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Abstract
Background and Purpose—Cyclooxygenase-2 (COX-2) and Microsomal Prostaglandin E2
Synthase-1 (mPGES-1) catalyze isomerization of the cyclooxygenase product PGH2 into PGE2.
Deletion of COX-2/mPGES-1 suppresses carotid artery atherogenesis, angiotensin II-induced
aortic aneurysms formation, and attenuates neointimal hyperplasia after vascular injury in mice.
The upregulation of COX-2/mPGES-1 in the wall of ruptured human cerebral aneurysms is not
known.

Methods—Ten patients with intracranial aneurysms (five ruptured and five non-ruptured)
underwent microsurgical clipping. During the procedure, a segment of the aneurysm dome was
resected and immunostained with monoclonal antibodies for COX-1, COX2 and mPGES-1. A
segment of the superficial temporal artery (STA) was also removed and immunostained with
monoclonal antibodies for COX-1, COX2 and mPGES-1.

Results—All ten aneurysm tissues stained positive for mPGES-1 monoclonal antibody.
Expression of mPGES-1 was more abundant in ruptured aneurysm tissue than non-ruptured
aneurysms, based on a semiquantitative grading. None of the STA specimens expressed
mPGES-1. COX-2 was upregulated in the same distribution as mPGES-1. COX-1 was present
constitutively in all tissues.
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Conclusion—COX-2/mPGES-1 are expressed in the wall of human cerebral aneurysms and
more abundantly in ruptured aneurysms than non-ruptured. We speculate that the protective effect
of aspirin against rupture of cerebral aneurysms may be mediated in part by inhibition of COX-2/
mPGES-1
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Introduction
The etiology of saccular intracranial artery aneurysm (IA) is not clear. Several studies in
humans and experimental animal on intracranial aneurysms support the hypothesis that
chronic inflammation contributes to degeneration of intracranial aneurysms and potentially
may increase the risk of rupture 1-3. We recently reported that daily intake of aspirin reduces
the incidence of human cerebral aneurysm rupture by 60% 4. The mechanism by which
aspirin exerts this surprising effect is not clear.

Arachidonic acid is metabolized by cyclooxygenases to prostaglandin (PG) H2, which is
converted to specific PGs. COX-1, COX-2 and mPGES-1 catalyze the isomerization of
PGH2 into PGE2 and PGI2. COX-1 is responsible for baseline levels of prostaglandins and
inflammation induces expression of COX-2 (5). Both COX-1 and COX-2 are inhibited by
aspirin 5.

Aoki et al showed the presence of COX-2, mPGES-1, and prostaglandin E receptor 2 (EP2)
in endothelial cells in the walls of unruptured cerebral aneurysms 6. They also demonstrated
that inhibition or loss of COX-2 or EP2 attenuated inflammation and reduced the incidence
of aneurysm formation in rats and mice with cerebral aneurysm 6. Recent studies also
indicate that deletion of mPGES-1, which is one step downstream from COX-2, suppresses
carotid artery atherogenesis, angiotensin II-induced aortic aneurysm formation, and
attenuates neointimal hyperplasia after vascular injury in mice 7-11.

The purpose of this study was to extend these findings to test the hypothesis that expression
of COX-1, COX-2 and mPGES-1 are upregulated in ruptured human intracranial aneurysms.

Methods
The study was approved by University of Iowa Institutional Review Board (IRB). Ten
consecutive patients with intracranial aneurysms who underwent microsurgical clipping
were identified during a six months interval. No patients were excluded, except patients who
had coiling of their aneurysm. Five patients with non-ruptured aneurysms and five patients
with ruptured aneurysms were included in the study. Mean age was 55 (range: 44-67 years
old) (Table 1). Informed consent was obtained and the patients underwent microsurgical
clipping. A segment of the aneurysm dome (≥ 1mm) was removed and placed in formalin. A
≥ 2mm specimen from the STA was removed and placed in formalin. These specimens were
collected from the same 10 patients. All 20 specimens (ten aneurysms and ten STA) were
immunostained with monoclonal antibodies to COX-1 (Epitomics, Burlington CA), COX-2
(Epitomics, Burlington CA), and mPGES-1 (Cayman Chemical, Ann Arbor, MI).

