
Model-Free Feature Screening for Ultrahigh Dimensional Data

Liping Zhu, Lexin Li, Runze Li, and Lixing Zhu

Abstract
With the recent explosion of scientific data of unprecedented size and complexity, feature ranking
and screening are playing an increasingly important role in many scientific studies. In this article,
we propose a novel feature screening procedure under a unified model framework, which covers a
wide variety of commonly used parametric and semiparametric models. The new method does not
require imposing a specific model structure on regression functions, and thus is particularly
appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate
predictors but little information about the actual model forms. We demonstrate that, with the
number of predictors growing at an exponential rate of the sample size, the proposed procedure
possesses consistency in ranking, which is both useful in its own right and can lead to consistency
in selection. The new procedure is computationally efficient and simple, and exhibits a competent
empirical performance in our intensive simulations and real data analysis.
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1 Introduction
High-dimensional data have frequently been collected in a large variety of areas such as
biomedical imaging, functional magnetic resonance imaging, tomography, tumor
classifications, and finance. In high-dimensional data, the number of variables or parameters
p can be much larger than the sample size n. Such a “large p, small n” problem has imposed
many challenges for statistical analysis, and calls for new statistical methodologies and
theories (Donoho, 2000; Fan and Li, 2006). The sparsity principle, which assumes that only
a small number of predictors contribute to the response, is frequently adopted and deemed
useful in the analysis of high-dimensional data. Following this general principle, a large
number of variable selection approaches have been developed in the recent literature to
estimate a sparse model and select significant variables simultaneously. Examples include
Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), nonnegative garrote (Breiman, 1995),
group Lasso (Yuan and Lin, 2006), adaptive Lasso (Zou, 2006), and Dantzig selector
(Candes and Tao, 2007). See Fan and Lv (2010) for an overview.

While those variable selection methods have been successfully applied in many high-
dimensional analysis, modern applications in areas such as genomics, proteomics, and high-
frequency finance further push the dimensionality of data to an even larger scale, where p
may grow exponentially with n. Such ultrahigh-dimensional data present simultaneous
challenges of computational expediency, statistical accuracy and algorithm stability (Fan,
Samworth and Wu, 2009). It is difficult to directly apply the aforementioned variable
selection methods to those ultrahigh-dimensional statistical learning problems due to the
computational complexity inherent in those methods. To address those challenges, Fan and
Lv (2008) emphasized the importance of feature screening in ultrahigh-dimensional data
analysis, and proposed sure independence screening (SIS) and iterated sure independence
screening (ISIS) in the context of linear regression models. Furthermore, Fan, Samworth and
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Wu (2009) and Fan and Song (2010) extended SIS and ISIS from a linear model to a
generalized linear model. Each of those proposals focuses on a specific model, and its
performance is based upon the belief that the imposed working model is close to the true
model.

In this article, we propose a model-free feature screening approach for ultrahigh-
dimensional data. Compared with the SIS, the most distinguishable feature of our proposal is
that we only impose a very general model framework instead of a specific model. It is so
general that the newly proposed procedure can be viewed as a model-free screening method,
and it covers a wide range of commonly used parametric and semiparametric models. This
feature makes our proposed procedure particularly appealing for feature screening when
there are a huge number of candidate variables, but little information suggesting that the
actual model is linear or follows any other specific parametric form. This flexibility is
achieved by using the newly proposed marginal utility measure that is concerned with the
entire conditional distribution of the response given the predictors. In addition, our method
is robust to outliers and heavy-tailed responses in that it only uses the ranks of the observed
response values. Theoretically, we establish that the proposed method possesses a
consistency in ranking (CIR) property. That is, in probability, our marginal utility measure
always ranks an active predictor above an inactive one, and thus guarantees a clear
separation between the active and inactive predictors. The CIR property can be particularly
useful in some genomic studies (Choi, Shedden, Sun and Zhu, 2009) where ranking is more
of a concern than selection. Moreover, it leads to consistency in selection; that is, it
simultaneously selects all active predictors and excludes all inactive predictors in
probability, provided an ideal cutoff of the utility measure is available. The proposed
procedure is valid provided that the total number of predictors p grows slower than exp(an)
for any fixed a > 0. This rate is similar to the exponential rate achieved by the SIS
procedures. Given a rank of all candidate features, we further propose a combination of hard
and soft thresholding strategies to obtain the cutoff point that separates the active and
inactive predictors. The soft threshold is constructed by adding a series of auxiliary
variables, motivated by the idea of adding pseudo variables in model selection proposed by
Luo, Stefanski and Boos (2006) and Wu, Boos and Stefanski (2007). Similar to the iterative
SIS procedures, we also propose an iterative version of our new screening method. This is
due to the fact that the marginal utility measure may miss an active predictor that is
marginally independent of the response, a phenomenon also observed in the SIS procedures.
The iterative procedure is shown to resolve this issue effectively. Computationally, the
proposed screening procedure does not require any complicated numerical optimization and
is very simple and fast to implement.

