
Genome-wide association mapping of leaf metabolic
profiles for dissecting complex traits in maize
Christian Riedelsheimera,1, Jan Lisecb,1, Angelika Czedik-Eysenbergc, Ronan Sulpicec,2, Anna Flisc, Christoph Griedera,
Thomas Altmannd, Mark Stittc, Lothar Willmitzerb,e, and Albrecht E. Melchingera,3

aInstitute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany; Departments of bMolecular
Physiology and cMetabolic Networks, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; dDepartment Molecular Genetics, Leibniz
Institute of Plant Genetics and Crop Plant Research (IPK), 06446 Gatersleben, Germany; and eKing Abdulaziz University, Jeddah 21589, Saudi Arabia

Edited by Edward S. Buckler, US Department of Agriculture, Agriculture Research Service/Cornell University, Ithaca, NY, and accepted by the Editorial Board
April 20, 2012 (received for review December 16, 2011)

The diversity of metabolites found in plants is by far greater than in
most other organisms. Metabolic profiling techniques, which mea-
sure many of these compounds simultaneously, enabled investigat-
ing the regulationofmetabolic networks and proved tobeuseful for
predicting important agronomic traits. However, little is known
about the genetic basis of metabolites in crops such as maize. Here,
a set of 289 diverse maize inbred lines was genotyped with 56,110
SNPs and assayed for 118 biochemical compounds in the leaves of
young plants, aswell as for agronomic traits ofmature plants infield
trials. Metabolite concentrations had on average a repeatability of
0.73 and showed a correlation pattern that largely reflected their
functional grouping. Genome-wide association mapping with cor-
rection for population structure and cryptic relatedness identified
for 26 distinct metabolites strong associations with SNPs, explaining
up to 32.0% of the observed genetic variance. On nine chromo-
somes, we detected 15 distinct SNP–metabolite associations, each of
which explained more then 15% of the genetic variance. For lignin
precursors, including p-coumaric acid and caffeic acid, we found
strong associations (P values 2:7 ×  10−10 to 3:9 ×  10−18) with a region
on chromosome 9 harboring cinnamoyl-CoA reductase, a key en-
zyme inmonolignol synthesis and a target for improving the quality
of lignocellulosic biomass by genetic engineering approaches. More-
over, lignin precursors correlated significantly with lignin content,
plant height, and dry matter yield, suggesting that metabolites
represent promising connecting links for narrowing the genotype–
phenotype gap of complex agronomic traits.
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Plants produce a huge array of biochemical compounds esti-
mated to exceed 200,000 in the plant kingdom (1). Recent

progress in analytical capabilities together with advanced data
processing techniques enabled the quantitative measurement of
hundreds of compounds from a wide range of chemical classes
within a single sample of plant material (2). These advances have
made it possible to deeply investigate the regulation of metabolic
networks and to study their influence on complex traits (3).
Empirical evidence suggested that an array ofmetabolites can be

linked to biomass accumulation in Arabidopsis thaliana (4, 5), il-
lustrating their central role for traits connected to growth and
development. Metabolomics approaches are also increasingly ap-
plied in crop breeding (6).Metabolic profiling could be successfully
adopted to predict yield of potato tubers (7) or to distinguish
sunflower genotypes with contrasting response to pathogen infec-
tions (8). Recently, we showed that metabolic profiles of diverse
maize inbred lines allow prediction of their testcross performance
in multilocation field trials (9).
Despite these successes, the genetic basis of themetabolic profile

in important crops such as maize remains largely unclear. Although
certain metabolic products, such as carotenoids in kernels (10),
anthocyanins in leaves (11), or maysin (12), have been genetically
well characterized, a global picture of the genetic basis of the leaf
metabolome is missing. First approaches for studying the genetic
basis of concentrations of many distinct metabolites in Arabidopsis
used populations such as recombinant inbred lines (RIL) that carry

genetic mosaics of two contrasting parental genotypes to map
metabolic quantitative trait loci (mQTL) (13). Such linkage map-
ping approaches revealed a large number of mQTL, but most of
them did not explain a substantial amount of genetic variance (14).
However, linking genetic variability inmetabolite concentrations to
genetic variants is of high interest for several reasons.
First, mapping mQTL and ultimately the underlying causal