Semiquantitative analysis of the slides was performed based on cell count (immunostained
positive cells) per high-power field (HPF) (40×): grade 0= 0 cells per HPF, grade 1 = 0-10
cells per HPF, grade 2 = 10-20 cells per HPF and grade 3 = >;20 cells per HPF. Assessment
of slides stained only with COX-1, COX-2 and mPGES-1 was made by an observer who
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was not aware of the source of tissues. Statistical analysis was performed using Kruskal-
Wallis test, a nonparametric ANOVA test.

Results
Ten patients with 10 aneurysms were included in this study. All ten aneurysms stained
positive for expression of COX-2 and mPGES-1, using COX-2 and mPGES-1 monoclonal
antibodies (figure 1 and 2). Ruptured cerebral aneurysm stained more abundantly with
COX-2 and mPGES-1 monoclonal antibodies than non-ruptured aneurysms (figure 2).
Staining of COX-2 and mPGES-1 was noted in all layers of the aneurysm tissue, but was
more prominent in adventitia (figure 1). Superficial temporal artery (STA) tissue did not
immunostain for COX-2 or mPGES-1 in any of the ten samples (figure 1 and 2).

All tissue samples from STA and aneurysms (ruptured and non-ruptured) stained positively
for COX-1 (figure 1 and 2).

There was no difference in expression of COX-1 among STA, ruptured and unruptured
cerebral aneurysm (p=0.574). Expression of COX-2 tended to be greater (p=0.095) in
ruptured aneurysms and was greater (p=0.001) in ruptured and un-ruptured aneurysms vs
STA. Expression of mPGES-1, also tended to be greater in ruptured aneurysms vs
unruptured aneurysms (p=0.071), and was greater in ruptured and unruptured aneurysms vs
STA (p=0.001).

Discussion
Inflammation in Cerebral Aneurysm

Several stresses, including hemodynamic stress, infiltration of inflammatory cells, and
release of inflammatory molecules and cytokines appear to play an integral role in
progression of cerebral aneurysm to being rupture-prone and ultimately to rupture with
devastating sequelae of subarachnoid hemorrhage. This concept is based on several studies
in humans and animals which suggest that hemodynamic stress on endothelium leads to
molecular signaling and formation of proinflammatory and proliferative pathways 12.

Endothelial stress leads to activation of transcription factor nuclear factor kappa B (NF-
kB) 13, increased expression of monocyte chemotactic protein-1 (MCP-1) 14-17, and
VCAM-1 1,17, which are highly chemotactic to inflammatory cells, macrophages, T cells,
Natural Killer (NK) cells and basophils. Kanematsu et al 18 reported that depletion of
macrophages in mice significantly reduced incidence of cerebral aneurysm formation. They
also demonstrated a reduced incidence of cerebral aneurysms in mice with deletion of
MCP-118. This finding supports the concept that inflammation plays a major role in
aneurysm formation and rupture.

Recently we reported a paradoxical effect of aspirin, at least in relation to effects of aspirin
on platelets, that daily aspirin use in humans decreases the incidence of aneurysm rupture by
60 % 4. Because aspirin is antiinflammatory, we suggest that this indirect evidence supports
a role of inflammation in formation and rupture of aneurysms.

COX-2, mPGES-1, and COX-1 in Cerebral Aneurysms
Aoki et al demonstrated the presence of COX-2, mPGEs-1 and EP2 in endothelial cells in
five unruptured human cerebral aneurysms and compared their findings to cadaver
specimens6. They also showed that inhibition or loss of COX-2 or EP2 in vivo attenuated
expression of the other, suppressed nuclear factor k-beta mediated chronic inflammation and
reduced the incidence of cerebral aneurysm formation in rats and mice with cerebral
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aneurysm6. They did not examine the presence of these enzymes in ruptured aneurysm. In
the present study, we confirm the presence COX-2/mPGES-1 in unruptured cerebral
aneurysms, and demonstrate that expression leads to increase in ruptured aneurysms, and
these enzymes are not expressed in extracranial arteries. The role of expression of these
enzymes in the pathophysiology of aneurysm rupture is not clear. Aneurysms in both
humans and rodents, however, exhibit the hallmarks of inflammation, as described above.
Thus we hypothesize that this molecular complex (COX-2/mPGES-1) and prostaglandins
could play a major role in rupture of aneurysms. In our study, these enzymes (COX-2/
mPGES-1) localized mainly in the adventitia, in contrast to the findings of Aoki et al.

