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Abstract
During the first year of life, infants’ face recognition abilities are subject to “perceptual
narrowing,” the end result of which is that observers lose the ability to distinguish previously
discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been
reported for faces of different species and different races, in developing humans and primates.
Though the phenomenon is highly robust and replicable, there have been few efforts to model the
emergence of perceptual narrowing as a function of the accumulation of experience with faces
during infancy. The goal of the current study is to examine how perceptual narrowing might
manifest as statistical estimation in “face space,” a geometric framework for describing face
recognition that has been successfully applied to adult face perception. Here, I use a computer
vision algorithm for Bayesian face recognition to study how the acquisition of experience in face
space and the presence of race categories affect performance for own and other-race faces.
Perceptual narrowing follows from the establishment of distinct race categories, suggesting that
the acquisition of category boundaries for race is a key computational mechanism in developing
face expertise.

1. Introduction
Faces belonging to ethnic or racial groups that a particular observer has little experience
with are generally recognized poorly. Other-race faces are remembered less accurately than
own-race faces (Malpass & Kravitz, 1969) and are also subject to higher rates of matching
error in explicitly perceptual tasks (Sporer, 2001). Many strongly face-specific behavioral
effects are less evident during the processing of other-race faces as well, including the
composite face effect (Michel, Caldara, & Rossion, 2006; Michel et al., 2006), the inversion
effect (Balas & Nelson, 2010), and the part-whole effect (Tanaka, Kiefer, & Bukach, 2004).

The development of the other-race effect follows a trajectory consistent with what has been
called “perceptual narrowing.” (Nelson, 2001; Scott et al., 2007; Slater et al., 2010) The key
feature of perceptual narrowing across domains is the observation of broader discrimination
abilities at an early age, followed by more limited discrimination abilities at older ages. In
the context of the other-race effect this means that infants at a young age can successfully
perform face discrimination tasks with faces belonging to many different racial groups,
while older infants are typically only able to successfully discriminate between faces that
belong to the racial group they have the most exposure to (Kelly et al. 2005, 2007, 2009).
Perceptual narrowing of face recognition depends critically on experience, as demonstrated
in an elegant primate study by Sugita (2008), in which monkeys reared without exposure to
faces of any kind exhibited experience-dependent perceptual narrowing for human or
monkey faces as a function of post-deprivation exposure. Similar (though necessarily less
comprehensive) results have been obtained with children who experienced a significant shift
in their face diet during infancy or childhood due to adoption (Bar-Haim, et al., 2006),
suggesting that perceptual narrowing for other-species faces (Pascalis, De Haan, & Nelson,
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2002; Pascalis et al., 2005) and other-race faces are both a function of the visual
environment.

By what computational mechanisms does visual experience drive perceptual narrowing in
face recognition? To date, most theoretical and computational models have been designed to
account for the nature of the other-race effect in adulthood. Valentine’s “face space”
framework, for example, was introduced as a conceptual model that could account for many
of the basic features of mature face recognition, including (but not limited to) the other-race
effect (Valentine, 1991). Briefly, face space is a geometric model of face processing in
which individual faces are plotted in a multi-dimensional space spanned by perceptual and
psychological axes (e.g. masculinity, mouth shape, or eye spacing) and the similarity
between faces can subsequently be determined by calculating distances in this space. Within
the geometric framework of Valentine’s face space, other-race faces are poorly recognized
and remembered because the perceptual and psychological axes of face space are optimized
to maximize variance among the majority population of faces, relegating other-race faces to
a densely-packed clump of individual points that are less distinct from one another and all
differ from the typical face in essentially the same way (Valentine & Endo, 1992). This
basic insight is valuable, but begs the important question of what the axes of face space are
and how they might be determined from the input data available to observers, both of which
are key issues in understanding how perceptual narrowing might manifest during
development.

Several studies that have developed and compared computational models of the adult other-
race effect addressed these issues by implementing face space using Principal Components
Analysis (PCA; Jolliffe, 1986) to determine the axes that best represent the variability of the
image pixels across a population of human faces (Turk & Pentland, 1991). The most
comprehensive analysis of PCA-based models of the other-race effect is Furl, Phillips, and
O’Toole’s (2002) assessment of 13 different face recognition algorithms and their ability to
reproduce the other-race effect in an old/new recognition task. The algorithms considered in
this analysis included: (1) a range of different metrics for calculating distances in face-space,
(2) different representational strategies for encoding face structure including raw pixels, the
outputs of Gabor filters, and PCA coefficients, and (3) the use of “discriminative”
techniques including Fisher’s Linear Discriminant Analysis and the use of difference images
rather than raw images of faces. The most important factor that determined whether or not
an algorithm successfully exhibited the other-race effect in their analysis was whether or not
discriminations between faces were explicitly built into the model. That is, models that were
not explicitly trained to individuate faces did not exhibit an other-race effect. Other PCA-
based analyses of the other-race effect have primarily observed that other-race faces are
outliers in face space relative to the majority category (Haque & Cottrell, 2002) and that
consistent with Valentine’s proposal, other-race faces also tend to be more densely clumped
in face space than own-race faces (Caldara & Abdi, 2006). These latter results demonstrate
that the distributional properties of own-and other-race faces in PCA-based face space are
consistent with Valentine’s theoretical insights regarding the other-race effect, while Furl et
al.’s thorough analysis verifies that the other-race effect manifests in a specific task subject
to important constraints on the encoding of face structure.

