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The 5-y survival for cancer patients after diagnosis and treatment is
strongly dependent on tumor type. Prostate cancer patients have
a >99% chance of survival past 5 y after diagnosis, and pancreatic
patients have<6% chance of survival past 5 y. Because each cancer
type has its ownmolecular signaling network,we asked if there are
“signatures” embedded in these networks that inform us as to the
5-y survival. In other words, are there statistical metrics of the
network that correlate with survival? Furthermore, if there are,
can such signatures provide clues to selecting new therapeutic tar-
gets? From the Kyoto Encyclopedia of Genes and Genomes Cancer
Pathway database we computed several conventional and some
less conventional network statistics. In particular we found a corre-
lation (R2 = 0.7) between degree-entropy and 5-y survival based on
the Surveillance Epidemiology and End Results database. This cor-
relation suggests that cancers that have a more complex molecular
pathway are more refractory than those with less complex molec-
ular pathway. We also found potential new molecular targets for
drugs by computing the betweenness—a statistical metric of the
centrality of a node—for the molecular networks.

network entropy | signaling pathway | degree distribution | prostate
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Standard treatment modalities for cancer include surgery, ra-
diation, and chemotherapy. These therapies are fairly non-

specific, and recently the emphasis has shifted toward molecularly
targeted therapies to inhibit important cancer-signaling pathways
within tumor cells or essential support cells; for example, imatinib,
a tyrosine kinase inhibitor (1), or bevacizumab, a VEGF-blocking
antibody (2). Combinations of surgery, radiation, and chemo-
therapy have been shown to be effective to varying degrees of
success (3); however, prediction of cancer survival is difficult (4–
6). Simply stated, therapeutic attack involves two inseparable
components: benefits and costs. The benefits are realized in terms
of the patient survival time or the time to recurrence (disease-free
survival), and lesser measures, such as relief of symptoms or tu-
mor-shrinkage rates. The cost can be assessed by the severity and
frequency of side effects, including even the development of
second cancers. Unfortunately mortality rates for major cancers,
despite a few notable exceptions, have not significantly changed
over the last few decades (3). Cancer survival is known to vary
dramatically as a function of cancer site; for example, breast or
prostate cancer patients have a considerably higher probability of
surviving 5 y compared with lung or pancreatic cancer patients (6).
In this study, we investigate whether indications of survival

probability exist that manifest at the molecular network level.
Specifically, we examine if indicators of survival can be extracted
by a quantitative and statistical analysis of the molecular networks
underlying intracellular signaling pathways for these different
cancers. If that is the case, then perhaps careful examination of
the relevant network metrics may also provide clues to target
these more refractory cancers, or indeed there may be indications
about which segments of the molecular pathways are the most
important to inhibit. Moreover, in the case of radiotherapy, these
insights could give indications, for or against, about the usefulness
of proposed dose escalations.

Molecular pathways for a number of cancer sites were exam-
ined and network metrics computed, specifically betweenness
centrality and degree-entropy. Strikingly, we found that the de-
gree-entropy metric, which is related to network complexity and
robustness, is correlated with 5-y survival. Those networks that
were found to have the highest degree-entropy were associated
with a lower probability of 5-y survival.

Background
Cancer can be viewed as a systems disease with potentially mul-
tiple causes for any cancer site (7–9). The behavior of cancer cells
is governed and coordinated by biochemical signaling networks
that translate external cues—such as hormonal signals, growth
factors, or microenvironmental stress—into appropriate bi-
ological responses, such as cell growth, proliferation, differentia-
tion, or apoptosis. Therefore, a mechanistic understanding of cell-
cycle malfunction during carcinogenesis, cancer progression, and
response to treatment, is crucial for optimum drug development
and proper drug administration.
The cell is comprised of a huge number of different molecular

species interacting in a complex network that is not yet fully
understood. Nonetheless, some insights on how specific drugs
interact with their molecular targets in the cell are beginning to
be elucidated (10, 11). Cancer therapeutic agents currently in
clinical use can be divided into several classes according to their
mode of action or their molecular targets. For example: alky-
lating agents, such as cisplatin, which are genotoxic; microtubule-
targeting agents, such as paclitaxel, which are antimitotic; anti-
metabolites, such as methotrexate, which inhibits base synthesis;
angiogenesis or immune modulators, such as bevacizumab, which
targets VEGF-A; and direct targeting agents, such as imatinib,
which is a tyrosine kinase inhibitor (1, 2).
Biochemical networks, such as signaling pathways or metabolic