genes can help in annotating the biological function of a metabo-
lite, which may lead to the discovery of new biosynthetic pathways
(3). Second, novel enzymatic and regulatory genes controlling
metabolic pathways may be identified. Third, mQTLmapping may
add functional links to bridge the genotype–phenotype gap of
complex traits. In agricultural species, many agronomically im-
portant traits are controlled by a large number of genes with small
effects (15). Consequently, QTL-basedmarker-assisted selection is
increasingly replaced by whole-genome prediction approaches
using thousands of single nucleotide polymorphisms (SNPs) in
a black-box prediction model (9, 16). Though this approach is
anticipated to be highly successful, it does not provide biological or
mechanistic insights into how genetic information is translated into
the genetic variability of complex traits. Bridging this apparent
genotype–phenotype gap remains a big challenge. A promising
approach might therefore be to investigate the genetic basis of
intermediate phenotypes with lower genetic complexity, such as
yield components or metabolites, and link these results back with
the complex trait of interest (17).
Although linkage mapping has a high power for detecting QTL

specific to the parental lines of the mapping population, its map-
ping resolution is very limited due to the few recombination events
and, hence, long linkage blocks (18). With the advances in high-
throughput genotyping technologies, genome-wide association
(GWA) became available as a powerful alternative for dissecting
quantitative traits in plants (19). GWA mapping relies on natural
linkage disequilibrium (LD) generated by ancestral recombination
events in diverse populations. Depending on the level of LD in the
population investigated, the mapping resolution can be up to the
single nucleotide level. Although plant populations are often prone
to inherent population structuring and cryptic relatedness, which
can lead to spurious associations in GWA scans (20), powerful
techniques are available for decoupling genetic associations with
confounding factors (21), and encouraging results have been
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reported for Arabidopsis (22) and crops such as rapeseed, potato,
sugar beet, and maize (23).
Here, we studied the association of genetic variants and con-

centrations of 118 metabolites in leaves of 289 diverse maize
inbred lines from worldwide sources. The population has been
previously described in detail (9) and shows a level of LD high
enough (r2 = 0.1 at ≈ 500 kb) to detect strong associations with
56,110 SNPs. Specifically, we asked the following questions: (i)
Which portion of the measurable concentrations of metabolites
are controlled by only a few genetic loci so that we can find
significant associations, and what portion of the genetic variance
do they explain? (ii) Can candidate genes be assigned to the
detected associations, and are they plausible regarding the
function of the metabolite in the plant? (iii) To what extent are
metabolites with significant associations correlated with agro-
nomic traits, and does this allow building bridges across candi-
date genes, metabolites, and agronomic traits?

Results
Metabolic Profiling. We determined the concentrations of 118
metabolites present in the third fully developed leaves using gas
chromatography separation coupled with mass spectrometry
(GC-MS). The set of metabolites was comprised of 21 amino
acids, 13 organic acids, 7 phenylpropanoids, and 20 other
metabolites with known, and 57 with unknown, chemical struc-
ture. Repeatabilities showed a broad range with a mean of 0.73
(Dataset S1). Additive estimates of heritabilities correlated
strongly (r = 0.88) with the repeatabilities.
The correlation pattern revealed hotspots of highly correlated

compounds in the metabolic profile that largely corresponded to
a functional classification of the metabolites (Fig. 1 and Dataset
S2). As examples, the concentration levels of 14 proteinogenic
and three nonproteinogenic amino acids, as well as seven organic
acids, clustered together.

GWA Mapping. Compared with a one-way ANOVA model, geno-
mic inflation factors (λ), which measure the extent of systematic

bias leading to false positive signals, could be drastically reduced by
decoupling associations from population structure and cryptic re-
latedness, which are regarded as two different confounding factors
(20, 21). Although it has been argued that correction for cryptic
relatedness (K model) would be sufficient, we consistently ob-
served lower genomic inflation factors when we corrected addi-
tionally for the main directions of population structure by
regressing on the first 10 principal components on SNP data (Q10),
especially for metabolites like lysine, which show a strong con-
founding (Fig. 2). All further results refer to this Q10 þK model.
Several approaches have been suggested to derive an appropri-

ate significance threshold for SNP–trait associations. Whereas the
Bonferroni correction leads to a too-conservative overcorrection,
empirical resampling approaches have been criticized for breaking
both SNP–trait as well as SNP–population structure relationships
(24). Here, we controlled the false discovery rate (FDR) (25), as
has been previously suggested for GWA mapping (26).
Significant SNPs with FDR ≤ 0:025 were found for 26 metab-