Given that the aforementioned models have offered important insights into how the other-
race effect works in the mature visual system, the present study examines whether or not
perceptual narrowing can be similarly understood as a by-product of accumulating
experience within a Bayesian model of face recognition in face space. Specifically, I use a
Bayesian algorithm for face recognition developed by Moghaddam (2002) to examine the
development of the other-race effect. This model is a successful computer vision tool for
face recognition and is known to exhibit the other-race effect (Furl, Phillips, & O’Toole,
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2002). A key feature of this model is the use of difference images as a tool for encoding face
structure: Specifically, rather than learn categories defined by raw face images, the model
learns to distinguish appearance differences that arise from two images of the same person
(intra-personal variation) and differences that arise from two images of different people
(extra-personal variation). This strategy simplifies the recognition problem (as discussed in
subsequent sections) and also is easily relatable to the behavioral tasks used to assess infant
performance in face discrimination tasks. The direct analysis of the differences between
faces was demonstrated to be critically important to modeling the other-race effect by Furl
(2002), making Moghaddam’s model a particularly useful starting point. However, the
model is not presented here as a perfect solution to face recognition nor as the sole means by
which the other-race effect can be examined computationally. Instead, the model functions
in the current study as a useful means of examining how quantifiable factors influence the
nature of face perception in infancy. Similar models have been used to account for effects of
perceptual experience on speech perception (Feldman & Griffiths, 2007) and perceptual
organization (Aslin, 2011), suggesting that the approach taken here is potentially
representative of a broader learning principle.

Choosing particular aspects of development and face experience to model is of paramount
importance to this enterprise. How can the current model be used to characterize the
differences between 6-month-old and 9-month-old face-space so that we may see if
perceptual narrowing emerges naturally? I identified two aspects of infant face experience
that are intuitive, supported by published data, and easily modeled within a face-space
framework:

1. Older infants have seen more people than younger infants – The sheer number of
unique exemplars may make relative differences in performance more evident
(Humphreys & Johnson, 2007).

2. Older infants may have category-specific norms – Children and adults appear to
maintain distinct norms according to gender and race (Short, Hatry, & Mondloch,
2011; Jaquet, Rhodes, & Hayward, 2007; Little et al., 2008). The emergence of
these categories during infancy (see Anzures et al. (2010) for data supporting the
formation of race-specific categories by 9 months) and their impact on the
organization of face-space may be a critical precursor to perceptual narrowing.

There are many other aspects of visual experience and visual function that are changing
during the 6 to 9-month age range, including visual acuity (Dobson & Teller, 1978), and
contrast sensitivity (Peterzell, Werner, & Kaplan, 1995). Presently, I have confined myself
to the aforementioned aspects of experience because they are easily incorporated into the
model employed here and speak to existing theoretical proposals regarding the role of the
number of points in face space (Humphreys & Johnson, 2007; Hayden et al., 2007) and the
role of categories in visual recognition (Anzures et al., 2010). The current study thus does
not preclude explanations based upon low-level visual development or other aspects of
experience, but offers insight into whether or not the number of faces a child has seen and
the presence of face categories are sufficient to induce perceptual narrowing as characterized
empirically.

Both the increase in the number of exemplars expected with development and the
acquisition of perceptual categories according to race are modeled in the current study by
constraining the data used to train the model. Specifically, changing the character of the
training data affects subsequent performance in two ways: First, with the model can be
provided with an increasing number of training individuals to reflect the fact that continuing
perceptual development entails the accrual of more experience with more individuals.
Second, the training data can either include or exclude difference images that cross racial
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category boundaries (e.g. a difference image obtained by subtracting an Asian face from a
White face). I suggest that this is a meaningful way to incorporate the existence of racial
categories into the present model. White and Asian faces appear to be encoded by reference
to distinct perceptual norms (Armann et al., 2011) which I suggest should preclude robust
comparisons between individuals belonging to different categories. This is not to suggest
that this is the sole means by which perceptual categories could be incorporated into a
computational model of the other-race effect, only that this is one useful way to incorporate
this aspect of high-level perceptual development.

Besides selecting relevant developmental variables to model, it is also important to carefully
model the task used to measure the other-race effect in infancy. Perceptual narrowing in the
domain of face recognition has thus far typically been observed by comparing the behavior
of 6-month old infants to that of 9-month old infants in visual paired-comparison (VPC)
tasks (Fantz, 1964). Infants in a typical VPC study of face recognition begin each trial by
viewing a single face until they accumulate some amount of time (e.g., 20 seconds) looking
at it. Next, this face is removed and the infant is presented with two faces, one of which
matches the first stimulus, the other of which is typically a new individual belonging to the
same category (e.g. race, species, gender) as the original stimulus. The relevant variable is
the observed bias in looking time to the novel image – the presence of such a bias in the
aggregate data suggests that infants could discriminate between the individuals presented at
test, while its absence suggests they could not. In terms of the model under consideration
here, a VPC task can be translated as follows: Can extra-personal variation (the difference
between the novel face and the original image) be distinguished from intra-personal
variation (the difference between the original image and the distractor)? Formulated as such,
VPC performance for own-and other-race faces is relatively easy to assess using
Moghaddam’s model, subject to a range of developmental variables.

I continue by describing the Moghaddam model in more detail, with an emphasis on how it
was used in the current analysis as a model of VPC performance. Following this
specification of the model, I report how the model performs as a function of own-vs. other-
race stimuli, the number of faces used to train the model, and the category structure imposed
on the data. I find that perceptual narrowing is evident in the model subject to the
developmental factors considered here, and conclude by discussing the implications of the
model’s behavior in relation to previous literature and directions for future research into the
mechanisms of perceptual narrowing.