The rest of the article is organized as follows. In Section 2, we first present our general
model framework, then develop the new feature ranking and screening approach. Section 3
illustrates the finite sample performance by both Monte Carlo simulations and a real data
analysis. All technical proofs are given in the Appendix.

2 A Unified Feature Screening Approach
2.1 A General Model Framework

Let Y be the response variable with support Ψy, and Y can be both univariate and
multivariate. Let x = (X1, · · ·, Xp)T be a covariate vector. Here we adopt the same notation
system as Fan and Lv (2008) where a boldface lower case letter denotes a vector and a
boldface capital letter denotes a matrix. We first develop the notion of active predictors and
inactive predictors without specifying a regression model. We consider the conditional
distribution function of Y given x, denoted by F(y | x) = P(Y < y | x). Define two index sets:
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 = {k : F(y | x) functionally depends on Xk for some y ∈ Ψy},

 = {k : F(y | x) does not functionally depend on Xk for any y ∈ Ψy}.

If k ∈ , Xk is referred to as an active predictor, whereas if k ∈ , Xk is referred to as an
inactive predictor. Let x , a p1 × 1 vector, consist of all Xk with k ∈ . Similarly, let x , a
(p − p1) ×1 vector, consist of all inactive predictors Xk with k ∈ .

Next we consider a general model framework under which we are to develop our unified
screening approach. Specifically, we consider that F(y | x) depends on x only through βTx
for some p1 × K constant matrix β. In other words, we assume that

(2.1)

where F0(· | βTx ) is an unknown distribution function for a given βTx . We make the
following remarks. First, β may not be identifiable; what is identified is the space spanned
by the columns of β. However, the identifiability of β is of no concern here because our
primary goal is to identify active variables rather than to estimate β itself. Actually, our
screening procedure does not require an explicit estimation of β. Second, the form of (2.1) is
fairly common in a large variety of parametric and semiparametric models where the
response Y depends on the predictors x through a number of linear combinations βTx . As
we will show next, (2.1) covers a wide range of existing models and, in many cases, K is as
small as just one, two, or three.

Before we continue the pursuit of feature screening, we examine some special cases of
model (2.1) to show its generality. Note that many existing regression models for a
continuous response can be written in the following form:

(2.2)

where h(·) is a monotone function, f2(·) is a nonnegative function, α1, α2, and α3 are
unknown coefficients, and it is assumed that ε is independent of x. Here h(·), f1(·)and f2(·)
may be either known or unknown. Clearly model (2.2) is a special case of (2.1) if we choose
β to be a basis of the column space spanned by α1, α2 and α3. Meanwhile, it is seen that
model (2.2) with h(Y) = Y includes the following special cases: the linear regression model,
the partially linear model (Härdle, Liang and Gao, 2000), the single-index model (Härdle,
Hall and Ichimura, 1993), and the partially linear single-index model (Carroll, Fan, Gijbels
and Wand, 1997). Model (2.2) also includes the transformation regression model for a
general transformation h(Y).

In survival data analysis, the response Y is the time to event of interest, and a commonly
used model for Y is the accelerated failure time model:

where ε is independent of x. Different choices for the error distribution of ε lead to models
that are frequently seen in survival analysis; that is, the extreme value distribution for ε
yields the proportional hazards model (Cox, 1972), and the logistic distribution for ε yields
the proportional odds model (Pettitt, 1982). It can again be easily verified that all those
survival models are special cases of model (2.1).
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Various existing models for discrete responses such as binary outcomes and count responses
can be treated as a generalized partially linear single-index model (Carroll, Fan, Gijbels and
Wand, 1997)

(2.3)

where the conditional distribution of Y given x belongs to the exponential family, g1(·) is a
link function, g2(·) is an unknown function, and α1 and α2 are unknown coefficients. While
model (2.3) includes the generalized linear model and the generalized single-index model as
special cases, (2.3) itself is a special case of (2.1), which allows an unknown link function
g1(·) as well.

In summary, a large variety of existing models with various types of response variables can
be cast into the common model framework of (2.1). As a consequence, our feature screening
approach developed under (2.1) offers a unified approach that works for a wide range of
existing models.

2.2 A New Screening Procedure
To facilitate presentation, we assume throughout this article that E(Xk) = 0 and var(Xk) = 1
for k = 1, …, p. Define Ω(y) = E{xF (y | x)}. It then follows by the law of iterated
expectations that Ω(y) = E[xE{1(Y < y) | x}] = cov{x, 1(Y < y)}. Let Ωk(y) be the k-th
element of Ω(y), and define

(2.4)

Then ωk is to serve as the population quantity of our proposed marginal utility measure for
predictor ranking. Intuitively, one can see that, if Xk and Y are independent, then Xk and the
indicator function 1(Y < y) change independently. Consequently Ωk(y) = 0 for any y ∈ Ψy
and ωk = 0. On the other hand, if Xk and Y are related, then there exists some y ∈ Ψy such
that Ωk(y) ≠ 0, and hence ωk must be positive. This observation motivates us to employ the
sample estimate of ωk to rank all the predictors. We will summarize this intuitive
observation more rigorously in Corollary 1 in the next section.

