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Abstract
Traditionally, fMRI studies have focused on analyzing the mean response amplitude within a
cortical area. However, the mean response is blind to many important patterns of cortical
modulation, which severely limits the formulation and evaluation of linking hypotheses between
neural activity, BOLD responses, and behavior. More recently, multivariate pattern classification
analysis (MVPA) has been applied to fMRI data to evaluate the information content of spatially
distributed activation patterns. This approach has been remarkably successful at detecting the
presence of specific information in targeted brain regions, and provides an extremely flexible
means of extracting that information without a precise generative model for the underlying neural
activity. However, this flexibility comes at a cost: since MVPA relies on pooling information
across voxels that are selective for many different stimulus attributes, it is difficult to infer how
specific sub-sets of tuned neurons are modulated by an experimental manipulation. In contrast,
recently developed encoding models can produce more precise estimates of feature-selective
tuning functions, and can support the creation of explicit linking hypotheses between neural
activity and behavior. Although these encoding models depend on strong – and often untested –
assumptions about the response properties of underlying neural generators, they also provide a
unique opportunity to evaluate population-level computational theories of perception and
cognition that have previously been difficult to assess using either single-unit recording or
conventional neuroimaging techniques.

Introduction
The field of cognitive neuroscience seeks to establish and characterize links between neural
modulations and behavioral measures that index latent processes such as perception,
memory, and decision making. Articulating and critically testing these linking hypotheses is
far from trivial, even when neural modulations are directly measured using single-unit
recording techniques (deCharms, and Zador, 2000). Sampling of individual neurons is
inherently biased and caution must be exercised when generalizing beyond simple animal
models, particularly when studying more abstract cognitive operations. Moreover, focusing
on changes in spiking rates may not turn out to be the correct level of analysis to elucidate
links between brain and behavior; perhaps lower or higher levels of analysis are more
relevant (i.e. subthreshold changes in membrane potential or understanding the covariance
structure of large neural populations: Cohen and Maunsell, 2009, 2010, 2011; Mitchell, and
Reynolds, 2009). At the other end of the spectrum, measuring the blood oxygenation level
dependent (BOLD) signal in humans using fMRI provides a non-invasive and large-scale
view of cortical activation while subjects perform arbitrarily complex cognitive tasks.
However, the poorly understood relationship between single-unit neural activity and the
BOLD signal places a hard constraint on the specificity of linking hypotheses that can be
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formulated, and makes it difficult to reconcile results obtained across the two domains even
when similar paradigms are employed. This failure to make mutually constraining advances
stems at least in part from a general reluctance (or inability) in the neuroimaging community
to explicitly state hypothesized relationships between changes in neural activity, the BOLD
signal, and the cognitive state of the observer. Instead, an implicit and overly simplistic
assumption has come to dominate the field: a larger BOLD response implies that a region
plays a more important role in task-related information processing.

This point is not brought up to attack the utility of using fMRI as a tool for investigating
links between neural activity and cognition. Instead, the general lack of stated linking
hypotheses highlights the inherent limitation of available imaging technologies, and also the
fact that there is no viable analysis technique that circumvents all potential shortcomings. It
is becoming increasingly clear, however, that the relative paucity of fMRI studies that
evaluate specific a priori hypotheses about the link between BOLD signals and behavior is a
major obstacle that must be overcome if we are to start realizing the type of strong-inference
that characterizes the analysis and understanding of simpler animal model circuits (e.g.
Briggman & Kristan, 2008; Field, et al., 2010 for two recent examples). Following this
agenda, we first provide a selective historical overview of fMRI methods that have been
used over the last two decades. Then we critically discuss two complementary analysis
techniques that have recently been applied to fMRI data: decoding approaches that utilize
multi-voxel pattern analysis (MVPA) to infer and label stimuli or cognitive states, and
complementary encoding approaches that use a priori models of neural activity to predict
observed BOLD response patterns. In particular, encoding models hold promise as a means
of evaluating as-yet untested ideas about the role of population codes in information
processing, thus highlighting an area of inquiry for which fMRI might be well-suited to
make key new discoveries. Ultimately, we argue that these new methods can be used to
systematically link BOLD responses with behavior, thus placing empirical observations into
a format that is more comparable with data gathered using complementary neuroscientific
techniques. Although most of this review is based on studies carried out in visual cortex –
primarily because so much neurophysiological data is available to constrain the
interpretation of fMRI signals – the issues raised in each example should in principle
generalize to other cortical areas and domains of inquiry.

Fundamental assumptions about the relationship between neural activity
and the BOLD signal

The primary assumption behind all experiments seeking to understand the neural
mechanisms of behavior using BOLD fMRI is that deflections in the magnitude of the
BOLD signal are at least monotonically related to changes in the magnitude of underlying
neural activity (Boynton, Engel, Glover, & Heeger, 1996; Heeger, Huk, Geisler, & Albrecht,
2000; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). However, the exact
quantification of this relationship is challenging: the BOLD signal is an indirect measure of
neural activity that reflects metabolic consumption and is generally thought to be most
closely coupled with changes in the local field potential (LFP), suggesting a closer
correspondence with increased synaptic input into a region as opposed to the spiking output
(Logothetis, et al., 2001; Logothetis & Wandell, 2004b). If this account is accurate, then the
locus of computation associated with a given task might be carried out in either upstream or
downstream neural populations, and the output from these regions then projected into the
activated ROI.