2. A Bayesian Model of the Visual Paired Comparison task
Moghaddam’s model of Bayesian face recognition is comprised of 4 basic steps: (1)
Construct difference images of faces to model intra-and extra-personal variation separately.
(2) Use Principal Components Analysis to determine low-dimensional spaces into which the
training and test data can be embedded. (3) Estimate the probability density of intra-and
extra-personal differences using the training data in each face-space. (4) Project the test data
into both the intra-and extra-personal spaces and estimate the probability that the new data
represents intra-or extra-personal variation using the estimated densities. This step makes
use of the PCA components determined from the training data – there is no new estimation
of principal components from the test data.

2.1 Constructing difference images
As already stated above, a unique feature of this model is the use of difference images rather
than raw facial appearance to build two distinct face-spaces. Specifically, the training
images are used to construct one space that captures intra-personal variation and another that
captures extra-personal variation. Intra-personal variation refers to image-level differences
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between two images of the same person, while extra-personal variation refers to differences
that exist between two different people. Both of these types of difference images are made
by subtracting the corresponding pixel intensities of two images, point by point (Figure 1).
For computer vision applications, the advantage of this dual estimation procedure is the
reduction of the standard multi-category recognition problem (categorizing according to
identity) to a simpler 2-category problem (categorizing as intra-or extra-personal variation).
For the current study, this approach is well-suited to the nature of the VPC task infants
perform in typical perceptual narrowing studies; infants do not report identity in looking-
time tasks, but instead indicate by their behavior whether they detect extra-personal
variation (a novel face).

2.2 Deriving intra-and extra-personal face spaces
Once intra-personal and extra-personal training data are obtained, the next step in the model
is to derive a separate face space for each set of difference images. This is done by using
PCA to determine a rigid rotation of the original pixel-based axes such that maximal
variance in the training data is captured by each successive axis. The purpose of this step is
to make it easier to estimate probability distributions for intra-and inter-personal variation.
In general, face recognition models suffer from a paucity of training images (typically
several hundred images) relative to the dimensionality of the data (typically thousands or
tens of thousands), making it difficult or intractable to estimate the distribution of a small
amount of data in a very high-dimensional space. PCA provides a principled means of
reducing the dimensionality of the data so that the distribution can be estimated robustly.

In these simulations, PCA was used to determine separate 3-dimensional face spaces for
intra-and extra-personal variation respectively, typically accounting for 40–50% of the
variance in each category. The number 3 is not a “magic number” – we obtain consistent
results for a number of PCs ranging between 2 and 5. For computer vision applications,
much higher dimensionality is often used (~100 principal components), but a relatively low-
dimensionality seemed prudent for the present study for several reasons. First, compared to
typical computer vision applications, the present simulations made use of far fewer
difference images. Second, previous models of the other-race effect have often employed
very low-dimensional subspaces (Caldara & Abdi, 2006; O’Toole et al., 1991). Finally,
projecting our data into a low-dimensional space facilitates the estimation of probability
distributions to model the training data. Unlike some previous PCA-based models of face
recognition (O’Toole et al., 1998) we do not examine principal components individually to
determine which ones are most useful for discrimination, since the separate construction of
intra-an extra-personal face spaces makes this goal explicit. Further, the original formulation
of Moghaddam’s model (which proved very successful for face recognition) uses PCA in the
same manner, leading us to use their formulation for our simulations.

2.3 Bayesian classification of the test data
Once we obtain low-dimensional face spaces that describe intra-and extra-personal
variation, the training data from each class can be projected into the appropriate face space
and used to estimate a probability distribution. These probability distributions can then be
used to make a Bayesian decision about whether new data is more likely to be an instance of
intra-or extra-personal variation. Specifically, given a candidate difference image Δ, we
would like to know the probability that this image is an instance of extra-personal variation,
denoted p(ΩE|Δ). We cannot directly estimate this, however, so we use Bayes’ Law to
compute the posterior probability we are interested in using probabilities that we can
estimate by projecting Δ into each face space.

Specifically, we may express the posterior probability as follows:
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Where p(ΩE) and p(ΩI) represent the prior probability of extra-and intra-personal variation
respectively, and p(Δ|ΩE) and p(Δ|ΩI) represent the likelihoods of the difference image Δ
given the estimated distributions of extra-and intra-personal variation within their respective
face spaces.

In the current study, we use a uniform prior, indicating no a priori bias for either extra-or
intra-personal variation. This allows us to simplify the above expression for p(ΩE|Δ) as
follows:

Where the likelihood terms are calculated by using the training data to estimate the
parameters (mean and covariance) of a normal distribution in each face space, such that p(Δ|
ΩI) and p(Δ|ΩE) can be estimated as follows:

Where k is equal to the dimensionality of the data, and μΩ and ΣΩ are the mean and
covariance of the category Ω under consideration. The normal distribution is used to model
the likelihood of difference vectors in the intra-and extra-personal face spaces for two
reasons. First, its parameters are easily estimated from even relatively small amounts of
data, making it a computationally convenient choice. Second, the original formulation of
Moghaddam’s model used the same parametrization and was quite successful at face
recognition. It is possible that the normal distribution is not the most accurate
characterization of the true distribution of face differences, but for our purposes it is both
tractable to compute and known to be effective in another domain.

With these likelihoods established, we now have all the pieces necessary to compute the
probability that we want, namely p(ΩE|Δ). For a given difference image Δ, we may now
estimate this posterior probability and use it to determine a category label. For a typical
computer vision application, if p(ΩE|Δ) > 0.5, we would infer that Δ represents extra-
personal variation. In the context of modeling VPC performance, I suggest that it is more
relevant to compare the values of p(ΩE|Δ) for the two difference images that can be
constructed from the input. I discuss this in more detail in the following section.