Given a random sample {(xi, Yi), i = 1, · · ·, n} from {x, Y}, we next derive a sample
estimator of ωk. For ease of presentation, we assume that the sample predictors are all

standardized; that is,  and  for k = 1, · · ·, p. A natural estimator
for ωk is

where Xik denotes the k-th element of xi. As shown in the proof of Theorem 2,
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is a U-statistics. This enables us to directly use the theory of U-statistics to establish
asymptotic property of ω̂k. Note that ω̂k is a scaled version of ω̃k. They lead to the same
result of feature ranking and screening.

In sum, we propose to rank all the candidate predictors Xk, k = 1, …, , p, according to ω̂k
from the largest to smallest. We then select the top ones as the active predictors. Later we
will propose a thresholding rule for obtaining the cutoff value that separates the active and
inactive predictors.

Before we turn to the theoretical properties of the proposed procedure, we will examine
some simple settings to get more insight into our proposal. First, we consider a case where K
= 1 and x ~ Np(0, σ2Ip) with unknown σ2. Note that the normality assumption on x is not
necessary and will be relaxed later, to derive the measure’s properties. For ease of

presentation, we write , and define b = (b1, …, bp)T = (βT, 0T)T. It follows by a
direct calculation that

where  with φ(v; 0, σ2) being the density function of

N(0, σ2) at v. Then . If E{c2(Y)} > 0, then

(2.5)

and ωk = 0 if and only if k ∈ . This implies that the quantity ωk may be used for feature
screening in this setting.

2.3 Theoretical Properties
The property (2.5) allows us to perform feature ranking and feature screening. To ensure this
property in general, we impose the following conditions. It is interesting to note that all the
conditions are placed on the distribution of x only.

(C1) The following inequality condition holds uniformly for p:

(2.6)

where , Ω  (y) = {Ω1(y), · · ·, Ωp1(y)}T, and λmax{B} and
λmin{B} denote the largest and smallest eigenvalues of a matrix B, respectively.
Note that λmin(B) and λmax(B) may depend on the dimension of B. Throughout
this article, when we say that “a < b holds uniformly for p”, it means that

.

(C2) The linearity condition:

(2.7)

(C3) The moment condition: there exists a positive constant t0 such that
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Condition (C1) dictates the correlations among the predictors, and is the key assumption to
ensure that the proposed screening procedure works properly. We make the following
remarks about this condition. First, as the dimension K of β in (2.1) increases, the condition
becomes more stringent. Therefore, a model with a small K is favored by our procedure. In
many commonly used models, however, K is indeed small, as partially shown in Section 2.1.
Second, for the left hand side of (2.6), the numerator measures the correlation between the
active predictors x  and the inactive ones x , while the denominator measures the
correlation among the active predictors themselves. When x  and x  are uncorrelated, (C1)
holds automatically. For the proposed screening method to work well, this condition rules
out the case in which there is strong collinearity between the active and inactive predictors,
or among the active predictors themselves. This is very similar to Condition 4 of Fan and Lv

(2008, page 870). Third, the quantity  on the right hand side of (2.6) reflects the signal
strength of individual active predictors, which in turn controls the rate of probability error in
selecting the active predictors. This aspect is similar to Condition 3 of Fan and Lv (2008,
page 870), which requires the contribution of an active predictor to be sufficiently large.
Finally, we note that (2.6) is not scale invariant, since Σ = cov(x, xT) is not taken into
account. This is similar to the linear SIS procedure of Fan and Lv (2008), which is based
upon the covariance vector cov(x, Y) alone without the term Σ. Fan and Lv (2008) imposed
the concentration property (Fan and Lv, 2008, Equation (16) on page 870) that implicitly
requires the marginal variances of all predictors be of the same order. In our setup, we
always marginally standardize all the predictors to have sample variance equal to one.

Condition (C2) holds if x follows a normal or an elliptical distribution (Fang, Kotz and Ng,
1989). This condition was first proposed by Li (1991) and has been widely used in the
dimension-reduction literature. It is remarkable though that Condition (C2) is itself weaker
than both the normality and the elliptical symmetry conditions because we only require it to
hold for the true value of β. Furthermore, Hall and Li (1993) showed that the linearity
condition holds asymptotically if the number of predictors p diverges while the dimension K
remains fixed. For this reason, we view the linearity condition as a mild assumption in
ultrahigh-dimensional regressions, where p is essentially very large and grows at a fast rate
towards infinity.

Condition (C3) is concerned with the moments of the predictors, which assumes that all
moments of the predictors are uniformly bounded. This condition holds for a variety of
distributions, including the normal distribution and the distributions with bounded support.
Compared with the usual conditions imposed in the feature screening literature, (C3) relaxed
the normality assumption assumed by Fan and Lv (2008), in which both x and Y | x are
assumed to be normally distributed.

Next we present the theoretical properties of the proposed screening measure. The proof is
given in the Appendix. It is the main theoretical foundation for our feature screening
procedure.

