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Abstract

Indolizine, pyrrolone, and indolizinone heterocycles are easily accessed via the Pt(II)-catalyzed
cycloisomerization or a tandem cyclization/1,2-migration of pyridine propargylic alcohols and
derivatives. This method provides an efficient synthesis of highly functionalized heterocycles
from readily available substrates.

The development of efficient and versatile strategies for the synthesis of heterocycles
continues to be of major significance in synthetic organic chemistry.1 In this regard,
transformations that employ readily available substrates to provide access to multiply
functionalized heterocycles are highly desirable. In the last two decades, the
pharmacological potential of indolizines and related derivatives has become well
recognized.2 As a result, a variety of methods for their syntheses have emerged.3 However,
there still remains a significant need for more direct methods to afford functionalized
indolizine derivatives.

Previously, we reported the Pt-catalyzed cyclization of an acetate nucleophile (see 1,
Scheme 1) onto an activated alkyne to achieve the formation of pentannulated products (e.g.,
3), via the intermediacy of a zwitterion (2).4,5 On the basis of this precedent, we reasoned
that substrates such as 4 (Scheme 2), which possess a nitrogen nucleophile, could provide a
platform for metal-catalyzed cycloisomerizations to access a range of nitrogen-containing
heterocycles (e.g., 6).

Optimization studies of this transformation began with propargylic ester 7a (Table 1), which
was easily prepared from pyridine-2-carboxaldehyde in two steps.6 Initial attempts identified
PtCl4 (entry 1) and PtCl2 (entry 2) to be suitable catalysts that provide moderate yields of
the desired C-1 substituted indolizine 8a at 70 °C.7
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Furthermore, after a screen of various additives, we were delighted to find that the addition
of 10 mol % of the bulky, electron-rich phosphine ligands 2-(di-tert-butylphosphino)-
biphenyl8 (9, entry 3) or 2-(dicyclohexylphosphino)biphenyl (10, entry 4) to the reaction
mixture with PtCl2 as catalyst led to a significant increase in the yield of the indolizine
product 8a, with 10 proving to be superior (79% yield). The utility of phosphine ligands in
facilitating Pt(II)-catalyzed reactions involving nitrogen nucleophiles is consistent with
recent observations made by Widenhoefer during studies of the hydroamination of olefins.9

Importantly, for the hydroamination reactions reported by Widenhoefer, a 1:1 ratio of Pt(II)
salt to exogenous phosphine (Pt/PR3) was critical to success.10 We reasoned that the use of
bulky phosphines would dictate the formation of this critical 1:1 Pt/PR3 complex, which led
to the choice of 9 and 10 as additives.

Significant differences in reaction efficiency were also observed upon exposure of internal
alkyne substrates (e.g., 7b) to various Pt(II)-catalyzed cycloisomerization conditions as
outlined in entries 5–11. Consistent with our initial observations (entries 1–4), bulky
phosphine additives provided conditions that produced higher yields of the desired
indolizine product (i.e., 8b, entries 6 and 7) as compared to PtCl2 alone (entry 5).

The effect of phosphines 9 and 10 on reaction efficiency was more pronounced at 40 °C. At
this temperature, there was no reaction with PtCl2 alone as the catalyst (entry 8), whereas
with 9 and 10 as additives (entries 9 and 10, respectively), product formation was observed,
with 9 proving to be optimal. Interestingly, indium trichloride also catalyzes the
transformation of 7b to 8b (entry 11) albeit in lower overall yields. However, this catalyst
was found to be ineffective in the transformation of substrates possessing terminal alkynes
(e.g., 7a).

As shown in Figure 1, a range of indolizine products are easily obtained utilizing the
optimized reaction conditions with either Pt(II) (5 mol % of PtCl2, 10 mol % of 2-(di-tert-
butylphosphino)biphenyl (9), 0.2 M in PhH, 70 °C) or In-(III) (5 mol % of InCl3, 0.2 M in
PhH, 70 °C). The pivalate protective group was found to be ideal (see 11–14), and a range of
alkyl-, cycloalkyl-, aryl-, and alkenyl-substituted indolizines are readily obtained in modest
to good yields. Of note, silyl protective groups may be employed as evidenced by the
formation of silylated indolizine 15 in 57% yield.11

On the basis of these initial studies, we hypothesized that tertiary propargylic alcohol
substrates such as 16 (Scheme 3) could provide a platform for metal-catalyzed
cycloisomerizations that involve a 1,2-shift.12

This would provide access to a range of highly substituted heterocycles. In a preliminary
study, pyrrolone 19 was formed in 71% yield upon treatment of hydrazone 16 with PtCl2 (10
mol %) for 24 h at 100 °C. Presumably, this conversion proceeds via initial formation of 17,
which yields 18 upon proton transfer. An ensuing 1,2-shift of the ethyl group affords 19.13

Despite our initial success in transforming 16 to pyrrolone 19, our general conditions proved
to be ineffective at low catalyst loadings for substrates that contain a pyridine fragment. A
screen of various additives, solvents, and temperatures identified a set of optimized
conditions (5 mol % of PtCl2, 10 mol % of 2-(di-tert-butylphosphino)biphenyl, 0.1 equiv of
Cs2CO3, 100 °C), which was readily applicable to several tertiary propargylic alcohol
substrates (20a–e, Table 2) to provide the corresponding indolizinones (21a–e) in modest to
good yields. The addition of substoichiometric quantities of a base (Cs2CO3), which may
facilitate proton-transfer events prior to the 1,2-migration event, was found to be critical.14

Importantly, preliminary results indicate that the 1,2-migrations occur with high
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stereoselectivity as evidenced by the efficient transfer of chirality in the formation of
enantioenriched indolizinone 21a (97% ee, eq 1) from 20a (99.9% ee).15,16

To the best of our knowledge, the work reported herein represents the first examples of this
mechanistically distinct, metal-catalyzed cycloisomerization that allows access indolizines
and indolizinones and for the first time highlights the significant effect of bulky electron-
rich phosphines on these cycloisomerization transformations. Further studies probe the
mechanisms of these transformations, broaden the scope to include other examples of
chirality transfer, identify conditions to shorten the reaction times are underway.
Additionally, applications of these heterocycles in natural product synthesis are currently
ongoing and will be reported in due course.
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Figure 1.
Pt(II)- and In(III)-catalyzed cycloisomerizations. Yields are indicated for reactions using
PtCl2 and InCl3 (in parentheses). For a full description of reaction details, including the
identity of propargylic ester substrates, see Supporting Information.
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Scheme 1.
Pt(II)-Catalyzed Pentannulation
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Scheme 2.
Proposed Heterocycloisomerization
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Scheme 3.
Tandem Cyclization/1,2-Migration of 16
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Table 2

Pt-Catalyzed Formation of Indolizinones

entry substrate time(h) product yield(%)

1

a)R = Et 48 66

b)R = Me 168 40

c)R = 3,5-bis(MeO)Ph 120 66

d)R = Ph 48 70a

e)R = c-C3H5 144 44

2 48 36

a
Cs2CO3 was not used as an additive.
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