The Moghaddam model as described above is the foundation for the following analysis of
how developmentally-relevant variables affect VPC performance for own-and other-race
faces. Given a fixed proportion of other-race faces in the set of individuals used to generate
training data, I varied both the number of unique individuals included in the training set and
whether or not cross-race difference images were included as training data for modeling
extra-personal variation. The former manipulation makes it possible to examine the impact
of simple exposure to more faces on the other-race effect, and by extension, perceptual
narrowing. The latter manipulation implements the role of category formation in
development, insofar as the development of distinct race categories may limit infants to
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modeling extra-personal variation solely within categories. In each case, I ask whether or not
varying these parameters elicits model behavior consistent with perceptual narrowing.

3. Simulating Perceptual Narrowing for Own-and Other-race faces
In these simulations, I examined how the number of individuals used to generate training
data (N) and the inclusion/exclusion of cross-race extra-personal difference images at
training affected the ability to detect extra-personal variation in own-and other-race faces.

3.1 Stimuli
The simulations were conducted using the FERET database (Phillips et al., 1998), which has
been extensively used for benchmarking computer vision algorithms for face recognition.
Caucasian and Asian faces were selected for use in the current study if more than one image
per individual was available that did not include facial hair, eye-glasses, or piercings.
Ultimately, a total of 678 individuals (608 Caucasian, 70 Asian) were deemed suitable for
further use. All images were 150×130 pixels in size and were normalized to have zero mean
and unit variance. Finally, all images were cropped into a standard oval shape and aligned
with one another using the position of the eyes. The oval shape used to crop faces does not
fully exclude a small fraction of background pixels for some individuals, but we do not
expect that this impacts our simulations. These cropped images have been used in many
benchmark analyses of computer vision algorithms for face recognition where high levels of
accuracy have been achieved, suggesting that these minor imperfections are not a major
concern. Details of the cropping and normalization procedures can be found in the User
Guide for the CSU Face Identification Evaluation System (Bolme et al., 2003). Examples of
Caucasian and Asian images can be found in Figure 2.

3.2 Training data
The training data for each simulation was generated from N=16, 32, or 64 distinct
individuals. The proportion of other-race (Asian) individuals included in the set of training
individuals was fixed at 10%, in accordance with the rates of exposure to other-race faces
reported by the caregivers or infants in the 6–10 month age range (Rennels, 2008).
Fractional proportions of faces (e.g. 10% of 16 is 1.6 Asian faces) were rounded up to the
nearest integer. Asian faces were always included as the minority category due to the small
number of usable images available in the FERET database (When N=64, we are unable to
select both the requisite number of training images and an independent test set of 25 faces,
as described in the following section), a factor that has limited previous modeling studies as
well. Intra-personal difference images were created by selecting a random pair of images for
each individual in the training set and subtracting them from each other (e.g. A–B and B–A
are both stored for two images A and B), yielding 2N intra-personal difference images for a
training database of N individuals. Own-race extra-personal difference images were created
by randomly selecting N pairs of individuals from the set of own-race faces, selecting a
random picture of each individual, and subtracting these images from each other, generating
2N own-race extra-personal difference images. Other-race extra-personal training data was
generated similarly, with the caveat that for small values of N, there were not sufficient
extra-personal pairings of individuals to create 2N difference images. In these cases, all
possible difference images were created and stored as training data. When cross-race extra-
personal variation was permitted, these difference images were created by randomly
selecting N pairs of individuals (one from each race), selecting a random image of each
person, and subtracting these images from one another. When cross-race extra-personal
differences were not included, the training set was augmented with additional extra-personal
difference images drawn solely from within-race comparisons to match the number of
training exemplars across conditions.
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3.3 Testing the model
Test trials were conducted by simulating individual visual-paired comparisons trials using an
independent test set of own-and other-race faces comprised of 25 individuals per race. In a
typical VPC task, infants are familiarized with a single image of one individual (A1), and
then presented with two images: one depicting the familiarized individual (A2) and one
depicting someone novel (B1). In the context of the current model, this scenario presents the
observer with two difference images per trial: One representing intra-personal variation
(A1–A2) and one representing extra-personal variation (A1–B1). The observer’s task is to
determine which one is which using their estimates of each source of image variability
(Figure 3). Own-and other-race test trials were therefore conducted by generating a single
intra-personal difference image (A1–A2, as above) and a single extra-personal difference
image (A1–B1, as above) and evaluating p(ΩE|Δ) for each of these test vectors. A trial was
scored as “correct” if the posterior probability for the extra-personal difference image was
larger than that of the intra-personal difference image. For each set of simulation values
(Race=White/Asian, N=16, 32, or 64, Cross-race differences = included/excluded) I carried
out 250 iterations of the model, each of which included 50 unique VPC trials. The result of
each iteration was summarized via the percent correct obtained over all simulated VPC
trials.

3.4 Results
The model’s behavior was characterized in each condition by estimating 99% confidence
intervals that were bootstrapped from the raw data. In Figure 4, mean performance with
accompanying error bars is plotted for each condition.