pathways, can also be viewedas concurrent communicating systems.
These pathways consist of sequences of interactions, which some-
times affect other parallel pathways. The interactions between the
biochemical species can induce or inhibit each other. Inmany cases,
details of these interactions have been worked out by a combination
of yeast two-hybrid, affinity pull-down mass spectrometry, or bio-
chemical techniques (12). As an example, consider two pathways
involved in the cell cycle. The Ras/Raf pathway, which controls
cell proliferation or differentiation, and the PI3K/Akt pathway,
which is involved in cell proliferation and survival, are both trig-
gered by the same growth factor. The sequences of interactions in
both pathways run concurrently, with some interaction (13).
Many biological networks are observed to be scale-free, as are

communication networks, social networks, and other types of
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networks (14, 15). Scale-free networks are built from collections
of a large number of nodes with a small number of connections,
and a small number of nodes with a much larger number of
connections. The fact that so many networks are scale-free (and
actually, such a wealth of diverse phenomena in nature appears
to be scale-free) results in some controversy concerning the
meaning of scale-free networks in molecular biology (16, 17).
Cellular-molecular interaction networks exist at an edge of chaos

(18). These networks are metastable dynamic systems that could,
given the right perturbation, either transition to a different state or
collapse entirely. This edge of chaos is a result of the large-scale
organization of these networks; they are small-worlds or scale-free
networks (19). This topology results in networks that are both ro-
bust to attack and yet have key nodes that can cause the entire
dynamical system, represented by the network, to collapse (20).

Materials and Methods
For some cancer sites, moderately detailed pathway networks have been
worked out, and 14 of these cancer pathways are available from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/).
KEGG PATHWAY is a collection that includes comprehensive pathways
manually derived from textbooks, literature, other databases (e.g., Na-
tional Center for Biotechnology Information), and expert knowledge (21–
25). The cancer pathways embed a consensus of information concerning
each cancer site, where “cancer site” refers to the tissue or cell type of the
primary tumor.

For example, virtually all basal cell carcinomas exhibit dysregulation of the
Hedgehog (Hh) pathway (26). Similarly, many basal carcinomas exhibit dys-
regulation associated with Wnt signaling pathway (27). Consequently, both
these pathways are embedded in the basal cell carcinoma pathway network
as represented by KEGG. Furthermore, as Daya-Grosjean and Couvé-Privat
(26) note, mutations in SHH, PTCH1, and SMO (three genes involved in the
Hh pathway) are found in 0–1%, 12–38%, and 6–21%, respectively, of
sporadic basal cell carcinomas. Possibly this variation in mutation rates is a
result of the varied ploidy among the cancers (28). Consequently, the
pathways are comprehensive but obviously cannot represent every ploidy or
mutation possible for any given cancer.

Diagrams of the KEGG pathways for the 14 cancer sites are provided in Fig.
S1. Each node in these diagrams can be mapped to one or more KEGG GENE
entry, meaning that the actual KEGG pathway is more complex and detailed
than represented on the diagrams. As can be observed in the KEGG path-
ways, some segments of individual pathways have built-in redundancies,
which means that there are multiple parallel arrows originating from a sig-
naling molecule, for example in the crucial p53 pathway. A potential ad-
vantage of these redundancies is to offer robustness to the system when it is
subjected to stress or assault.

Other pathway databases, such as BioCyc (http://biocyc.org/), Reactome
(http://www.reactome.org/), and BioGRID (http://thebiogrid.org/) were not
suitable for this study because they do not include pathways that correspond
directly to a specific cancer site, which is required information to perform a
correlation with the cancer survival data. Hopefully efforts will be made in

the future to address this issue. For example, the BioCyc database (HumanCyc
subset) includes the “MAP kinase cascade” pathway, which is known to play
a critical role in the development and progression of cancer (29); however,
BioCyc does not associate this signaling pathway with a specific cancer site
(such as lung or pancreatic cancer). Similarly, BioGRID includes the cancer-
related pathways “Signaling by EGFR in Cancer (Homo sapiens)” and “p53-
Dependent G1/S DNA damage checkpoint (Homo sapiens),” but these also
are not associated with specific cancer sites.