Theorem 1—Under Conditions (C1)–(C3), the following inequality holds uniformly for p:

(2.8)
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The following corollary reveals that the quantity ωk is in fact a measure of the correlation
between the marginal covariate Xk and the linear combinations βTx .

Corollary 1—Under the linearity condition (C2) and for k = 1, · · ·, p, ωk = 0 if and only if
cov(βTx , Xk) = 0.

Theorem 1 and Corollary 1 together offer more insights into the newly proposed utility
measure ωk. First, it is easy to see that, when Xk is independent of Y, ωk = 0. On the other
hand, k ∈  alone does not necessarily imply that ωk = 0. The quantity is zero only if Xk is
uncorrelated with βTx . Theorem 1, however, ensures that ωk of an inactive predictor is
always smaller than ωk of an active predictor, which is sufficient for the purpose of
predictor ranking.

We next present the main theoretical result on feature ranking in terms of the utility measure
ω̂k.

Theorem 2. (Consistency in Ranking)—In addition to the conditions in Theorem 1, we
further assume that p = o {exp(an)} for any fixed a > 0. Then, for any ε > 0, there exists a
sufficiently small constant sε ∈ (0, 2/ε) such that

In addition, if we write , then there exists a sufficiently small constant sδ/2
∈ (0, 4/δ;) such that

Note that p = o {exp(an)}. Thus, the right-hand side of the above equation approaches 1 with
an exponential rate as n → ∞. Theorem 2 justifies using ω̂k to rank the predictors, and it
establishes the consistency in ranking. That is, ω̂k always ranks an active predictor above an
inactive one in probability, and so guarantees a clear separation between the active and
inactive predictors. Provided an ideal cutoff is available, this property would lead to
consistency in selection in the ultrahigh-dimensional setup. Next we propose a thresholding
rule to obtain a cutoff value to separate the active and inactive predictors.

2.4 Thresholding Rule
The thresholding rule is based upon a combination of a soft cutoff value obtained by adding
artificial auxiliary variables to the data, and a hard cutoff that retains a fixed number of
predictors after ranking.

The idea of introducing auxiliary variables for thresholding was first proposed by Luo,
Stefanski and Boos (2006) to tune the entry significance level in forward selection, and then
extended by Wu, Boos and Stefanski (2007) to control the false selection rate of forward
regression in the linear model. We adopt this idea in our setup as follows. We independently
and randomly generate d auxiliary variables z ~ Nd(0, Id) such that z is independent of both
x and Y. The normality is not critical here, as we shall see later. Regard the (p + d)
dimensional vector (xT, zT)T as the predictors and Y as the response. We calculate ωk for k
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= 1, · · ·, p + d. Since z is truly inactive by construction, we have  by
Theorem 1, and given a random sample {(xi, zi, Yi), i = 1, …, n}, it holds in probability that

 by Theorem 2. Define , which can be viewed as a
benchmark that separates the active predictors from the inactive ones. This leads to the
selection,

(2.9)

We call (2.9) the soft thresholding selection.

The next theorem gives an upper bound on the probability of recruiting any inactive
variables by the above soft thresholding selection. It can be viewed as an analogue of
Theorem 1 of Fan, Samworth and Wu (2009), while the exchangeability condition imposed
in this theorem is similar in spirit to their condition (A1). This result shows how the soft
thresholding rule performs.

Theorem 3—Let r ∈ ℕ, the set of natural numbers. We assume the exchangeability
condition, that is, the inactive predictors {Xj, j ∈ } and the auxiliary variables {Zj, j = 1,
…, d} are exchangeable in the sense that both the inactive and auxiliary variables are
equally likely to be recruited by the soft thresholding procedure. Then

where |·| denotes the cardinality of a set.

An issue of practical interest in soft thresholding is the choice of number of auxiliary
variables d. Intuitively, a small d value may introduce much variability, whereas a large d
value requires heavier computation. Empirically, we choose d = p, and our numerical
experience has suggested that this choice works quite well. Choosing an optimal d, however,
is out of the scope of this paper and is a potential direction for future research.

In addition to soft thresholding, we also consider a hard thresholding rule proposed by Fan
and Lv (2008), which retains a fixed number of predictors with the largest N values of ωk’s;
that is,

(2.10)

where N is usually chosen to be [n/log n] and ω̂(N) denotes the N-th largest value among all
ω̂k’s.

In practice, the data determine whether the soft or hard thresholding comes into play. To
better understand the two thresholding rules, we conducted a simulation study. The results
are not reported here but in an earlier version of this paper available at the authors’ websites.
We make the following observations from our simulation study. When the signal in the data
is sparse (a small p1), the hard thresholding rule often dominates the soft selection rule. On
the other hand, when there are many active predictors (a large p1), the soft thresholding
becomes more dominant. While the hard thresholding is fully determined by the sample size,
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soft thresholding takes into account the effect of signals in the data, which is helpful when
p1 is relatively large. Consequently, we propose to combine the soft and hard thresholding,
and construct the final active predictor index set as

(2.11)

where the union of the two sets is taken.