Even if we fully accept the notion that the BOLD response is driven primarily by changes in
synaptic input, in some regions the majority of synaptic inputs originate from within local
cortical circuits as opposed to from long-range projections (e.g. Douglas & Martin, 2007).
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Assuming that these local connections dominate, any measure of synaptic activity is likely
to be closely coupled with spiking within that region, accounting for prior observations that
the magnitude of the BOLD signal is also strongly correlated with spiking rates (Heeger, et
al., 2000; Logothetis, et al., 2001; Mukamel, et al., 2005). Moreover, inhibitory activity
within areas of visual cortex has been shown to decrease the magnitude of the BOLD signal,
presumably by suppressing excitatory neural responses (Shmuel, Augath, Oeltermann, &
Logothetis, 2006; Logothetis, 2008; Wade & Rowland, 2010).

On the other hand, at least one experiment suggests that spatially global hemodynamic
responses that precede the onset of a periodic stimulus are not always correlated with
changes in either LFP or spiking activity (Sirotin and Das, 2009, see also: Das & Sirotin,
2011; Handwerker & Bandettini, 2011a, 2011b; Kleinschmidt & Muller, 2010). However,
this dissociation was only observed in the absence of a visual stimulus; stimulus-evoked
hemodynamic activity was found to be highly correlated with changes in the LFP as well as
spiking activity. Thus, the full implication of the dissociation between spiking and vascular
responses provided by Sirotin and Das (2009) is not yet clear: in many instances, this
dissociation may play a minimal role in influencing experimental conclusions, particularly if
care is taken to remove temporal periodicity from the stimulus sequence and to remove
spatially global fluctuations in the BOLD response that commonly influence all voxels.

Overall, the coupling of neural activity and the BOLD signal is likely to reflect contributions
from many aspects of neural activity (e.g. synaptic activity, spiking activity, metabolic
activity of glial cells supporting active neurons, etc.; Buxton, 2002). However, linking
BOLD signals with changes in behavior may ultimately provide the best method for
establishing fMRI as a complementary tool to other measurement modalities that have
complementary strengths and weaknesses.

Univariate neuroimaging techniques
Since the advent of BOLD neuroimaging, a vast majority of studies have focused on
pinpointing the anatomical loci of neural mechanisms that putatively support a particular
behavior or cognitive function. This approach is very much in the neuropsychological
tradition of linking focal brain damage to specific behavioral deficits, albeit using a non-
invasive imaging modality applied to intact volunteer subjects. In a typical fMRI brain
mapping study, two or more experimental factors are manipulated and a general linear
model (GLM) is used to identify areas where the activation level associated with one task is
significantly different from the activation level associated with the other(s). Ideally, the
difference between the experimental conditions being compared is perfectly controlled in
terms of both sensory and general cognitive demands, and only a single factor of theoretical
interest is allowed to vary. Assuming that such conditions are reasonably well satisfied, the
contrast between task conditions is carried out separately on the timeseries for every voxel,
along with some statistical correction to account for the large number of statistical tests
(often ≫ 30,000). The end result is a map of contiguous clusters of activated voxels forming
a set of ROIs that are assumed to play an important role in generating behavior.

The last 20 years of research using univariate mapping techniques has produced numerous
insights into the large scale networks that mediate basic cognitive functions like memory
(reviewed by D’Esposito, 2007), attention (reviewed by Corbetta, Patel, & Shulman, 2008;
Corbetta & Shulman, 2002; Kastner & Ungerleider, 2000; Serences and Yantis, 2006;
Yantis, 2008), and decision making (reviewed by Heekeren, Marrett, & Ungerleider, 2008).
Conventional univariate approaches can also provide a powerful means of dissociating
cognitive operations by establishing that two experimental conditions activate distinct neural
networks. Recall, for example, Brindley’s famous axiom stating that if two inputs lead to
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indistinguishable patterns of neural activity, then they will result in indistinguishable
internal states in terms of the observer’s subjective experience (Brindley, 1960; Teller,
1984). Given the presumed functional diversity of neurons that comprise even the smallest
ROI in a typical study, spatially overlapping fMRI activations should not be taken as strong
evidence in support of identical neural patterns. Instead, the real strength of univariate fMRI
methods lies in evaluating the inverse of this axiom: any change in the subjective state of the
observer must also be accompanied by a corresponding change in the neural response
produced by two inputs. Thus, even at the coarse spatial resolution afforded by fMRI, a clear
dissociation in the foci of activation observed under different task conditions provides strong
support for dissociable neural and cognitive mechanisms, and this is a minimum criterion for
the observer distinguishing between the two inputs in a behaviorally meaningful way.
Despite this ability to establish dissociations, it is also quite likely that the literature is
replete with null results because the dissociation happens at a spatial scale that is
impenetrable to fMRI. To some limited extent, as we review later, newer decoding and
encoding techniques may help to circumvent this issue.