Several studies have recently provided evidence that functional changes in the adventitia
contribute to vascular remodeling during atherogenesis. Several pro-inflammatory molecules
have been proposed to act locally to contribute to activation of the adventitia, ranging from
enhanced growth factor activity and increased extracellular matrix synthesis to generation of
reactive oxygen species and accumulation of progenitor cells 19. It is not clear to us whether
there is a signal from endothelium or smooth muscle cells that affects the adventitia.
Additionally, these enzymes maybe localized to inflammatory cells (perhaps macrophages)
in adventitia.

We speculate that the presence of mPGES-1 in adventitia of cerebral aneurysm wall may
contribute to the headache after subarachnoid hemorrhage and inhibition of this enzyme may
ameliorate this headache. This speculation is based on the fact that deletion of mPGES-1 in
mice also has been reported to inhibit experimentally evoked pain and inflammation, and to
a degree comparable to that observed from treatment with nonsteroidal antiinflammatory
drugs (NSAIDs) 20

All tissues from ruptured and non-ruptured aneurysms and STA stained positively for
COX-1. Expression of COX-1 was similar in ruptured and non-ruptured aneurysms and in
an extracranial artery. This finding is consistent with the fact that COX-1 is present
constitutively in several cell lines and that expression does n

mPGES-1 and Vascular Injury
Several studies have reported that deletion or inhibition of mPGES-1 suppresses
atherogenesis, angiotensin II-induced aortic aneurysm formation, activation of aortic
MMP-2, and attenuates neointimal hyperplasia after vascular injury in mice 7-11. Deletion of
mPGES-1 in mice also has been reported to inhibit inflammation 20. These studies suggest a
critical role of mPGES-1 in inflammation and in pathogenesis of several vascular
pathologies, and suggest a potential benefit of targeting mPGEs-1 in management of these
diseases.

Limitation
This study is limited by the small sample size, and generalization of the results may not be
appropriate. It also is difficult to determine whether increased expression of COX-2 and
mPGES-1 in ruptured cerebral aneurysms (compared to non-ruptured) is due to
inflammation that occurs following the rupture of the aneurysm, or whether there was an
increase in expression of these molecules which preceeded and led to rupture of the
aneurysm. Our finding of localization of these two molecules to the aneurysm wall even in
unruptured aneurysms, suggests that COX-2 and mPGES-1 may contribute to formation and
rupture of cerebral aneurysms.
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Conclusion
COX-2 and mPGEs-1 are expressed in human cerebral aneurysms, and expression increases
in ruptured aneurysms. COX-1 is found constitutively in cerebral aneurysms and in an
extracranial artery. The findings suggest that COX-2/mPGES-1may play a role in formation
and rupture of aneurysms. We also speculate that inhibition of COX-2/mPGEs-1 by aspirin
may contribute to protective effects of aspirin in reducing rupture of human cerebral
aneurysm.
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Figure 1.
Expression of cyclooxygenases in tissue obtained from STA (A), ruptured (B) and
unruptured cerebral aneurysm (C). Tissues were stained with monoclonal antibodies to
COX-2, mPGES-1, and COX-1. Expression of COX-2 and mPGES-1, but not COX-1 was
greater in cerebral aneurysms than STA, and greater in ruptured than non-ruptured
aneurysms. Black arrows point to adventitia.
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Figure 2.
Distribution of immunostaining in STA, ruptured, and unruptured aneurysms stained with
monoclonal antibodies for COX-1, COX-2, and mPGES-1. Expression of COX-2 and
mPGES-1, but not COX-1, was greater in cerebral aneurysms than STA, and greater in
ruptured than non-ruptured aneurysms.
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