2.5 Iterative Feature Screening
An inherent issue with any feature screening procedure based on a marginal utility measure
is that the method may miss those predictors which are marginally unrelated but jointly
related to the response. To overcome this problem, we develop an iterative version of our
proposed screening method. It is similar in spirit to the family of iterative SIS methods.
However, unlike iterative SIS which breaks the correlation structure among predictors
through the correlation between the residuals of the response and the remaining predictors,
our method computes the correlation between the original response Y and the residual of the
remaining x. This is because, the residual of Y is not available in a model-free context.
However, we can compute the residual of x, where the residual is defined as the projection
of the remaining of x onto the orthogonal complement space of the predictors selected in the
previous steps. More specifically, our iterative procedure is given as follows.

Step 1 We first apply our proposed screening procedure for y and X, where X
denotes the n × p data matrix that stacks n sample observations x1, …, xn and
y = (Y1, …, Yn)T. Suppose p(1) predictors are selected, where p(1) < N = [n/
log n]. We denote the set of indices of the selected predictors by , and the
associated n × p(1) data matrix by X .

Step 2 Let  denote the complement of , and X  denote the remaining n × (p −
p(1)) data matrix. Next, we define the predictor residual matrix

Apply again our proposed screening procedure for y and Xr. Suppose p(2)
predictors are selected, and the resulting index set is denoted by . Update
the total selected predictor set by  ∪ 

Step 3 Repeat Step 2 M − 1 times until the total selected number of predictors p(1) +
… + p(M) exceeds the pre-specified number N = [n/log n]. The final selected
predictor set is  ∪ … ∪ .

For the iterative procedure, we fix the number of total selected predictors N =[n/log n]. In
our simulations, we consider an M = 2 iterative procedure and choose p(1) = [N/2], which
works well for our example. Some guidelines on selecting these parameters in an iterative
feature screening procedure can be found in Fan, Samworth and Wu (2009).

3 Numerical Studies
3.1 General Setup

In this section we assess the finite sample performance of the proposed method and compare
it with existing competitors via Monte Carlo simulations. For brevity, we refer our approach
as sure independent ranking and screening (SIRS). Throughout, we set the sample size n =
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200 and the total number of predictors p = 2000. We repeat each scenario 1000 times. For
the soft thresholding, we set the number of auxiliary variables d = p. We generate the
predictors x from a normal distribution with mean zero. Unless otherwise specified, we
consider two covariance structures of x:Σ1 = (σij)p×p with σij = 0.8|i−j|; and Σ2 = (σij)p×p with
σii = 1, σij = 0.4 if both i, j ∈  or i, j ∈ , and σij = 0.1 otherwise.

To evaluate the performance of the proposed method, we employ mainly two criteria. The
first criterion measures accuracy of ranking the predictors (with no thresholding). For that
purpose, we record the minimum number of predictors in a ranking that is required to ensure
the inclusion of all the truly active predictors. We denote this number by . The second
criterion focuses on accuracy of feature screening when applying the proposed thresholding
rule to the ranked predictors. Unlike feature selection, where it is important to
simultaneously achieve both a high true positive and a low false positive, feature screening
is more concerned with retaining all the truly active predictors. This is because screening
usually serves as a preliminary massive reduction step, and is often followed by a
conventional feature selection for further refinement. For that reason, we record the
proportion that all the truly active predictors are correctly identified after thresholding in
1000 repetitions, and denote this proportion by . A ranking and screening procedure is
deemed competent if it yields an  value that is close to the true number of active predictors
p1, and an  value that is close to one.

3.2 Linear Models
A large number of well known variable screening and selection approaches, such as linear
SIS (Fan and Lv, 2008), Lasso (Tibshirani, 1996), stepwise regression, and forward
regression (Wang, 2009). We thus begin with a class of linear models. Our simulations
reveal the following two key observations. First, when the model is indeed linear
homoscedastic with a normal error, SIRS has a comparable performance to the model-based
methods which correctly specify the model. Second, when the true model deviates from the
imposed model assumptions (e.g., the variance is heteroscedastic or the error distribution is
heavily tailed), our method clearly outperforms the model-based methods.

Example 1—In the first example, we consider a classical linear model with varying
squared multiple correlation coefficient R2, variance structure and error distribution:

(3.1)

where β = (1, 0.8, 0.6, 0.4, 0.2, 0, · · ·, 0)T takes grid values. We consider two predictor
covariances Σ1 and Σ2 as specified in Section 3.1. We also examine two variance structures:
σ = σ1, a constant, and σ = σ2 = exp(γTx), with γ = (0, · · ·, 0, 1, 1, 1, 0, · · ·, 0)T and ones
appear in the 20th, 21st and 22nd positions. Thus, σ1 leads to a constant variance model, and
we choose σ1 = 6.83 for Σ1, and σ1 = 4.92 for Σ2, which equals var(βTx) at the population
level for the corresponding x. σ2 leads to a non-constant variance model. We consider two
error ε distributions, a standard normal N(0, 1), and a t-distribution with one degree of
freedom that has a heavy tail. We vary the constant c in front of βTx to control the signal-to-
noise ratio. For the constant variance model σ1, we choose c = 0.5, 1 and 2, with the
corresponding R2 = 20%, 50% and 80% respectively. For the non-constant variance model
σ2, R2 are all very small (< 0.01%).