Limitations of univariate techniques
The main limitation of univariate methods is that different patterns of neural modulation can
produce indistinguishable changes in the mean amplitude of the BOLD response, which can
lead to two types of inferential error: (1) incorrectly attributing an increase in the BOLD
response to a specific pattern of neural modulation, and (2) incorrectly concluding that an
experimental manipulation had no influence on neural activity within a ROI. To be more
concrete, consider a hypothetical experiment that measures the impact of spatial attention on
neural activity in the motion selective middle-temporal (MT) area of visual cortex (see:
Seidemann & Newsome, 1999; Treue & Maunsell, 1996). In this hypothetical study, two
moving dot displays (or random dot kinematograms, RDKs) are presented, one on each side
of fixation, and the subject has to attend to either the left stimulus or the right stimulus while
maintaining central fixation. Based on single unit recording studies, we would predict that
all neurons in MT with a spatial receptive field (RF) corresponding to the attended stimulus
should be more active than neurons with spatial RFs located away from the attended
stimulus (Boynton, 2005a; Reynolds & Heeger, 2009; Reynolds, Pasternak, & Desimone,
2000; Treue & Maunsell, 1996). Now, we can consider two models for how this increase in
the activity of cells with RFs corresponding to the attended RDK might be implemented: a
model where responses increase by an additive factor (Figure 1a), or a model in which
responses increase by multiplicative factor (Figure 1b: note that the preponderance of data
favors a hybrid of these two models with multiplicative gain dominating, but for the sake of
illustration, we will present them here as competing alternatives: for more, see McAdams &
Maunsell, 1999; Reynolds and Heeger, 2009). If we make the simplifying assumption that
the magnitude of the BOLD signal is monotonically related to the summed neural activity
within an entire ROI, then both of these models predict an increase in the BOLD signal with
attention. Of course, one type of modulation might produce a slightly larger increase than
the other, depending on the respective magnitude of the additive and multiplicative
modulatory factors. However, without having first performed the identical experiment using
single-unit recordings, there would be no principled way to distinguish these accounts based
solely on the univariate measure of BOLD response amplitude measured in the ROI.

Now, consider a more insidious scenario in which the subject is asked not only to deploy
spatial attention to one of the two RDKs, but also to attend to the direction of motion so that
they can report a brief change in direction (e.g. Martinez-Trujillo & Treue, 2004; Treue &
Martinez Trujillo, 1999; Treue & Maunsell, 1999). In this situation, single-unit recording
data reveal an increase in the firing rate of MT neurons that are tuned to the attended
direction of motion, and a decrease in the firing rate of MT neurons tuned far away from the
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attended direction of motion (Figure 1c; Boynton, 2005a; Martinez-Trujillo & Treue, 2004).
Under the same simplifying assumption that the BOLD response in MT is monotonically
related to the summed neural activity in a ROI, a negligible change in the mean amplitude of
BOLD signal should be observed with attention, as the contribution of the cells that increase
their firing rates may be perfectly offset by those cells that are suppressed. As in the two
models of spatial attention depicted in Figures 1a-b, the magnitude of the BOLD signal will
vary depending on the exact ratio of excitation to suppression; however, univariate measures
may often be blind to this type of modulation. As a result, the true nature of the underlying
neural modulations – such as a narrowing of the population response profile in this case –
would be obscured, despite the profound impact that such modulations have on the precision
of stimulus representations in early visual areas (Kang, Shapley, & Sompolinsky, 2004;
Pouget, Deneve, Ducom, & Latham, 1999; Series, Latham, & Pouget, 2004). This scenario
likely generalizes far beyond the relatively orderly (or at least well-documented) realm of
feature-selective tuning functions in visual cortex: any region in which there is a non-
uniform modulation of firing rates across distinct neural sub-populations should be difficult
to characterize or even to detect using univariate methods.

Occasionally, within the relatively limited scope of well-studied examples like the one
provided in Figure 1, investigators using fMRI can gain some traction by using single-unit
physiology data and computational models as additional constraints (see next section on
Computational Neuroimaging). However, the problem of linking neural activity to behavior
using univariate methods is greatly exacerbated when more complex tasks are used that tap
into higher perceptual or cognitive mechanisms for which the neural substrates are far less
informed by converging evidence from other domains (i.e. executive functions such as
decision making, memory, task-switching etc). In such circumstances, univariate BOLD
techniques might narrow down the number of viable hypotheses about underlying neural
generators. However, a high degree of skepticism should be applied to any mechanistic
claims beyond simple statements about a non-specific net increase/decrease in overall neural
activity. This is not to say that such exploratory fMRI experiments aren’t worthwhile. Quite
to the contrary, we argue that they are necessary to pave the way for more systematic future
investigations, especially in cases where no good animal model may ever be available. We
do, however, assert that advances in analysis techniques – such as the application of
decoding and encoding models – are needed to move beyond general statements that focus
solely on relating the mean amplitude of BOLD signals to mental operations.