olites, of which 17 had an unknown chemical structure (Fig. 3, Fig.
S1, and Table S1). Metabolites with significant associations
showed repeatability above 0.64 and were approximately normally
distributed except for dopamine and three unknown metabolites,
which showed a stronger bimodal distribution (Fig. S2). Signifi-
cant associations were found on all chromosomes with SNPs,
explaining up to 32.0% of the observed genetic variance (median
16.2%). On nine chromosomes, we found 15 distinct SNP–me-
tabolite association signals, each of which explained more than
15% of the genetic variance (median 22.1%).
The two amino acids lysine and tyrosine showed their strongest

signals for association at a location on chromosome 5 that was
separated by 28.3 kb from a putative cationic amino acid trans-
porter. Although amino acids clustered together in the metabolic
profile (Fig. 2), this signal was specific to lysine and tyrosine; it was
not found for either any other amino acids or the three main
principal components calculated from all amino acids.
γ-Aminobutyric acid (GABA) showed a significant association

with an SNP located in a gene on chromosome 1 encoding
a phytochrome photoreceptor system. The sugar alcohol ribitol
and four unknown metabolites showed significant associations
with SNPs located on chromosome 10 within a 91-kb region

Fig. 1. Correlation pattern among measured metabolites. Pairwise Pearson
correlations (r) are shown with P < 0.01. Metabolites are ordered using
complete linkage hierarchical cluster analysis on pairwise dissimilarity cal-
culated as 1 − r. Hotspots in the correlation pattern are surrounded by
a black box. In the dendrogram on the left, the hotspots encompassing
predominately amino acids and organic acids are colored in red and blue,
respectively. Repeatabilities ðw2Þ of metabolite concentrations, with addi-
tive estimates of heritabilities shown as blue crosses, are shown at the top.

Fig. 2. Comparison of QQ plots for different GWA models for two
metabolites with contrasting extent of confounding with population struc-
ture. Observed vs. expected P values are shown for (A) p-coumaric acid and
(B) lysine using six different models: a one-way ANOVA model and five
models with different corrections of confounding factors (Materials and
Methods). The lowest values for λ were consistently obtained for all
metabolites using the Q10 þ K model for which λ ¼ 1:03 for p-coumaric acid
and λ ¼ 1:01 for lysine.
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containing two sugar/inositol transporter genes as the only genes
in this genomic region.
We found three unknown metabolites to show significant

associations with an SNP 1.5 kb apart of a cytochrome P450
protein on chromosome 3. Other candidate genes for unknown
metabolites included galactinol-sucrose galactosyltransferase,
40S and 60S ribosomal proteins, cellulose synthase-like protein,
cysteine synthase, transcription factors, GDSL esterase/lipase,
and ubiquitin-associated protein.
The catecholamine dopamine, the phenylpropanoids p-cou-

maric acid, and caffeic acid, as well as two metabolites with
unknown chemical structure (1016200-307 and 1044100-307),
consistently showed their two strongest significant association
signals in a 762-kb region on chromosome 9. To increase the
mapping resolution in GWA with a limited amount of SNPs, it
has been suggested to impute the allelic states of ungenotyped
SNPs based on data from a reference population that has been
genotyped at a much higher density (27). We therefore imputed
SNPs surrounding the chromosomal region on chromosome 9
using the first-generation HapMap data (1.6 million SNPs)
available for 27 maize inbred lines (28). Imputation revealed
several closely located SNPs in strong LD and lower P values
compared with the two surrounding genotyped SNPs located in
a cellulose synthase A (CESA) and a bZIP transcription factor
(BZIP) (Fig. 4). For three of the five metabolites (caffeic acid,
1016200-307, and 1044100-307), the strongest signal was con-
sistently observed for a SNP 19.9 kb away from a putative cin-
namoyl-CoA reductase (CCR), an oxidoreductase important in
the monolignol biosynthesis (Fig. 5). This SNP showed also the
second lowest P value of 4:1× 10−12 for p-coumaric acid. Impu-
tation did not lead to a higher resolution of the other weaker
association signals.
p-Coumaric acid showed strong negative correlations with

dopamine, caffeic acid, 1016200-307, and 1044100-307, which
were positively correlated with each other (0:65< r< 0:96; Table
1). These five metabolites with significant signals at the same
position on chromosome 9 showed weak but highly significant
correlations with the agronomic traits lignin content, plant
height, and whole-plant dry matter yield determined in mature

plants grown in the same environment. Correlations with early
biomass determined at the time of metabolite measurements
were highly significant for four of the five metabolites, but lower
compared with the other agronomic traits determined at the end
of the vegetation period.