The KEGG cancer pathways were downloaded as KGML files from the
KEGG PATHWAY database (http://www.genome.jp/kegg/pathway.html).
The next step was to generate a mathematical graph representation of the
pathway. In the graph representation, each protein is associated with a node
(also known as a vertex), and interactions between proteins are associated
with edges (connections between pairs of nodes). To generate the actual list
of edges (the adjacency list), an external package not provided by KEGG was
used, the KEGGgraph package (KEGGgraph can be downloaded from the
Bioconductor Web site, http://www.bioconductor.org/) (30). The pathways in
KEGG have directional connections (i.e., separate incoming and outgoing
paths); however, this information was not required for the computation of
the network metrics, and therefore the directionality information was dis-
carded and undirected graphs were generated. The pathway diagrams
shown in KEGG sometimes include nodes representing nonproteinmolecules,
such as DNA; however, those nodes were not present in the KGML files. This
process effectively generated a protein–protein interaction network (31)
for each cancer site. Fig. 1 shows the resulting basal cell carcinoma pathway
as a protein–protein interaction network with the nodes identified by Hu-
man Gene Nomenclature Committee (HGNC) gene symbols (http://www.
genenames.org/). It is important to note the protein interactions in the
KEGG pathways are not always at the level of detail of binary molecular
interactions. In the example of the basal cell carcinoma illustrated in Fig. 1,
the nodes in the Wnt and Frizzled pathways (WNT1, WNT2, FZD1, and so
forth) are represented in the KEGG pathway as each being connected to
many other nodes in these two pathways, resulting in the large ring of
interconnected nodes, which can be seen in the center of the interaction
network. In effect, this means that in the KEGG pathway data the actual
molecular interactions between some proteins are not represented.

In addition to the cancer pathways from KEGG, we accessed 5-y survival
statistics from the Surveillance Epidemiology and End Results (SEER) Program
database (http://seer.cancer.gov/), which is a resource for epidemiological
data compiled by the National Cancer Institute as a service to researchers
and physicians. The number of KEGG cancer pathways is relatively small
compared with the number of cancer sites available in the SEER data be-
cause of the fact that, as of yet, not all cancers have detailed pathway in-
formation compiled. Only the survival statistics for the 14 cancer sites
corresponding to the KEGG cancer pathways were used.

Molecular networks, such as protein–protein interaction networks and
gene networks, can be analyzed using statistical mechanics techniques de-
veloped by physicists for the study of complex networks, such as social
networks and communication networks, in addition to biological networks
(32). A general review monograph is Dorogovtsev and Mendes (33), and
from a more biological perspective, Junker and Schreiber (34). Many net-
work metrics have been defined including degree distribution (a histogram
of the number of connections to the nodes) (32), entropy (a measure of the

Fig. 1. Protein–protein interaction network for basal cell carcinoma as constructed from the KEGG pathway processed by KEGGgraph. Node labels are
HGNC gene symbols. Yellow nodes are the top three highest in betweenness centrality.
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complexity of the network) (35), cluster coefficient (another measure of
complexity) (32), betweenness centrality (a measure of the extent that a
node lays on the paths between other nodes) (14), path length (the number
of edges or links between two, perhaps distant, nodes) (32), and diameter
(the path length between the two most distant nodes) (32). Our analysis
focused only on betweenness centrality and degree-entropy.

Betweenness centrality, or simply betweenness (denoted cB), is a network
topology metric and a measure of the centrality of a node, v. Specifically, it is
the sum of the fractions of shortest paths that pass through v. The relation is
given by

cB
�
v
� ¼

X

s;t∈V

σðs; t j vÞ
σðs; tÞ ; [1]

where σðs; tÞ is the number of shortest paths between two nodes ðs; tÞ and
σðs; t j vÞ is the number of those paths passing through nodes other than the
ðs; tÞ pair (14). In other words, betweenness centrality is a measure of the
extent that a node lays on the paths between other nodes. This measure is
important because it may indicate the influence within the network that this
node plays in controlling information transfer between other nodes.