Computational Neuroimaging: combining univariate approaches with
quantitative models

The general approach of using quantitative models to link changes in the BOLD signal with
perception and cognition was introduced by investigators such as Brian Wandell, David
Heeger and others within the computational neuroimaging tradition (see Wandell, 1999 for
an early review). As opposed to mapping out networks of regions using whole-brain GLM
analyses, computational neuroimaging focuses on examining parametric modulations within
specific brain regions for which strong BOLD/behavior linking hypotheses can be
formulated based on previous psychophysics and single-unit recording studies. For example,
Boynton, Demb, Glover, & Heeger (1999) measured the amplitude of the BOLD signal in
primary visual cortex as a function of stimulus contrast, and were able to link the resulting
BOLD contrast response function (CRF) to an analogous psychophysical measure of
perceptual sensitivity within the same observers. Importantly, the same computational model
that linked changes in stimulus contrast to behavioral performance also accounted for the
BOLD contrast response function, thus forming a precise quantitative mapping between the
BOLD signal and perception. It is impressive that models originally developed to explain
single-unit data and psychophysics can also be used to account for systematic changes in the
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BOLD signal, as such demonstrations suggest that even though the BOLD signal is an
indirect measure, it nevertheless provides a meaningful assay of neural activity. This is
particularly true when investigators are able to use rigorous computational models that are
grounded in quantitative psychophysics and single-unit physiology to constrain the
interpretation of their results.

Furthermore, given appropriate linking propositions and experimental designs,
computational neuroimaging has the potential to provide insights into information
processing in the brain at a level that so far has been outside the ambit of single-unit
recording. Current recording methods do not typically provide direct information about
computations involving large and disparate neural populations spread across a cortical
region, or about inter-region communication and synergistic computation. In contrast,
though the BOLD signal lacks the spatial resolution of single-unit recording, this limitation
confers an advantage in assessing large scale changes in cortical activation. Computational
neuroimaging techniques exploit this advantage in a principled and rigorous manner, and
thus set the stage for the development of new analysis tools that more effectively utilize
fine-grained information available in the BOLD signal.

Decoding using multi-voxel pattern analysis (MVPA)
Over a decade ago now, James Haxby and his coworkers published an influential study that
demonstrated how the category of an object that a subject was viewing could be decoded
based on the spatially distributed activation pattern across all voxels in inferior-temporal
visual cortex (a region comprised of many smaller regions such as the lateral occipital
complex, fusiform gyrus, parahippocampal gyrus, and early ventral visual areas such as
human V4; Haxby, et al., 2001). The insight that Haxby and his coworkers shared was that
the standard approach of aggregating responses into a single univariate amplitude estimate
was discarding a large amount of useful information that was contained in the multivariate
pattern of activation across all voxels (Cox & Savoy, 2003; De Martino, et al., 2008;
Formisano, De Martino, & Valente, 2008; Haynes & Rees, 2006; Kriegeskorte & Bandettini,
2007a, 2007b; Kriegeskorte, Goebel, & Bandettini, 2006; Norman, Polyn, Detre, & Haxby,
2006; O’Toole, et al., 2007; Pereira, Mitchell, & Botvinick, 2009). Some years later,
Kamitani and Tong (Kamitani & Tong, 2005, 2006, see also: Haynes & Rees, 2005) further
advanced this general idea by showing that precise inferences could be made about not just
an object category but also about the specific visual feature that a subject was viewing (e.g.
a specific orientation or direction of motion) based solely on activation patterns recorded
from a single visual area (as opposed to the pattern across a large collection of functionally
diverse visual areas, as in Haxby et al., 2001).

In general, MVPA techniques involve training a linear classifier or decoder (via a machine
learning algorithm such as a Support Vector Machine, or SVM: Vapnik, 1995) to map multi-
voxel activation patterns onto specific stimulus labels (e.g. faces versus houses, 45° grating
versus a 135° grating orientation, etc). Given that experiments using the spatially distributed
response patterns across large swaths of cortex to decode object categories or syntactic
categories have been reviewed extensively in the past (see Norman et al., 2006), we focus
here on the application of MVPA to decode basic stimulus features using response patterns
within a single cortical area or an ROI (e.g. decoding different orientations based on
activation patterns across primary visual cortex, or area V1).