We first evaluate our proposed utility measure in terms of accuracy in ranking the
predictors. We also compare our method (SIRS) with another ranking procedure, linear SIS
of Fan and Lv (2008). Table 1 reports the median of the  values. For σ= σ1, the number of
truly actives p1 = 5 and for σ = σ2, p1 = 8. It is seen that, when the model is linear,
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homoscedastic (σ1), and the error follows a standard normal distribution N(0, 1), linear SIS
performs the best, with the  measure being very close to p1. However, the method breaks
down for the heteroscedastic variance (σ2) or the heavy-tailed error distribution (t1). By
contrast, our proposed procedure is comparable to linear SIS for the homoscedastic normal
error, but is consistently superior with either the heteroscedastic variance or the heavy-tailed
error distribution. Notably, our screening measure uses only the ranks of the observed
response values, which partly explains why our method performs well for a heavy-tailed
error (t1). In addition, we observe that our method performs well across a wide range of
signal-to-noise ratios (σ1 with varying c), and the results for Σ1 and Σ2 are similar.

Next we evaluate our feature screening method with the proposed thresholding rule (2.11).
We also compare with some commonly used and linear-model-based feature selection
approaches, including linear SIS, Lasso, stepwise regression and forward regression. For
stepwise regression, we use 0.05 as the inclusion probability and 0.10 as the exclusion
probability. For Lasso and forward regression, we find that the BIC criterion proposed in the
literature does not yield a satisfactory performance in our setup. Therefore, for those two
methods, as well as linear SIS, we choose the same number of predictors as our proposed
screening using the thresholding rule (2.11). The proportion  is reported in Table 2, which
indicates that the SIRS performs competently across different scenarios, with the proportion

 close to one. As expected, SIRS outperforms other methods for error being t-distribution
with one degree of freedom (i.e., the Cauchy distribution) since other methods require finite
error variance. It is also expected that all the selection methods except for SIRS cannot
identify the active predictors in the variance of random error. Thus, when the error is
heteroscedastic, the proportions shown in Table 2 for all methods except SIRS are almost
zero. To make favorable comparison toward the model-based methods when the error is
heteroscedastic, we further summarize the proportion that all active predictors (X1–X5)
contained in the regression function are correctly identified out of 1000 replications in Table
3, from which it can be seen that SIRS performs very well, while all other methods perform
unsatisfactorily. This is because the random error in this case contains some very extreme
values (outliers), and the SIRS is robust to the outliers because it only uses the ranks of the
observed response values.

Example 2—In this example, we continue to employ the linear model (3.1). In addition, we
set σ = 1, c = 1 and β = (1, 1, 1, 0, · · ·, 0)T, so that there are p1 = 3 truly active predictors.
What differs in this example is that we consider a more challenging covariance structure for
the normally distributed x where cov(x) = Σ3 = (σij)p×p with entries σii = 1, i = 1, · · ·, p, and
σij = 0.4, i ≠ j. We note that condition (C1) is not satisfied in this setup. In addition, we
generate the error ε from a t distribution with 1, 2, 3 and 30 degrees of freedom. We remark
that t1 is the Cauchy distribution, t1 and t2 have infinite variance, t3 has finite variance and
t30 is almost indistinguishable from a standard normal distribution. As such we have a model
that gradually approaches a normal distribution when the degrees of freedom increase.

Table 4 reports the ranking criterion  and Table 5 reports the selection criterion . Again
we observe a qualitative pattern similar to Example 1. That is, when the error is close to
normal (t30), the model-based SIS, Lasso, stepwise regression and forward regression
perform very well, and our model-free procedure yields a comparable outcome. When the
error deviates from a normal distribution (t with decreasing degrees of freedom), however,
the performance of all the model-based alternatives quickly deteriorates, while our method
continues to perform well.

As shown above, when the model is correctly specified (e.g., Example 1 with c = 0.5 and a
normal error), or sufficiently close to the true model (as seen in the trend of Example 2 as
the error degree of freedom increases), the model-based solution is more competent than our
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model-free solution. This is not surprising because the former is equipped with additional
model information. In practice, which solution to resort to depends on the amount of
knowledge and confidence of an analyst has about the model. Our approach can be used in
conjunction with, rather than as an alterative to, many model-based feature screening and
selection solutions.

3.3 Nonlinear Models and Discrete Response
Our next goal is to demonstrate that the proposed model-free approach offers a useful and
robust procedure in the sense that it works for a large variety of different models when there
is little knowledge about the underlying true model. Toward that end, we consider two sets
of examples that cover a wide range of commonly used parametric and semiparametric
models. The first set involves a continuous response, including the transformation model,
the multiple-index model and the heteroscedastic model.

