway. Finally, we provide evidence that 

transcriptional associations to Ki67 response reside in a connected network under the control 

of several key “hub” genes including MYC, FYN, and MAP kinases among others. Targeting 

these hubs in resistant tumours could produce therapeutic advances. In conclusion, the 

genomic information derived from unbiased sequencing is a logical new starting point for 

clinical investigation, where the mutation status of an individual patient is determined in 

advance and treatment decisions are driven by therapeutic hypotheses that stem from 

knowledge of the genomic sequence and its possible consequences. However, the accrual of 

large numbers of patients and the use of comprehensive sequencing and gene expression 

approaches will be required because of the extreme genomic heterogeneity documented by 

this investigation.

Methods summary

Clinical trial samples were accessed from the preoperative letrozole phase 2 study 

(NCT00084396) 2 that investigated effect of letrozole for 16 to 24 weeks on surgical 

outcomes and from the American College of Surgeons Oncology Group (ACOSOG) Z1031 

study (NCT00265759) 3 that compared anastrozole with exemestane or letrozole for 16 to 18 

weeks before surgery (REMARK flow charts, supplementary Fig. 1). Baseline snap-frozen 

biopsy samples with greater than 70% tumour content (by nuclei) underwent DNA 

extraction and were paired with a peripheral blood DNA sample. Two formalin-fixed 

biopsies were obtained at baseline and at surgery, and were used to conduct ER and Ki67 

immunohistochemistry as previously published4. Paired end Illumina reads from tumours 

and normals were aligned to NCBI build36 using BWA. Somatic point mutations were 

identified using SomaticSniper43, and indels were identified by combining results from a 

modified version of the Samtools indel caller (http://samtools.sourceforge.net/), GATK, and 

Pindel. Structural variations were identified using BreakDancer5 and SquareDancer 

(unpublished). All putative somatic events found in 46 cases were validated by targeted 

custom capture arrays (Nimblegen)/Illumina sequencing and all tier 1 mutations for 46 WGS 

cases also were validated using PCR/454 sequencing. All statistical analyses, including 

SMG, mutation relation and clinical correlation were done using the MuSiC package 

(manuscript submitted) and/or by standard statistical tests (Supplementary Information). 

Pathway analysis was performed with PathScan, GeneGo Metacore (http://

www.genego.com/metacore.php), and PARADIGM. A complete description of the materials 

and methods used to generate this data set and results is provided in the Supplementary 

Methods section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide somatic mutations
Circos plots44 indicate validated somatic mutations comprising tier 1 point mutations and 

indels, genome-wide copy number alterations, and structural rearrangements in six 

representative genomes. Three on-treatment Ki67 lesser than or at 10% (top panel: BRC15, 

BRC17, and BRC22) and three on-treatment Ki67 greater than 10% (bottom panel: BRC44, 

BRC47, and BRC50) cases are shown. Significantly mutated genes are highlighted in red. 

No purity-based copy number corrections were used for plotting copy number.
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Figure 2. MAP3K1 and MAP2K4 mutations observed in 317 samples
Somatic status of all mutations was obtained by Sanger sequencing of PCR products or 

Illumina sequencing of targeted capture products. The locations of conserved protein 

domains are highlighted. Each nonsynonymous substitution, splice site mutation, or indel is 

designated with a circle at the representative protein position with color to indicate 

translation effects of the mutation.
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Figure 3. Structural variants in significantly mutated or frequently deleted genes
One MAP3K1 deletion in BRC49 and one MAP2K4 deletion in BRC47, and one ELP3-

NRG1 fusion in BRC49 identified using Illumina paired-end reads from whole genome 

sequence data. Arcs represent multiple breakpoint-spanning read pairs with sequence 

coverage depth plotted in black across the region.
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Figure 4. Key cancer pathway components altered in luminal breast tumours
(a) Only genetic alterations identified in 46 WGS cases were shown. Alterations were 

discovered in key genes in the TP53/RB, MAPK, PI3K/AKT/mTOR pathways. Genes colored 

blue and red are predicted to be functionally inactivated and activated, respectively, through 

focused mutations including point mutations and small indels (M), copy number deletions 

(C), or other structural changes (S) that affect the gene. The inter-connectedness of this 

network (several pathways) shows that there are many different ways to perturb a pathway. 

(b) Eight interaction networks from canonical maps are significantly over-represented by 

mutations in 77 luminal breast tumours (46 WGS and 31 exome cases). In the concentric 

circle diagram, tumors are arranged as radial spokes and categorized by their mutation status 

in each network (concentric ring color) and SMG mutation status (black dots). Tumor 

classification by pathway analysis shows many tumors unaffected by a given SMG often 

harbor other mutations in the same network. For full annotation, see Supplementary 

Information and Supplementary Fig. 6.
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Figure 5. Pathway signatures reveal connections between mutations and clinical outcomes
PARADIGM-based pathway signatures were derived for tumour feature dichotomies 

including mutation driven gene signatures (mutant vs. non-mutant), histopathology type 

(lobular vs. ductal), preoperative endocrine prognostic index (PEPI) score (PEPI=0 

favorable vs. PEPI>0 unfavorable), PAM50 Luminal A subtype (LumA vs. LumB) and the 

reverse (LumB vs. LumA), histopathology grade (grades II&III vs. I), baseline Ki67 levels 

(>=14% vs. <14%), and end-of-treatment Ki67 levels (>=10% vs. <10%) and overall PEPI 

score (higher than mean unfavorable vs. lower than mean favorable). Pearson correlations 

were computed between all pair-wise signatures; positive correlations, red; negative 

correlations, blue; column features ordered identically as rows. Correlation analysis on the 

77 samples in the discovery set is shown.
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