MVPA techniques treat each voxel in an ROI as an independent dimension in a
multidimensional space, thus the vector of BOLD responses from N voxels associated with a
particular stimulus would form a point in an N dimensional space Rn. Ideally, multiple
responses collected from repeated presentations of the same stimulus will result in a cluster
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of data-points that lie close to each other in Rn (Figure 3a shows a simple conception of this
representation assuming only a 3 dimensional space corresponding the response pattern
across 3 voxels). More generally, given a set of response vectors Va associated with stimulus
type A and another set Vb associated with stimulus type B, a linear classifier can be
constructed using a support vector machine (or one of many other alternatives) that will
compute a N−1 dimensional hyperplane L in the N dimensional space Rn that will attempt to
divide Rn into two regions; one containing mostly responses associated with stimulus type A
and the other containing mostly responses for stimulus type B. Given this linear classifier L,
a new stimulus can be assigned to either category A or B by simply computing the side of
plane L where the new data-point lies. Critically, the hyperplane L must be constructed
using data that is independent of the data that is to be labeled or decoded: if this strict
condition of independence is not adhered to, then the points in Rn that are being labeled will
influence the shape of the hyperplane L, resulting in a circular analysis that is guaranteed to
produce above-chance decoding accuracy. Therefore, the first step in performing a decoding
analysis using MVPA is to separate all available data into a ‘training set’ that is used to
construct the hyperplane L, and an independent ‘test set’ that is used to evaluate the ability
of the classifier to accurately label new data points. This process is referred to as cross-
validation, and is critical for evaluating the reliability of the information contained in the
spatially distributed pattern of responses across voxels (see Kriegeskorte et al., 2009).

If no reproducible information is present, the data points in Rn from the test set will be
distributed randomly with respect to the hyperplane L, resulting in chance decoding
accuracy. If, on the other hand, there is a reliable activation pattern associated with repeated
presentations of each stimulus feature, then test data points in Rn will tend to cluster with
points in Rn generated by the same stimulus type in the training set, and labeling these
points based on hyperplane L will result in above chance accuracy. This general approach
can be extended beyond the case of two stimulus classes by training multiple classifiers to
discriminate one stimulus from all others and then using a max rule to assign the stimulus
label based on the classifier with the highest selectivity (see discussion of Figure 5 below).

The application of MVPA to decode basic stimulus features in an ROI is usually assumed to
rely on an uneven distribution of feature-selective neural populations within a voxel
(Boynton, 2005b; Haynes & Rees, 2005; Kamitani & Tong, 2005; Swisher, et al., 2010). For
example, if the distribution of orientation-selective columns within a given voxel in primary
visual cortex (V1) is heterogeneous, then this biased distribution should give rise to a small
but reliable shift in the response pattern across all voxels in response to stimuli rendered in
different orientations (Figure 2a,b). If this spatially distributed response pattern varies
enough as a function of the stimulus evoking the response, then relatively simple machine
learning algorithms can pool the information from all voxels to decode the feature value that
a subject was viewing at any given moment in time. Thus, the critical methodological
advance here is simple but elegant: computing the average response across many voxels
provides little feature-selective information, whereas modeling fMRI data in a multi-variate
fashion permits successful decoding of specific feature values.

While there is little debate that MVPA methods can provide more information about subtle
modulation patterns, several recent studies have challenged the notion that successful
within-area decoding using MVPA is primarily driven by small biases in the within-voxel
distribution of feature-selective neurons (Kamitani and Tong, 2005; Swisher et al., 2010;
Boynton, 2005). One recent study reported a large-scale and systematic map of orientation
across V1, and further demonstrated that this map was both necessary and sufficient for
accurate decoding (Freeman, Brouwer, Heeger, & Merriam, 2011, Figure 2c). This result
suggests that successful pattern-based decoding does not rely on sub-voxel anisotropies in
the distribution of cortical columns, but instead on the existence of neighboring clusters of
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voxels that systematically differ in their orientation selectivity. Another study demonstrated
that pattern classification algorithms rely heavily on feature-selective responses recorded
near large draining veins (Gardner, 2010). However, the draining vein account is potentially
consistent with either the sub-voxel anisotropy account or the ‘coarse map’ account, as it is
not clear if the veins pool signals from like-tuned neurons that are randomly distributed or
whether the veins are themselves organized into a systematic large-scale map. Finally, a
recent study paradoxically found that spatially smoothing fMRI data actually improves the
decoding ability of MVPA techniques, even though spatial smoothing should intuitively
attenuate the precision of voxel level feature-selectivity (Op de Beeck, 2010). However,
given that coarse maps contain information at both high and low spatial frequencies, this
result does not clearly establish the spatial scale of information that enables MVPA. In the
end, resolving these contrasting notions regarding the physiological causes underlying
MVPA is certainly important; however, as long as decoding techniques can effectively
distinguish between changes in perceptual or cognitive states in situations where univariate
approaches would fail, MPVA offers many clear advantages.