Example 3—The response is continuous. The error ε follows a standard normal
distribution. β = (2 − U1, …, 2 − Up1, 0, …, 0)T, β1 = (2 − U1, …, 2 − Up1/2, 0, …, 0)T, β 2
= (0, …, 0, 2 + Up1/2+1, …, 2 + Up1, 0, …, 0)T, and Uk’s follow a uniform distribution on [0,
1]. We vary the number of active predictors p1 to reflect different sparsity levels. The
predictor x follows a mean zero normal distribution with two covariances Σ1 and Σ2 as given
in Section 3.1.

3.a. A transformation model: Y = exp {βTx/2 + ε}.

3.b. A multiple-index model: .

3.c. A heteroscedastic model: .

Table 6 reports the ranking criterion  and Table 7 reports the selection proportion criterion
 after applying the thresholding rule (2.11) to the ranked predictors. For a wide range of

models under investigation,  is often equal or close to the actual number of truly active
predictors p1, whereas  is equal or close to one, indicating a very high accuracy in both
ranking and selection. In addition, our method clearly outperforms the alternative
approaches which assume the linear homoscedastic model while the true models are not
linear homoscedastic in this example.

We have also examined a set of models with a discrete response, including the logistic
model, the probit model, the Poisson log-linear model and the proportional hazards model
(with a binary censoring indicator). Due to the space limitation, we only reported those
results in an earlier version of this paper. Again, our extensive simulations show that the
SIRS performs very well for the variety of discrete response models we have examined.

3.4 Iterative Screening
We next briefly examine the proposed iterative version of our marginal screening approach.
The example is based upon a configuration in Fan and Lv (2008).

Example 4—We employ the linear model (3.1), with β = (5, 5, 5, −15ρ1/2, 0, · · ·, 0)T, c =
1, σ = 1, and ε follows a standard normal distribution. We draw x from a mean zero normal
population with the covariance Σ4 = (σij)p×p with entries σii = 1, for i = 1, · · ·, p, σi4 = σ4i =
ρ1/2 for i ≠ 4, and σij = ρ, for i ≠ j, i ≠ 4 and j ≠ 4. That is, all predictors except for X4 are
equally correlated with correlation coefficient ρ, while X4 has correlation ρ1/2 with all other
p − 1 predictors. By design X4 is independent of Y, so that our method cannot pick it up
except by chance, whereas X4 is indeed an active predictor when ρ ≠ 0. We also vary the
value of ρ to be 0, 0.1, 0.5 and 0.9, with a larger ρ yielding a higher collinearity.
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We compare both the non-iterative and the iterative versions of our screening method. For
the iterative procedure, we choose M = 2 iterations with p(1) = [N/2] and N = [n/log(n)].
This simple choice performs very well in this example. Table 8 reports the proportion
criterion , where the iterative procedure dramatically improves over its non-iterative
counterpart.

3.5 A Real Data Analysis
As an illustration, we apply the proposed screening method to the analysis of microarray
diffuse large-B-cell lymphoma (DLBCL) data of Rosenwald et al. (2002). Given that
DLBCL is the most common type of lymphoma in adults and has only about 35 to 40
percent survival rate after the standard chemotherapy, there has been continuous interest to
understand the genetic factors that influence the survival outcome. The outcome in the study
was the survival time of n = 240 DLBCL patients after chemotherapy. Measurements of p =
7,399 genes obtained from cDNA microarrays for each individual patient were the
predictors. Given such a large number of predictors and small sample size, feature screening
seems a necessary initial step as a prelude to any other sophisticated statistical modeling that
does not cope well with such high dimensionality.

All predictors are standardized to have mean zero and variance one. We form the bivariate
response consisting of the observed survival time and the censoring indicator. We use a data
split of Li and Luan (2005) and Lu and Li (2008), which divides the data into a training set
with n1 = 160 patients and a testing set with 80 patients. We apply the proposed screening
method to the training data. Among 200 trials of the thresholding rule (2.11), 196 times the
hard thresholding rule dominates. Therefore, we choose [n1/log(n1)] = 31 genes in our final
set. This result seems to agree with the analysis of this same data set in the literature: only a
small number of genes are relevant, and according to our simulations, the hard thresholding
is more dominant in this scenario. Based on those selected genes, we fit a Cox proportional
hazards model. We evaluate the prediction performance of this model following the
approach of Li and Luan (2005) and Lu and Li (2008). That is, we apply the screening
approach and fit a Cox model for the training data. We then compute the risk scores for the
testing data and divide it to a low-risk group and a high-risk group, where the cutoff value is
determined by the median of the estimated scores from the training set. Figure 1(a) shows
the Kaplan-Meier estimate of survival curves for the two risk groups of patients in the
testing data. The two curves are well separated, with the log-rank test yielding a p-value
equal to 0.0025, indicating a good prediction of the fitted model.