Discussion
In this study, we showed that GWA mapping is a powerful tool
for linking metabolic composition of leaves from field-grown
maize inbred lines with genetic variants at a high resolution.
Compared with previous mQTL linkage mapping experiments
reporting hundreds to several thousands mQTL for the plant
metabolome, our results differ concerning both the number of
associations and their explained genetic variance. Lisec et al.
(13) reported 157 mQTL that account for a median of 4.3% of
the phenotypic variation for 181 metabolites with an average
repeatability of 0.4. Schauer et al. (29) detected 104 mQTL for

Fig. 3. Manhattan plots for metabolites
with known chemical structure and sig-
nificant association signals. P values are
shown on a log10 scale and colored in red
if significant with FDR ≤ 0.025. For the
Manhattan plots of the metabolites with
unknown chemical structure, see Fig. S1.

Fig. 4. Regional association plot of the region on chromosome 9 for caffeic
acid. Imputation revealed several closely located SNPs in strong LD (r2) with
the genotyped SNP at position 96,124,914 (black). The strongest association
signal was obtained for an SNP 19.9 kb apart from the candidate gene CCR.
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22 distinct amino acids in tomato. Keurentjes et al. (30) found on
average 2 mQTL for each of the 1,592 mass signals obtained
from a LC-MS analysis of 14 Arabidopsis accessions, resulting in
4,213 significant mQTL. It was, however, unclear whether the
distinct mass signals correspond to chemically distinct com-
pounds or fragments of the same compounds, and whether these
massive amounts of mQTL account for a nontrivial amount of
genetic variability of distinct plant metabolites.
In comparison, we found significant associations for only 26 of

the 118 metabolites with 15 distinct SNP–metabolite associations,
which account for up to 32.0% of genetic variance with a median of
22.1%. Possible reasons for the, on average, larger proportion of
explained genetic variance for the set of metabolites measured in
our study include (i) the greater genetic variability compared with
the genetically narrow populations used in linkage mapping
experiments, and (ii) the higher repeatabilities and, hence, higher
precision in measuring the metabolite concentrations in the field.

Although we found significant GWA signals only for metab-
olites with a repeatability above 0.64, the correlation between
total explained genetic variance and repeatability was not sig-
nificant for the 26 metabolites for which significant association
signals were found (Fig. S3). The metabolites for which we
obtained high repeatabilities but no significant associations are
therefore either under the control of very complex genetic ar-
chitecture or the association signals could not be detected be-
cause of limited sample size or insufficient LD with potential
causal variants. To investigate the latter, we applied a SNP
hiding test (28, 31). We found that for 48.1% of the SNPs, there
exists at least one SNP in strong LD (r2 > 0.8) within a sur-
rounding window of 200 SNPs, indicating that a much larger
number of SNPs would be necessary to ensure that every po-
tential causal variant is in strong LD with at least one SNP.
Other reasons for the moderate number of associations com-

pared with mQTL linkage mapping experiments include the
more stringent significant threshold as well as possible con-
founding influence of population structure, as has been observed
in a GWA study of glucosinolate metabolites in Arabidopsis (32).
Despite these limitations, our results demonstrate that levels of
at least some of the metabolites found in leaves of young maize
plants can be under a relatively simple genetic control. There-
fore, the maize leaf metabolome seems to be highly diverse not
only in terms of biochemical composition but also in terms of
genetic architecture. Interestingly, similar simple genetic archi-
tectures have been recently observed in GWA studies of meta-
bolic traits in human blood (33) and urine (34), illustrating that
major mQTL are not uncommon in nature.
Though chromosomal hotspots are frequently found for mQTL