One recent set of studies that highlights the utility of MVPA focused on decoding the
contents of working memory (WM) as subjects remembered basic features such as the
orientation or color of a sample item across a delay period (Serences, Ester, Vogel, & Awh,
2009; Harrison & Tong, 2009). Both of these studies sought to test the ‘sensory-recruitment’
hypothesis, which states that information in WM is maintained via sustained activity in the
same neural populations that encode the initial sensory input. For example, neurons in visual
cortex that are responsive to a statically presented object also show a sustained increase in
activity across a memory delay period, both in humans and in non-human primates (Awh &
Jonides, 2001; D’Esposito, 2007; Pasternak & Greenlee, 2005; Postle, 2006). In contrast to
this account, a recent investigation used univariate measures of the BOLD response to assess
the role of V1 in supporting WM for basic object properties such as orientation and spatial
frequency that are known to be encoded in this region (Offen, Schluppeck, & Heeger, 2009).
They observed that even though overall response amplitudes in V1 increased during
sustained deployments of spatial attention, activation levels during the retention interval of a
WM task were indistinguishable from those observed during epochs of passive fixation.
Although the observation that response amplitude fell back to baseline levels during the
retention period appears to contradict the sensory-recruitment model of WM, Offen et al.
(2009) noted that an area involved in WM storage may not necessarily undergo a sustained
increase in the mean amplitude. For example, recall the scenario presented in Figure 1c in
which feature-based attention led to the simultaneous amplification and suppression of
different neural populations. Assuming that this type of feature-selective response profile
supports perception (Jazayeri & Movshon, 2006; Paradiso, 1988; Pouget, Dayan, & Zemel,
2003; Sanger, 1996), the sensory recruitment hypothesis holds that a similar profile should
be maintained throughout the WM delay period. However, a univariate measure of the
BOLD response may not be sensitive as the contribution of neurons that are more active
during the delay period may cancel out the contribution of neurons that are suppressed
(Heeger & Ress, 2002; Logothetis, et al., 2001; Logothetis & Wandell, 2004a; Shmuel, et
al., 2006). Thus, the lack of a sustained amplitude increase across orientation-selective
neurons in V1 does not necessarily constitute evidence against the sensory-recruitment
hypothesis.

Although interpreting the functional significance of changes in response magnitude can be
complex in scenarios such as the one outlined above, MVPA does not rely only on a change
in mean amplitude across all voxels within an ROI, but is also sensitive to changes in the
spatially distributed activation pattern. Therefore, MVPA could in principle decode subtle
changes in the response profile across a region such as V1 during the maintenance of
information in WM. This general pattern of results was borne out: Serences et al. (2009) and
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Harrison and Tong (2009) failed to observe a sustained increase in amplitude in primary
visual cortex during the delay period (replicating Offen et al, 2009), even though MVPA
revealed that V1 maintained stimulus-specific representations during the same temporal
interval (Figures 4a,b; see also Ester, Serences, & Awh, 2009). Moreover, MVPA revealed
that WM does not recruit all sensory neurons that are active upon the presentation of the
sample item, but only those populations that selectively encode relevant aspects of a multi-
featured object (Serences, Ester, et al., 2009). These two experiments thus provide a case
study in which MVPA revealed insights into the representational basis of a cognitive
operation (WM) that may have been missed using traditional univariate approaches.

In addition to simply labeling stimulus or task categories based on observed patterns of
activation, decoding approaches can also be used to reconstruct a representation of the
physical stimulus set presented during an experiment. Miyawaki, et al. (2008) trained a
classifier to identify contrast intensities at multiple points in a 10×10 binary image array,
and then used the weights assigned to each voxel to reconstruct a literal representation of the
image the subject was viewing during a separate test phase (see also: Ganesh, Burdet,
Haruno, & Kawato, 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009 for similar
experiemnts on stimulus ‘reconstruction’ using different methodological approaches). This
ability to accurately reconstruct internal representations of a stimulus is an exciting
application of MVPA and related decoding techniques and holds great promise for clinical
applications such as restoring sight and creating effective neural prostheses for people with
limited mobility (see: Andersen, Hwang, & Mulliken, 2010; Haynes, 2009; Hochberg, et al.,
2006; Weil & Rees, 2010).

Limitations of MVPA
Although MVPA is an elegant tool that is flexible enough for a wide range of experimental
designs and research questions, this flexibility reduces the precision of the inferences that
can be supported. The foremost issue is that an observation of increased classification
accuracy does not clearly reveal how or why that increase occurred. For instance, the
hypothetical observation that selective attention increases classification accuracy for
decoding 45° from 135° oriented stimuli could arise in many different ways. It could mean
that the centers of the activation cluster move farther away from the classifying plane L (see
Figure 3b). Alternatively, spatial attention might decrease the variability of population
responses so that activation clusters become more tightly grouped (Figure 3c). Any mixture
of these two contributing factors would give rise to an increase in classification accuracy.
Thus, an increase in classification accuracy only demonstrates that the representations
became more separable; we learn nothing directly about what underlying neural changes
gave rise to the increased separability. Although typically not reported, this issue can
sometimes be addressed by computing additional metrics such as the variance (covariance)
of the clusters and the mean distance between clusters, particularly when the number of
classes is relatively small. When possible, such measurements may reveal important
additional insights about how a manipulation impacted the representation of information in a
ROI, thus heightening the inferential power of MVPA.