Both Li and Luan (2005) and Lu and Li (2008) used a univariate Cox model to screen the
predictors. Applying their screening approach, while retaining as many as 31 genes, yields a
subset of genes among which 12 overlap with the ones identified by our method. As a
simple comparison, we also fit a Cox model based on the genes selected by their marginal
screening method, and evaluate its prediction performance. Figure 1(b) is constructed in the
same fashion as Figure 1(a) except that the genes are selected by the univariate Cox model.
The figure shows that the two curves are less well separated, with the p-value of the log-rank
test equal to 0.1489, suggesting an inferior predictive performance compared to our method.

We remark that, without any information about the appropriate model form for this data set,
our model-free screening result seems more reliable compared to a model-based procedure.
We also note that choosing the Cox model after screening only serves as a simple illustration
in this example. More refined model building and selection could be employed after feature
screening, while the model-free nature of our screening method grants full flexibility in
subsequent modeling.
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Appendix: proofs

Proof of Theorem 1
Without loss of generality, we assume that the basis matrix β = (β1, · · ·, βK) satisfies

, where IK is a K × K identity matrix. In this case, the linearity condition

(2.7) is simplified as . For ease of presentation, we denote
the matrix vvT by v2 for a vector v.

Consider the left hand side of (2.8). Because x is independent of Y given βTx  and Ỹ is an
independent copy of Y, it follows that x is independent of Y and Ỹ given βTx . This,
together with the simplified linearity condition and the law of iterated expectations, yields
that
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(A.1)

Then one can obtain that

(A.2)

where the first equality follows from (C2). Then it is straightforward to verify that

(A.3)

Here the second inequality follows because , and the third inequality
holds due to the fact that λmax(CTBC) ≤ λmax(B)λmax(CTC) for any matrix B ≥ 0. After
some algebra, we have

(A.4)

Then Condition (C1), together with (A.2), (A.3) and (A.4), entails (2.8).

Proof of Corollary 1
It follows from the definition in (2.4) that ωk = 0 is equivalent to E {Xk1(Y < y) = 0 for any
y ∈ Ψy. Because Y relates to x only through linear combinations βTx , it follows that there
exists some y ∈ Ψy such that E{βTx 1(Y < y)} ≠ 0. Consequently, (A.1) implies that
E{Xk1(Y < y)} = 0 if and only if cov(βTx , Xk) = 0, which completes of proof of Corollary
1.

Proof of Theorem 2
To enhance readability, we divide the proof into two main steps.

Step 1—We first show that, under condition (C3),

(A.5)
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Note that ω̂k can be expressed as follows:

Thus, ω̂k is a standard U-statistic. With Markov’s inequality, we can obtain that, for any 0 <
t < s0k*, where k* = [n/3],

Through 5.1.6 of Serfling (1980), the U-statistic ω̂k can be represented as an average of
averages of independent and identically distributed random variables; that is,

, where each w(X1k, Y1; · · ·, Xnk, Yn) is an average of k*

= [n/3] independent and identically distributed random variables, and  denotes summation
over n! permutations i1, · · ·, in of (1, · · ·, n). We denote that ψh(s) = E[exp {sh(Xjk, Yj; Xik,
Yi; Xlk, Yl)}] for 0 < s < s0. Since the exponential function is convex, it follows by Jensen’s
inequality that

Combining the above two results, we obtain that

(A.6)

where s = t/k*. Note that E {h(Xjk, Yj; Xik, Yi; Xlk, Yl)} = ωk, and with Taylor expansion,
exp {sY} = 1 + sY + s2Z/2 for any generic random variable Y, where 0 < Z < Y2 exp {s1Y},
and s1 is a constant between 0 and s. It follows that

By invoking Condition (C3), it follows that there exists a constant C (independent of n and

p) such that ; that is,
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Recall that 0 < s = t/k* < s0. For a sufficiently small s, which can be achieved by selecting a
sufficiently small t, we have that exp(−sε) = 1 − εs + O(s2) and therefore,

(A.7)

Combining the results (A.6) and (A.7), we show that, for any ε > 0, there exists a

sufficiently small sε such that . Here we use the notation
sε to emphasize s depending on ε. Similarly, we can prove that

. Therefore,

(A.8)

This completes the proof of Step 1.

Step 2—We next show that

(A.9)

Recall the assumption that . Thus,

(A.10)

By using (A.8) with ε = δ/2, (A.9) holds.

Proof of Theorem 3
Denote p* = p − | |. For a fixed r ∈ ℕ, the event that |  ∩ | ≥ r means there are at least r
elements in {ω̂k : k ∈ } greater than all values of {ω̂k : k = p + 1, · · ·, p + d}. Because the
auxiliary variables z and the inactive predictors x  are equally likely to be recruited given
Y, it follows that

The result of Theorem 3 follows.
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Figure 1.
The Kaplan-Meier estimate of survival curves for the two risk groups in the testing data. (a)
is based on the proposed feature screening, and (b) is based on the univariate Cox model
screening.
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Table 8

The selection criterion  for Example 4 – proportion that all the truly active predictors are correctly identified
out of 1000 replications. ISIRS denotes the iterative version of the proposed SIRS method.

Method ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9

ISIRS 0.925 1.000 1.000 0.940

SIRS 1.000 0.005 0.000 0.000
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