There are several interesting features of the data. First, there is a clear improvement in
performance as a function of the number of exemplars. Second, the other-race effect obtains
consistently when racial categories are present (and cross-race difference images are
excluded from training), and is less evident when racial categories are absent at training.
Critically, when the number of training exemplars is low (N=16) we observe that the model
exhibits behavior consistent with perceptual narrowing subject to the category structure of
the training data. The absence of cross-category difference images in the training data leads
to above-chance performance for own-and other-race faces that is not statistically different.
That is, own-and other-race performance is approximately equal, though there is a non-
significant trend favoring own-race recognition. By contrast, performance with other-race
faces drops to chance levels when cross-category difference vectors are included during
training, but own-race performance remains above chance.. This pattern of performance is in
strong accordance with the results of perceptual narrowing in other-race and other-species
face recognition tasks – In one state, the model is above-chance with both races and neither
race is recognized significantly more accurately than the other, but in another the minority
category can only be recognized at chance levels. This suggests that establishing category
boundaries in face space may be an important precursor to perceptual narrowing.
Specifically, the inclusion of cross-category data (White-Asian difference images) appears
to be a critical factor governing performance in early stages of face learning, having less
influence later.

To what extent are these results dependent on the 10% proportion of other-race exemplars
included in the training data? The simulations were repeated with the more “extreme” case
of 0% other-race faces to see if our model would still reproduce the effects observed at 10%
when cross-race comparisons were not permitted (analogous simulations with cross-race
comparisons included could not be run, since the exclusion of other-race faces also excludes
their comparison with own-race faces). The results exhibit good numerical agreement with
the data displayed in Figure 4: When N=16, confidence intervals for White/Asian accuracy
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were [55%–58%] and [50%–54%] respectively. For N=32, we obtained White/Asian
intervals of [58–62%] and [55–59%], and for N=64, we obtained White/Asian intervals of
[61–64%] and [58–61%]. These data validate the results obtained at an ecologically relevant
proportion of 10% in a less-realistic, but more extreme setting where there is no other-race
exposure at all. These results cannot speak to the function of cross-category comparisons
however, which is a critically important feature of the model.

5. Discussion
The model demonstrates sensitivity to the developmental variables that were manipulated in
the current analyses. Increasing the number of unique individuals available for training
improved VPC performance for both races and allowing cross-category comparisons to be
included in the training data also generally improved performance. Most importantly, the
model displays a performance profile consistent with perceptual narrowing, suggesting that
the formation of categories is a key mechanism underlying the emergence and nature of face
expertise. This is consistent with recent empirical results demonstrating a similar
relationship between categorization and the other-race effect in infancy (Anzures et al.,
2010), and also with previous results obtained from adult observers (Levin, 2000) -the
current model provides a computational validation of this relationship via an explicitly
computational model that uses real face images.

The overall success of this model in reproducing the other-race effect reflects the importance
of subordinate-level training in acquiring recognition expertise. Specifically, the model’s
reliance on difference images is in good concordance with results from infants and adults
suggesting that learning discriminations between individuals is an effective means of
modulating other-race and other-species face processing. For example, Scott & Monesson
(2010) have recently reported that picture-book training that includes individual labels can
help infants maintain above-chance performance with other-species faces and objects (Scott,
in press). Mere exposure to the same faces does not accomplish this, in keeping with the
modeling results presented by Furl et al. (2002) and consistent with the current data. In
adults, similar experiments have indicated that subordinate level training with birds (Tanaka,
Curran, & Sheinberg, 2005; Scott et al., 2006) and other-race faces (Tanaka & Pierce, 2009)
impacts behavioral and neural responses to new stimuli, while basic level training does not.

The model thus provides several mechanistic insights into how perceptual narrowing takes
place. First, our results (and previous attempts to model the other-race effect outside of a
developmental context) suggest that ongoing refinement of the observer’s estimation of what
intra-and extra-personal variation look like is an important factor in the establishment of the
other-race effect. The mechanism here is an increasingly specific estimate of extra-personal
variation that does not apply to other-race faces well – typical other-race extra-personal
variation is “unlikely” once the model has been trained on own-race variation, and is thus
recognized poorly. With regard to perceptual narrowing, the key insight provided by the
current results is how the presence or absence of race categories can also alter the underlying
the estimate of extra-personal variation in such a way that narrowing emerges naturally.
Specifically, when cross-race differences are included in the estimate of extra-personal
variation, the underlying distribution is sufficiently “broad” that both own-and other-race
differences can be classified at above-chance levels. When those differences are not
included, the underlying distribution becomes more specific, and other-race differences
between individuals are “unlikely” because the estimate of extra-personal variation has
become more specific to one race. The mechanism of perceptual narrowing in this setting is
therefore increased specificity in the estimate of extra-personal variation, modulated both by
overall experience (number of exemplars) and by perceptual categories restricting the data
used to compute this estimate.
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The current model also suggests that face processing is far more plastic when few exemplars
have been seen, which is also commensurate with existing literature describing the plasticity
of other-race and other-species effects in infancy. Sangrigoli and de Schonen (2004)
demonstrated the malleability of the other-race effect in 3-month olds, who exhibited
improved performance for other-race faces after seeing a fairly small number of training
exemplars. Even in early childhood, intensive experience with a new face environment
appears to be sufficient to reduce or reverse the other-race effect acquired in infancy
(Sangrigoli et al., 2005), though far more training examples are likely necessary. Early
experience may facilitate later plasticity of own-and other-category face processing (Cassia
et al., 2009) however, again highlighting the impact of experience at early stages of face
learning. Overall, these results are in good agreement with the current finding that
perceptual narrowing and other-category face processing is most impacted by changes in a
relatively sparse face space. The current model also makes it possible to raise an interesting
question that remains to be tested rigorously: How does the number of unique individuals
and the proportion of other-race faces impact perceptual narrowing? Presently, we lack the
data to rigorously quantify the number of unique individuals a child has seen throughout
infancy. We thus do not suggest that the numbers, 16, 32, and 64 be taken as representative
of what is seen during a typical infancy – similarly, other parameters in the model should not
be taken as any kind of final word on what face space looks like developmentally.
Nonetheless, the current model suggests that the number of other-race faces (and also
potentially the proportion of other-race faces (Rennels, 2008)) does affect the time-course of
perceptual narrowing. The use of a computational model such as this one makes it possible
to make quantitative predictions about discrimination ability as a function of a specific
number of faces and a specific set of face images.