The second network topology metric we explored was network entropy,
specifically degree-entropy, denoted H, which is simply defined as

H ¼ −
XN−1

k¼1

pðkÞ log pðkÞ; [2]

where N is the total number of nodes in the network and pðkÞ is the degree
(number of incident lines) of node k (35). In words, the degree-entropy
provides a measure of the network’s heterogeneity and complexity.

Results and Discussion
Nacher and Schwartz (10), and Yildirim et al. (11), discuss
general protein–protein interaction networks and drug targets
for a wide variety of diseases. Hornberg et al. (36) discuss net-
works associated specifically with cancer. All three of these
analyses are qualitative. Our interests are not to examine the
interaction network for heuristic purposes,but rather to relate a
statistical metric of the network to cancer patient survival.
As an example of our study on network degree-entropy, we start

by examining the basal cell carcinoma pathway in Fig. 1, which is
the protein–protein interaction network as derived from the
KEGG pathway network. The network consists of 47 nodes and
310 edges. The nodes with the highest betweenness centrality are
GSK3B, CTNNB1, and GLI1. These three proteins are, respec-
tively, a glycogen synthase kinase (GSK3B), a cadherin association
protein (CTNNB1), and a zinc-finger transcription factor (GLI1).
In particular, GLI1 was reported to be expressed in basal cell
carcinoma (37). Because these three proteins have high between-
ness centrality in the pathway network, selecting them for drug

targeting would be reasonable. Removing them will have pro-
found effects on information processing in the protein–protein
interaction. However, because those nodes do not have a high
degree, their removal will have little impact on the overall sta-
tistics of the network.
Table 1 lists the full set of cancer sites that we investigated.

For each cancer site, it gives the SEER patient 5-y survival
probability, the degree-entropy (H), the number of nodes and
edges in the network, and the top three betweenness centrality
nodes (identified by HGNC gene symbols).
Our main finding is the correlation between cancer patient

survival probability and entropy; specifically, those networks that
are found to have the highest degree-entropy are associated with a
lower probability of 5-y survival. With all 14 cancer sites included,
the linear correlation is relatively low, with R2 = 0.3. However,
prostate cancer is a highly differentiated cancer, very localized,
and very slow growing. Prostate cancer has minimal vasculature
and is morphologically distinct. For all these reasons, this cancer
tends to not behave like most other cancers, and in most studies it
is considered as an outlier. With prostate cancer excluded then the
linear correlation is improved, with R2 = 0.7. The plot of 5-y
survival probability versus degree-entropy, excluding prostate
cancer, is shown in Fig. 2, and includes a conservative 10% error

Table 1. Cancer survival probabilities and network statistics for each of the 14 cancer sites in the study

Cancer site 5-y survival probability H No. of nodes No. of edges B1 B2 B3

Acute myeloid leukemia 23.6% 2.10 60 170 FLT3 SPI1 JUP
Basal cell carcinoma 91.4% 1.88 55 310 GSK3B CTNNB1 GLI1
Bladder cancer 78.1% 1.67 42 46 MAP2K2 MAP2K1 MAPK3
Chronic myeloid leukemia 55.2% 2.16 73 185 GRB2 MDM2 GAB2
Colorectal cancer 63.6% 1.80 62 104 KRAS RALGDS CTNNB1
Endometrial cancer 68.6% 1.84 52 87 GRB2 ADARB2 PDPK1
Glioma 33.4% 2.26 65 189 EGFR IGF1R PDGFRB
Melanoma 91.2% 1.68 71 281 NRAS MAP2K1 MAPK3
Nonsmall-cell lung cancer 18.0% 2.36 54 124 KRAS RASSF1 CCND1
Pancreatic cancer 5.5% 2.05 70 137 KRAS RALBP1 JAK1
Prostate cancer 99.4% 2.40 89 295 GRB2 GSK3B AKT1
Renal cell carcinoma 69.5% 1.77 70 109 GAB1 RFC1 MAPK1
Small cell lung cancer 6.2% 2.21 84 219 NFKBIA PTK2 CCND1
Thyroid cancer 97.2% 1.48 29 49 HRAS NRAS KRAS