(13, 30, 35), we could not determine any agglomeration of clus-
tered associations. Besides the small number of total associations,
a simple explanation for the reported hotspots of mQTL might
be the occurrence of biochemically connected or otherwise highly
correlated metabolites (including those with unknown chemical
structure), pointing to the same genomic position, as was observed
in this study for p-coumaric acid, caffeic acid, dopamine, and two
highly correlated metabolites with unknown chemical structure.
We found that these five metabolites show a significant associa-

tion in the same region on chromosome 9, indicating that they have
similar genetic control. Results of SNP imputation indicate that the
causal mutation in this region was likely not hit by either one of
the two genotyped SNPs located in the genes CESA and BZIP. In
the near future, genotyping by sequencing (36) will make it possible
to build a much larger reference set for imputation and to assess in
more detail the accuracy for imputing millions of SNPs in maize.
Nevertheless, the result that for three metabolites, the lowest P
values were consistently obtained for an imputed SNP close toCCR
lifted this gene to themost promising candidate gene in this genomic
region, which is supported by the biochemistry of lignin synthesis.
The phenylpropanoids caffeic acid and p-coumaric acid are both
intermediates in monolignol biosynthesis and, hence, precursors of
lignin. After activation by ATP-dependent addition to CoA, both
are direct substrates of CCR (37) (Fig. 5). Although the catechol-
amine dopamine is not directly involved in lignin synthesis, its
negative correlation with p-coumaric acid (r = −0.70; Table 1)
suggests that a conversion of phenylalanine to monolignols is neg-
atively coregulated with a conversion of phenylalanine to catechol-
amines, leading to an indirect association with the same genomic
region. The two unknown metabolites 1016200-307 and 1044100-
307 are strongly positively correlated with caffeic acid, suggesting
that both are likely intermediates in the phenylpropanoid pathway.
These five coregulated compounds correlated significantly with

lignin content of the mature plants as well as with the higher in-
tegrated phenotypic traits, plant height and dry matter yield, mea-
sured at the end of the vegetation period (Table 1).These significant
correlations suggest that the identified region on chromosome 9 not
only changes concentrations ofmultiple metabolites involved in cell
wall liginification, but is also an important control point for plant
growth. This association supports the idea that the quality of ligno-
cellulosic biomass can be improved for optimal conversion to

Fig. 5. Biochemical connection ofp-coumaric acid, caffeic acid, and dopamine
with the candidate genes CCR and CESA. Shown are the intermediates and
enzymes (blue) of the relevant sections of the simplified phenylpropanoid and
catecholamine pathways. Dashed arrows indicate complex transition steps,
which can be found in detail in Humphreys and Chapple (38). The cellulose
synthase complex is a hexametric rosette complex whose subunits consist of
three different cellulose synthase A (CESA) proteins. The double-headed arrow
between cellulose and lignin illustrates that synthesis of lignin is negatively
coregulatedwith synthesis of cellulose (39). 4CL, 4-coumarate:CoA ligase; AAH,
amino acid hydroxylase; C3H, p-coumarate 3-hydroxylase; C4H, cinnamate 4-
hdroxylase; CAD, cinnamyl alcohol dehydrogenase; CCoAOMT, caffeoyl-CoAO-
methyltransferase; CCR, cinnamoyl-CoA reductase; DDC, dopa decarboxylase;
MH, monophenol hydroxylase; PAL, phenylalanine ammonia lyase; TAL, tyro-
sine ammonia lyase; TH, tyrosine hydroxylase; TDC, tyrosine decarboxylase.
Adapted and modified from refs. 37, 38, and 40.
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biofuels through genetic engineering of key regulators in the mon-
olignol synthesispathway, as suggestedbynumerous studies (41, 42).
However, the different signs of these correlations illustrate

that the relationship between pathway intermediates and lignin
content as the final product in the mature plants is not simple
and may require consideration of feedback loops. Moreover, the
strong correlations of CCR substrates with dopamine, which is
known to be stress induced (40), suggests that a change in carbon
flux in monolignol synthesis impacts biochemical composition of
other secondary metabolites related to, e.g., stress resistance. In
fact, the results from several studies showed that perturbing in-
dividual steps of the lignin synthesis pathway affects the expression
of other genes not only involved in lignin synthesis (43). Although
encouraging results of modifying lignin content and composition
through down-regulation ofCCR have been achieved in poplar (44)
and tobacco (45), deeper investigations into the regulatory mech-
anisms of monolignol biosynthesis seems to be crucial for a suc-
cessful genetic engineering of lignin synthesis without detrimental
side effects on biotic or abiotic stress resistance (46).
Because the generated metabolic profile is a snapshot at a cer-

tain moment in time during early development, it would be also of
interest to quantitatively measure metabolic fluxes to capture the
dynamic component of plant metabolism. Successive measure-
ments of isotope-labeled metabolites have been successfully ap-
plied for measuring phenylpropanoids derived from p-coumaric
acid in potato (47), and a similar approach could shed more light
on how lignin synthesis is regulated at themetabolic level inmaize.
The established associations with agronomic traits rely on