Besides the possibility of quantifying individual experience, there are many other avenues
for exploration within the context of the current model. Several parameter values within the
model, including the number of PCA basis functions, were chosen to be consistent with
previous modeling efforts. Further exploring the consequences of changing these parameters
may provide additional insight into the computations supporting the development of the
other-race effect. It is not surprising that the model will perform much more accurately as
the number of basis functions and the number of exemplars increase (though it is unlikely
that “ceiling performance” will be reached, especially when realistic, unconstrained face
images are used), but can we learn more about continuing development as we gradually
manipulate these parameters? We have already observed in our data that the other-race
effect persists as N=32 and N=64, but that other-race face performance gradually increases
above chance. We do not know if the rate of this increase is consistent with how the other-
race develops over early childhood, or how it might compare to adult performance after
extensive training with other-race faces. Second, the current model provides an interesting
account of performance on other-race VPC tasks, which suggests that it may be informative
to try and apply the same basic computational principles to other types of own-and other-
category effects observed in infancy. In particular, infants also exhibit gender preferences
that are dictated by experience. For example, novel female faces tend to be discriminated
from previously seen exemplars while novel male faces are not reliably discriminated from
familiarized male faces (Quinn et al., 2002). Other aspects of visual preference for male and
female faces are dependent on the sex of the infant’s primary caregiver, demonstrating that
early experience plays a key role in driving behavior in this context. Moreover, gender
effects also appear to interact with race (Quinn et al., 2008) such that fine-tuning for face
sex is only evident for own-race faces. These features of perceptual narrowing and the
development of face expertise are potentially rich test domains for a general computational
model of face learning in infancy.
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Ideally, it would also be valuable to apply the model to a large set of faces of multiple racial
categories so that non-white faces could serve as the majority category. Theoretically, one
might expect that the model’s results should be symmetric with regard to which category is
assigned to the majority, but there are also intriguing results suggesting that this may be
more complex. Asian infants do not exhibit a perfectly symmetric time course of perceptual
narrowing relative to White infants, for example (Kelly 2009). Further, White and Asian
adults do not exhibit a symmetric effect of race on holistic processing (Michel et al., 2006;
Tanaka, Kiefer & Bukach, 2004), which is a common behavioral marker of face expertise
(Young, Hellawell, & Hay, 1987). The potential for the current model to reproduce these
potential asymmetries is intriguing, but would require a larger set of faces than was available
for the current study.

Finally, besides the applicability of the current model to a wider range of VPC and visual
preference tasks, it may also be possible to use the model to gain insight into other observed
differences between own-and other-group face processing. For example, it has recently been
shown that infants’ eye movements to own-and other-race faces differ in systematic ways
(Liu et al., 2011; Wheeler et al., 2011) – an effect that may also be accounted for by the
developing computations that dictate how discriminative features for face recognition are
encoded. Similarly, it would also be intriguing to try and empirically measure infants’
“template” for making face discriminations using classification image techniques (Gosselin
& Schyns, 2001) and measure the correspondence between this behavioral template and an
ideal observer based on the model. In general, the model provides a potentially useful
platform for making predictions about how diverse face experience affects behavior.

Conclusion
The simulations reported here demonstrate that the emergence of the other-race effect in
infancy following “perceptual narrowing” can be accounted for within a Bayesian model of
face recognition. Further, within this model, the acquisition of distinct race categories is
necessary for perceptual narrowing to manifest. Race categories are not sufficient, however
– chance performance for other-race faces only occurs when a small number of faces have
been used for training. These results provide a computational account of how perceptual
narrowing occurs in the context of own-and other-race faces and suggest useful directions
for further research into the mechanisms of perceptual narrowing and the development of
face recognition in general.

Acknowledgments
This research was supported by grant NIH P20 RR020151 from the National Center for Research Resources, a
component of NIH.

References
1. Anzures G, Quinn PC, Pascalis O, Slater A, Lee K. Categorization, categorical perception, and

asymmetry in infants’ perception of face race. Developmental Science. 2010; 13:553–564.
[PubMed: 20590720]

2. Armann R, Jeffery L, Calder AJ, Rhodes G. Race-specific norms for coding face identity and a
functional role for norms. Journal of Vision. 2011; 11(13):9, 1–14. [PubMed: 22072729]

3. Aslin RN. Perceptual Organization of Visual Structure Requires a Flexible Learning Mechanism.
Infancy. 2011; 16(1):39–44.

4. Balas B, Nelson CA. The role of face shape and pigmentation in other-race face perception: An
electrophysiological study. Neuropsychologia. 2010; 48:498–506. [PubMed: 19836406]

5. Bar-Haim Y, Ziv T, Lamy D, Hodes R. Nature and nurture in own-race face processing.
Psychological Science. 2006; 17:159–163. [PubMed: 16466424]

Balas Page 11

Dev Sci. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Bolme, D.; Beveridge, R.; Teixeira, M.; Draper, B. The CSU Face Identification Evaluation System:
Its Purpose, Features and Structure. International Conference on Vision Systems; Graz, Austria.
2003. p. 304-311.