While such additional steps can be often be taken to determine why a classifier performed
better in one scenario compared to another, a more subtle variant of the this issue can arise if
seeking an even deeper understanding of the link between classifier performance and
specific patterns of neural modulation. For example, the data shown in Figure 1b of
Kamitani and Tong (2005; our Figure 5b) resembles a response profile that was recorded
across a set of feature-selective neural populations, much as expected from a population of
orientation selective cells in V1 whose responses have been sorted based on the preferred
feature of each neuron (i.e. a population response profile, as shown in Figures 1a–c).
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However, the data in Figure 5b depict the output of a ‘linear ensemble orientation detector’
that was generated using a SVM to assign a weight to each voxel so as to maximize the
response of each detector to its preferred feature value. Each detector pools the weighted
activity across all voxels in a visual area to derive a response function that indicates the
probability that the preferred orientation is present (as shown in Figure 5b, which
demonstrates the output of a detector optimized for 45° stimuli). The classifier then
‘guesses’ that the observer is viewing the orientation associated with the maximally active
detector. Thus, the MVPA approach estimates the stimulus label based on a weighted sum of
input values across every voxel in the ROI, which is optimal in a statistical sense because it
makes use of all the available information. On the other hand, the same optimal process of
aggregating inputs from all voxels prevents direct inferences about how the tuning profiles
of the underlying voxels (and by inference the tuning characteristics of different neural
populations) are modulated. Thus, MVPA approaches are an extremely powerful tool for
determining if there is a difference between activation patterns evoked by experimental
conditions. However, the reliance on a weighted pooling of information across many voxels
obscures information about exactly how the pattern of underlying neural activity changes as
a function of task demands.

This distinction is very important when seeking to answer many questions in computational
neuroscience. For example, again consider the situations outlined in Figures 1a–c, where
three different patterns of attentional modulation are depicted. Using MVPA, you might see
that different stimulus features – in this case different orientations – were more easily
classifiable with attention compared to without attention [this is almost certainly true in the
right two panels showing multiplicative gain and bandwidth reduction, and possible in the
left panel showing an additive modulation, but only given specific assumptions about neural/
BOLD noise distributions, see e.g. (Saproo & Serences, 2010)]. However, one would not be
able to distinguish which of these three types of attentional modulation was occurring based
solely on the observation of increased classification accuracy. In the next section we
describe approaches that directly model the response profile across tuned populations of
underlying neurons. In cases where generating such models is tenable, they may be able to
help investigators understand how an experimental manipulation influences specific
subpopulations of neurons, which is critical for testing theoretical accounts of how cortical
circuits carry out complex computations.

Encoding models of BOLD responses
In contrast to the decoding approach employed by MVPA studies, forward encoding models
take the opposite approach by adopting a set of a priori assumptions about the important
features or stimulus labels that can be distinguished using hemodynamic signals within an
ROI (Dumoulin & Wandell, 2008; Gourtzelidis, et al., 2005; Kay & Gallant, 2009; Kay,
Naselaris, Prenger, & Gallant, 2008; Mitchell, et al., 2008; Naselaris, et al., 2009;
Schonwiesner & Zatorre, 2009; Thirion, et al., 2006; reviewed in Naselaris, et al., 2011).
The features or labels in the model are then used to predict the pattern of BOLD responses
(whereas decoding approaches try to infer these labels based on observed patterns of
activity). In this basic sense, most traditional univariate analysis approaches to fMRI use
simple encoding models where a GLM is used to estimate the mapping between a set of
stimulus or task conditions and the amplitude of the response in each voxel. More recently
encoding models have been extended to encompass far more complex descriptions of
stimulus space that are typically guided and constrained by existing neurophysiological data
(e.g. Carandini, et al., 2005; David & Gallant, 2005; Ringach, Hawken, & Shapley, 1997;
Theunissen, Sen, & Doupe, 2000; Wu, David, & Gallant, 2006). For example, Kay et al.
(2008) used a mosaic of phase-shifted Gabor filters (these were the features or labels in the
model) rendered in different orientations and spatial frequencies to predict the responses of
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voxels in visual cortex to images of natural scenes. The set of features used to model BOLD
activation is typically referred to as a basis set, and in this instance the encoding model was
grounded by the known properties of single neurons in these early visual areas (Carandini, et
al., 2005). A weight was then assigned to each Gabor filter so as to best account for the
response of each voxel to a large set of natural images. After estimating the weight that
maps each Gabor filter to the stimulus set, they showed subjects a set of novel images and
were able to predict the exact stimulus that the subject viewed with extremely high accuracy
based on the output pattern of their encoding model (see also: Naselaris, et al., 2009).

This example highlights one major advantage of encoding models over their complementary
decoding counterparts: researchers can test one or more very specific models of an
underlying neural architecture to determine which basis set best accounts for the observed
data and, more importantly, which basis set best generalizes beyond the training data to
accurately characterize novel inputs. This is a major conceptual advance, as until recently,
evaluating specific implementations of neural models was not commonly carried out in
human neuroimaging work. Finally, these encoding model approaches have the distinct and
important advantage that they make explicit the set of assumptions that are used to link
neural activity to changes in the BOLD response. While being explicit by no means ensures
that a given model is correct, it does ensure that (1) the model is unambiguously stated in
mathematical terms, and (2) that it is more likely to be testable, a feature lacking in many
prior fMRI investigations.