phenotypic correlations of jrj≤ 0:35, making it difficult to assess
quantitatively the direct impact of these genetic variants on the
agronomic traits in the field. As expected with a population of
our size, the two top significant SNPs on chromosome 9 were not
significant in GWA scans of the agronomic traits using a Q10 þK
model, and explained less than 1.7% of their genetic variances.
Whole-genome prediction, which simultaneously estimates ge-
netic effects over the whole genome instead of focusing on single
genomic regions only, remains therefore the method of choice
for predicting complex agronomic traits (9).
Given the fact that GWA mapping in elite maize inbred lines

is (i) limited in its resolution due to the high level of LD in elite
breeding germplasm of maize (9) and (ii) provides only statistical
(i.e., indirect) evidence for the association of the genomic region
with the investigated metabolites, biological validations of the
detected associations remain to be conducted. Possible ap-
proaches include RNAi, antisense methods, or the production of
knock-out mutants for inducing loss-of-function point mutations
in the candidate genes.
In conclusion, we identified strong genetic associations for con-

centrations of metabolites, especially multiple lignin precursors, to
characterize candidate genetic building blocks for lignin content
and other agronomic traits. The molecular mechanisms under-

pinning these associations represent promising targets for genetic
engineering approaches. Moreover, our results suggest that
studying genetically less complex connecting links between geno-
type and phenotype, such as metabolites, may be a reasonable
alternative for GWA mapping of highly complex traits in plants.

Materials and Methods
Genetic Material and Field Trials. The population consisted of the 285 diverse
inbred lines described previously (9), with additional four European Flint
lines that served as the check genotypes in the field trials. In the trials of
each of the three maturity groups, 100 genotypes, including five common
check genotypes, were randomized as a 20 × 5 α-lattice design with two
replications and planted in two-row plots. Plots were thinned to a final plant
density of 100,000 plants per hectare. Early biomass was determined by
measuring fresh weight of eight plants per field plot 32 d after sowing. Plant
height (m) and dry matter yield of whole-plant biomass (t/ha) were mea-
sured for each field plot at the end of the vegetation period. Lignin (%) was
measured in the harvested plant material using calibrated near-infrared
spectroscopy as described previously (48).

Metabolic Profiling. Leaf samples of the inbred lines were collected 33 d after
sowing. Samples of ∼5 cm were cut from the middle part of the fully de-
veloped third leaf of 10 plants per plot, bulked, and immediately frozen
using dry ice. The five plots of every incomplete block were sampled within
a period of 15 s to minimize within-block error due to metabolic changes
over time. All 600 plots were sampled within 69 min. The 50 samples from 10
randomly chosen blocks of one field replication of one maturity group were
subsequently processed together as one batch. With this blocking structure,
we could account for systematic shifts among batches while keeping the
field randomization intact. Analysis of volatizable metabolites was con-
ducted using an established GC-MS method (2) with the assistance of re-
cently developed software (49).

Genotyping. Genotyping was performed using the Illumina SNP chip Maize-
SNP50 (Illumina Inc.) containing 56,110 unique SNPs. A quality preprocessing
was done by applying the following criteria: (i) call rate above 0.95, (ii) unique
allele assignment for the 22 replicated checks of genotype B73, (iii) minor
allele frequency greater than 2.5%, and (iv) no more than three heterozygous
genotypes. A total of 37,227 SNPs met theses criteria. Five genotypes with
a residual heterozygosity above 5% were excluded. The chromosomal
positions of the SNPs refer to the B73 reference genome (B73 RefGen_v1).
Candidate genes were taken from the B73 filtered gene set (release 4a.53).