The 5-y survival probabilities are from the SEER database. H stands for degree-entropy; the other network statistics are the number of
nodes and the number of edges. The columns B1, B2, and B3 give the HGNC gene symbols for the top three betweenness centrality nodes.
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Fig. 2. Scatter plot showing the correlation between cancer 5-y survival
probability and degree-entropy. Datapoints are shown for 13 cancer sites,
including all of the cancer sites with KEGG pathways, except prostate cancer.
The x axis is the 5-y survival probability for the cancer site, from the SEER
database. The y axis is the degree-entropy (H) for the cancer site, calculated
from the KEGG pathway. The line is a linear regression fit, with R2 = 0.7. The
error bars are set at fixed estimates of the error, with the x axis error bars
fixed at ±10% and the y axis error bars fixed at ±0.1.
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bar estimate for 5-y survival probability and 0.1 error bar estimate
for degree-entropy. Our rationale for the error bars on entropy is
the fact that not all of the details of a networkmay be known so the
entropy may be inaccurate, leading to a systematic error in the
estimate. That being said, the remarkably high correlation indi-
cates that the pathway networks are more or less complete. This
means that it would be hard to get such a high correlation with
random networks or highly incomplete networks.
To confirm that the correlation was not an artifact we com-

puted the entropy of a population of 1,000 Erdös–Rényi similar-
sized random networks (14) and 1,000 similar-sized Barabási
scale-free networks (14) for each of the cancer networks. We
found statistically no similarity. The P values for the population
of similar-sized networks for each cancer for scale-free, random,
and real-world networks was <0.0001 in all-way combinations.
Betweenness centrality can help to identify new targets for

drugs. The top three betweenness centrality nodes for each
cancer pathway are shown in Table 1. The two most frequently
occurring nodes in this set are KRAS (four occurrences) and
GRB2 (three occurrences). KRAS is a Ras family oncogene and
GRB2 is the gene for a growth factor receptor-bound protein.
Because the cancer site pathways in KEGG are human cu-

rated, with boundaries defined by the curators (i.e., the decisions
about which proteins are included in the pathway and which are
excluded are made by the curators), there is a possibility that the
extent to which a particular site of cancer has been studied may
be biasing the topology of the cancer pathways, and hence con-
founding any conclusions based on the entropy of the pathways.
To test this possibility, a set of PubMed (http://www.ncbi.nlm.
nih.gov/pubmed/) literature searches corresponding to each the
cancer site in this study were performed (Table S1) and the total
numbers of citations was compared with the degree-entropy
values (Fig. S2). No correlation between the citation totals and
the degree-entropy was observed (R2 = 0.0), which supports the
statement that the extent to which a particular type of cancer has
been studied is not biasing the results.

A further refinement of the methods used here would be to
supplement the KEGG pathway information with more detailed
protein interaction information from other data sources, for
example BioGrid. The more detailed protein interaction data
could be combined with the KEGG data to generate interaction
networks where the specific connections between molecules are
included in more cases. For example, instead of representing the
Wnt and Frizzled pathways with most nodes connecting to most
other nodes, the specific binary molecular interactions could be
used. Unfortunately the protein–protein interaction network in
BioGrid is still not complete for any specific organism. The most
thoroughly studied organism is the yeast Saccharomyces cer-
evisiae, and for that species the interaction network is only about
15% complete (38).
We have demonstrated a correlation between network pathway

degree-entropy and 5-y survival probability for a set of cancer
sites. This demonstration supports our initial conjecture that
there are fundamental molecular pathway indicators, or network
metrics, that point to cancer survival. However, because molec-
ular network degree-entropy is a gross statistic, details of what the
molecular indicators are require further analysis. For example, we
would like a network metric that shows significant change when
one node is removed, and further to correlate that metric with
survival probabilities for patients who underwent cancer chemo-
therapy. Nonetheless, the observed correlation between degree-
entropy and 5-y survival probability provides some explanation for
the observed refractoriness of cancers relative to conventional
chemotherapy.
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