7. Caldara R, Abdi H. Simulating the other-race effect with autoassociative neural networks: Further
evidence in favor of the face-space model. Perception. 2006; 35:659–670. [PubMed: 16836056]

8. Cassia VM, Kuefner D, Picozzi M, Vescova E. Early experience predicts later plasticity for face
processing: Evidence for the reactivation of dormant effect. Psychological Science. 2009; 20:853–
859. [PubMed: 19493318]

9. Dobson V, Teller DY. Visual acuity in human infants: A review and comparison of behavioral and
electrophysiological studies. Vision Research. 1978; 18(11):1469–1483. [PubMed: 364823]

10. Fantz RL. Visual experience in infants: Decreased attention to familiar patterns relative to novel
ones. Science. 1964; 146:668–670. [PubMed: 14191712]

11. Feldman, NH.; Griffiths, TL. A rational account of the perceptual magnet effect. Proceedings of
the 29th Annual Conference of the Cognitive Science Society; Nashville, TN. 2007.

12. Furl N, Phillips PJ, O’Toole AJ. Face recognition algorithms and the other-race effect:
computational mechanisms for a developmental contact hypothesis. Cognitive Science. 2002;
26:797–815.

13. Gosselin F, Schyns PG. Bubbles: A technique to reveal the use of information in recognition tasks.
Vision Research. 2001; 41:2261–2271. [PubMed: 11448718]

14. Haque A, Cottrell GW. Modeling the other-race advantage with PCA. Cog Sci. 200?:899–904.

15. Hayden A, Bhatt RS, Joseph JE, Tanaka JW. The other-race effect in infancy: Evidence using a
morphing technique. Infancy. 2007:95–104.

16. Humphreys K, Johnson M. The development of face-space in infancy. Visual Cognition. 2007;
15(5):578–598.

17. Jaquet E, Rhodes G, Hayward WG. Race-contingent aftereffects suggest distinct perceptual norms
for different race faces. Visual Cognition. 2007; 16(6):734–753.

18. Jolliffe, IT. Principal Component Analysis. Springer-Verlag; 1986.

19. Kelly DJ, Liu S, Lee K, Quinn PC, Pascalis O, Slater AM. Development of the other-race effect in
infancy: Evidence towards universality? Journal of Experimental Child Psychology. 2009;
104:105–114. [PubMed: 19269649]

20. Kelly DJ, Quinn PC, Slater AM, Lee K, Ge L, Pascalis O. The other-race effect develops during
infancy: Evidence of perceptual narrowing. Psychological Science. 2007; 18:1084–1089.
[PubMed: 18031416]

21. Kelly DJ, Quinn PC, Slater Am, Lee K, Gibson A, Smith M, Ge L, Pascalis O. Three-month-olds,
but not newborns, prefer own-race faces. Developmental Science. 2005; 8:F31–F36. [PubMed:
16246233]

22. Levin DT. Race as a visual feature: using visual search and perceptual discrimination asks to
understand face categories and the cross-race recognition deficit. Journal of Experimental
Psychology: General. 2000; 129(4)

23. Little AC, DeBruine LM, Jones BC, Waitt C. Category contingent aftereffects for faces of different
races, ages and species. Cognition. 2008; 106:1537–1547. [PubMed: 17707364]

24. Liu S, Quinn PC, Wheeler A, Xiao N, Ge L, Lee K. Similarity and difference in the proessing of
same- and other-race faces as revealed by eye tracking in 4- to 9-month olds. Journal of
Experimental Child Psychology. 2011; 108(1):180–189. [PubMed: 20708745]

25. Malpass RS, Kravitz J. Recognition of faces of own and other race. Journal of Personality and
Social Psychology. 1969; 13:330–334. [PubMed: 5359231]

26. Michel C, Caldara R, Rossion B. Same-race faces are perceived more holistically than other-race
faces. Visual Cognition. 2006; 14:53–73.

27. Michel C, Rossion B, Han J, Chung C-S, Caldara R. Holistic Processing is Finely Tuned for Faces
of One’s Own Race. Psychological Science. 2006; 17:608–615. [PubMed: 16866747]

28. Moghaddam B, Jebara T, Pentland A. Bayesian face recognition. Pattern Recognition. 2000;
33:1771–1782.

Balas Page 12

Dev Sci. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



29. Nelson CA. The development and neural bases of face recognition. Infant and Child Development.
2001; 10:3–18.

30. O’Toole AJ, Deffenbacher KA, Abdi H, Bartlett JC. Simulation of ‘other-race effect’ as a problem
in perceptual learning. Connection Science. 1991; 3(2)

31. O’Toole AJ, Deffenbacher KA, Valentin D, McKee K, Huff D, Abdi H. The perception of face
gender: The role of stimulus structure in recognition and classification. Memory & Cognition.
1998; 26:146–160.

32. Pascalis O, de Haan M, Nelson CA. Is face processing species-specific during the first year of life.
Science. 2002; 296:1321–1323. [PubMed: 12016317]

33. Pascalis O, Scott LS, Kelly DJ, Shannon RW, Nicholson E, Coleman M, Nelson CA. Plasticity of
face processing in infancy. PNAS. 2005; 102:5297–5300. [PubMed: 15790676]

34. Peterzell DH, Werner JS, Kaplan PS. Individual differences in contrast sensitivity functions:
Longitudinal study of 4-, 6-, and 8-month-old human infants. Vision Research. 1995; 35(7):961–
979. [PubMed: 7762153]

35. Phillips JP, Wechsler H, Huang J, Rauss PJ. The FERET database and evaluation procedure for
face-recognition algorithms. Image and Vision Computing. 1998; 16(5):295–306.