Statistical Analysis of Phenotypic and Metabolic Data. Linear mixed models
were used for obtaining least squares means for the phenotypic traits and
metabolites. The model for the phenotypic traits was yijkl ¼ μþ gi þ tjþ
rjk þ bjkl þ eijkl, where μ is the grand mean, gi the fixed effect of the ith

genotype, tj the fixed effect of the jth maturity group trial captured with the
common check genotypes, rjk the fixed effect of the kth field replication
within the jth maturity group trial, bjkl the random effect of the lth in-
complete block within the jkth field replication, and the residual error
eijkl ∼Nð0; σ2eÞ. For the metabolic traits, preprocessing was the same as de-
scribed previously (9). A fixed effect sjks for the sth batch was included. To

Table 1. Correlations between lignin content, plant height, early biomass, dry matter yield, and the five
metabolites that show significant associations with the same genomic region on chromosome 9

Caffeic acid Dopamine p-CA* 1016200-307† 1044100-307† Lignin PH EB DMY

Caffeic acid — 0.65 −0.45 0.79 0.72 −0.18 −0.21 −0.18 −0.28
Dopamine <1 E-15 — −0.70 0.75 0.69 −0.16 −0.23 −0.13 −0.23
p-CA* 4.4 E-15 <1 E-15 — −0.72 −0.72 0.15 0.16 0.07 0.12
1016200-307† <1 E-15 <1 E-15 <1 E-15 — 0.96 −0.20 −0.20 −0.26 −0.33
1044100-307† <1 E-15 <1 E-15 <1 E-15 <1 E-15 — −0.19 −0.21 −0.25 −0.35
Lignin (w2 ¼ 0:90) 3.3 E-3 6.8 E-3 1.1 E-2 1.0 E-3 1.8 E-3 — 0.30 −0.04 0.07
PH (w2 ¼ 0:96) 4.4 E-4 1.6 E-4 8.4 E-3 9.4 E-4 5.5 E-4 6.4 E-7 — 0.00 0.50
EB (w2 ¼ 0:91) 3.2 E-3 3.6 E-2 2.8 E-1 3.4 E-5 4.9 E-5 5.3 E-1 9.7 E-1 — 0.45
DMY (w2 ¼ 0:91) 2.7 E-6 1.1 E-4 5.0 E-2 2.8 E-8 4.4 E-9 2.4 E-1 <1 E-15 3.1 E-15 —

Pairwise Pearson correlations are shown above the diagonal, and associated P values are shown below the diagonal. DMY, dry
matter yield; EB, early biomass; PH, plant height.
*p-Coumaric acid.
†Metabolite with unknown chemical structure.
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achieve homoscedasticity of the residuals of the metabolites, the flexible
Box–Cox power transformation was applied. For each metabolite, the opti-
mum transformation value was determined as described by Piepho (50) us-
ing a grid search between 0 and 1 with 100 steps. Repeatabilities ðw2Þ were
calculated as w2 ¼ σ2g=ðσ2g þ σ2e=rÞ, where r is the number of field replications.
Genotypic variance σ2g was estimated by restricted maximum likelihood
(REML) assuming that gi ∼Nð0;σ2gÞ. REML-based additive estimates of herit-
abilities were calculated using the function polygenic_hglm of GenABEL (51)
assuming random genotype effects with kinship matrix K of proportion of
shared SNP alleles as variance-covariance matrix.

GWA Mapping. Single-marker analysis was initially carried out using a one-way
ANOVA model without considering confounding factors. Phenotypes were
regressedonthenumberof copiesof SNPalleles.Quantile–quantile (QQ)plotsof
the expected vs. observed P values were inspected for an inflation indicating
false positive signals of association. Genome-wide inflation factors (λ) were
calculated as the regression coefficient in the QQ plot with a zero intercept.
Because of the high inflation factors, we next applied a Qþ K mixed linear
model approach with correction for (i) main directions of population structure
by regressing on the first three (Q3) or 10 (Q10) principal components on SNP

data, and (ii) cryptic relatedness using the kinship matrix K as variance-co-
variance matrix for random genotype effects (52). GWA models were fitted
using the maximum likelihood implementation in the function polygenic of
GenABEL (51). P values were obtained with the 1 degree of freedom score test
implemented in the function mmscore of GenABEL (53). P values were trans-
formed toq-values and regarded significant if≤0.025 to control for a FDR (25) of
2.5%. The proportion of genetic variance explained by a certain SNP was cal-
culated as ρ ¼ R2

LR=w
2 using the likelihood-ratio statistic R2

LR ¼ 1− expð−LR=nÞ
with LR ¼ 2 × logðLSNP=L0Þ, where L0 is themaximum likelihood of the baseline
Q10 þ K model without considering the SNP, and LSNP is the maximum likeli-
hood of the full Q10 þ K model including the SNP as cofactor, and n is the
numberof genotypes (54). For the regional association scan on chromosome9,
imputation was performed using BEAGLE 3.3 (55). BEAGLE parameters were
set to nSamples = 50 and nIterations = 20.
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