36. Quinn PC, Yahr J, Kuhn A, Slater AM, Pascalis O. Representation of the gender of human faces by
infants: A preference for female. Perception. 2002; 31:1109–1121. [PubMed: 12375875]

37. Quinn PC, Uttley L, Lee K, Gibson A, Smith M, Slater AM. Infant preference for female faces
occurs for same but not other-race faces. Journal of Neuropsychology. 2008; 2:15–26. [PubMed:
19334302]

38. Rennels JL, Davis RE. Facial experience during the first year. Infant Behavior and Development.
2008; 31(4):665–678. [PubMed: 18554724]

39. Sangrigoli S, de Schonen S. Recognition of own-race and other-race faces by three-month old
infants. Journal of Child Psychology and Psychiatry and Allied Disciplines. 2004; 45:1–9.

40. Sangrigoli S, Pallier C, Argenti AM, Ventureyra VAG, de Schonen S. Reversibility of the other-
race effect in face recognition during childhood. Psychological Science. 2005; 16:440–444.
[PubMed: 15943669]

41. Scott LS, Tanaka JW, Sheinberg DL, Curran T. A reevaluation of the electrophysiological
correlates of expert object processing. Journal of Cognitive Neuroscience. 2006; 18(9):1453–1465.
[PubMed: 16989547]

42. Scott LS, Monesson A. Experience dependent neural specialization during infancy.
Neuropsychologia. 2010; 48:1857–1861. [PubMed: 20153343]

43. Scott LS, Pascalis O, Nelson CA. A Domain-General Theory of the Development of Perceptual
Discrimination. Current Directions in Psychological Science. 2007; 16:197–201. [PubMed:
21132090]

44. Scott LS, Tanaka JT, Sheinberg DL, Curran T. The role of category learning in the acquisition and
retention of perceptual expertise: A behavioral and neurophysiological study. Brain Research.
2008; 1210:204–215. [PubMed: 18417106]

45. ScottL S. Mechanisms underlying the emergence of object representations during infancy. Journal
of Cognitive Neuroscience. in press.

46. Short LA, Hatry AJ, Mondloch CJ. The development of norm-based coding and race-specific face
prototypes: an examination of 5- and 8-year-olds’ face space. Journal of Experimental Child
Psychology. 2011; 108(2):338–357. [PubMed: 20822777]

47. Slater A, Quinn PC, Kelly DJ, Lee K, Longmore CA, McDonald PR, Pascalis O. The shaping of
face space in early infancy: Becoming a native face processor. Child Development Perspectives.
2010; 4(3):205–211. [PubMed: 21562620]

48. Sporer SL. Recognizing faces of other ethnic groups: An integration of theories. Psychology,
Public Policy & Law. 2001; 7:36–97.

49. Sugita Y. Face perception in monkeys reared with no exposure to faces. PNAS. 2008; 105:394–
398. [PubMed: 18172214]

50. Tanaka JW, Curran T, Sheinberg D. The training and transfer of real world perceptual expertise.
Psychological Science. 2005; 16:145–151. [PubMed: 15686581]

Balas Page 13

Dev Sci. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



51. Tanaka JW, Pierce LJ. The neural plasticity of other-race face recognition. Cognitive, Affective,
and Behavioral Neuroscience. 2009; 9:122–131.

52. Tanaka JW, Kiefer M, Bukach CM. A holistic account of the own-race effect in face recognition:
evidence from a cross-cultural study. Cognition. 2004; 93:B1–B9. [PubMed: 15110726]

53. Turk M, Pentland A. Eigen faces for Recognition. Journal of Cognitive Neuroscience. 1991; 3:71–
86.

54. Valentine T. A unified account of the effects of distinctiveness, inversion, and race in face
recognition. The Quarterly Journal of Experimental Psychology. 1991; 43:161–204. [PubMed:
1866456]

55. Valentine T, Endo M. Towards an exemplar model of face processing: The effects of race and
distinctiveness. The Quarterly Journal of Experimental Psychology. 1992; 44A:671–703.
[PubMed: 1615169]

56. Wheeler A, Anzures G, Quinn PC, Pascalis O, Omin DS, Lee K. Caucasian infants scan own- and
other-race faces differently. Plos One. 2011; 6(4):e18621. [PubMed: 21533235]

57. Young AW, Hellawell D, Hay DC. Configurational information in face perception. Perception.
1987; 16:747–759. [PubMed: 3454432]

Balas Page 14

Dev Sci. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Examples of intra-personal and extra-personal difference images. In the top row, two
different images of the same person are subtracted, yielding the difference image at the far
right that captures intra-personal variation. In the bottom row, two images of two different
individuals are subtracted, yielding an extra-personal difference image. In the model, these
two classes of difference image are used to create separate face-spaces so that new
difference images can be analyzed probabilistically.
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Figure 2.
Examples of Caucasian and Asian faces used in the current study. All faces have been
cropped to the same oval template and are aligned according to the position of the eyes.

Balas Page 16

Dev Sci. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
A schematic view of how a single VPC trial would be carried out using the current model.
The two test faces can each be compared to the original sample, leading to two difference
images labeled here as Δintra and Δextra. Both of these can be analyzed using the intra-and
extra-personal subspaces to determine the probability that each one represents extra-personal
variation. Ideally, the true extra-personal difference image will have a larger posterior
probability than the intra-personal difference.
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Figure 4.
Mean percent correct performance on simulated VPC trials for own-and other-race stimuli
as a function of N and the presence or absence of racial categories. When categories are
“absent,” cross-race difference images are included during training – when they are
“present,” those differences are not included. Error bars represent 99% confidence intervals
of the mean. The dashed line in each plot indicates chance performance of 50%.
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