To illustrate the utility of this approach, we focus on a recent report that used a relatively
simple basis set to evaluate the response of different color selective neural populations, or
‘color channels’ in V1, V2, V3, V4 and VO1 (Brouwer & Heeger, 2009). The encoding
model approach described here is based on the same principles that are thought to support
within-area MVPA, and thus can operate if there is a measurable feature-selective bias either
within voxels or across an ROI (Boynton, 2005b; Freeman, et al., 2011; Kamitani & Tong,
2005). However, instead of using MVPA to predict the most likely color that a subject
viewed on each trial, Brouwer and Heeger (2009) instead determined the response
magnitude in each of six hypothetical color channels (see Figure 6) that best accounts for the
observed fluctuations in the BOLD signal.

To perform this analysis, Brouwer and Heeger (2009) first split the data into two sets
(training and test sets), just as is done in a typical decoding study. Adopting their
terminology and formulations, let m be the number of voxels in a given visual area, n1 be
the number of observations (trials) in the training set, n2 be the number of trials in the test
set, and k be the number of hypothetical color channels, which taken together covered the
entire CIE hue spectrum,. Let B1 (m x n1 matrix) be the training set, and B2 (m x n2 matrix)
be the test set. The weight (W, m x k) assigned to each color channel was computed based
on data from the training set using a linear model of the form:

(1)

where the ordinary least-squares estimate of W is computed as:

(2)

The channel responses (C2 k x n2) were then estimated for the test data (B2) using the
weights estimated in (2):
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(3)

Note that the first steps in this computation (eq. 1–2) are akin to a traditional univariate
GLM in which each voxel gets a weight for each of several features or stimulus labels (in
this case, one weight for each color channel). However, eq. 3 implements a multivariate
computation because the channel responses estimated on each trial (in C2) are constrained
by the estimated weights assigned to each voxel and by the vector of responses observed
across all voxels on a given trial in the test set. Thus, one key feature of this approach is that
a set of estimated channel responses can be obtained on a trial-by-trial basis as so long as the
number of voxels is greater than the number of channels. If there are fewer voxels than
channels, then unique channel response estimates cannot be derived as the number of
variables being estimated exceeds the number of available measurements.

Using this formulation, Brouwer & Heeger (2009) demonstrated that the vector of channel
responses was precise enough to support above chance decoding accuracy in many visual
areas, and that this performance matched that of a standard linear discriminant MVPA
classifier (Figure 6b). More importantly, their forward model was able to reconstruct novel
color stimuli that were not part of the training set, thereby validating the underlying model
in a way that simple linear classifiers cannot (see figure 6c). In a subsequent study, Brouwer
and Heeger (2010) used a similar forward model to study orientation selective response
profiles in V1 and were able to accurately characterize responses to complex combinations
of superimposed oriented gratings (i.e. ‘plaids’) based on a model trained using pure
oriented gratings.

If at least some of the assumptions described above about the coupling of neural activity and
the BOLD response are accepted, this method may provide a critical tool for evaluating
competing theoretical models of how various cognitive factors influence neural activity in
early sensory cortices. For instance, by examining the average pattern of direction-selective
channel responses in a hypothetical space- or feature-based attention experiment, it should
be possible to distinguish the three models of modulation shown in Figures 1a–c. In
addition, the fact that channel responses can be estimated on a trial-by-trial basis also opens
the door to more complex analyses such as evaluating the predictive relationship between
channel responses and behavioral performance on a trial-by-trial basis using either logistic
regression (in the case of task accuracy) or simple correlation (in the case of reaction time).

Alternatively, more sophisticated metrics, such as those derived from information theory,
can be applied to trial-by-trial channel responses. The field of information theory concerns
itself with the quantitative evaluation of the quality of different codes and with the
development of optimal codes that maximize information transfer over noisy channels
(Shannon, 1948). There is growing evidence that populations of neurons communicate via
neural codes, and the communication medium between neural populations emulates a noisy
channel (Doya, Ishii, Pouget, & Rao, 2007; Rieke, Warland, de Ruyter van Steveninck, &
Bialek, 1999). Therefore, information theory is an important tool to evaluate the efficacy of
neural coding, and in turn to generate and test models of various sensory and perceptual
phenomena. For instance, mutual information (MI) evaluates the coupling between two
variables without making assumptions about the order of the correlation or the underlying
response distributions, and can be used to index the relationship between channel responses
and stimulus features, channel responses and behavior, or channel responses across multiple
cortical regions that are thought to synergistically encode sensory information (Chai,
Walther, Beck, & Fei-Fei, 2009; Saproo & Serences, 2011). These types of information-
based metrics, coupled with the ability to estimate the response of feature-selective channels
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on a trial-by-trial basis, may prove to be an invaluable future tool in evaluating theoretical
principles of sensory encoding that are currently difficult to test using standard single-unit
recording techniques.

Limitations of encoding models and comparison with decoding approaches
The main challenge of the encoding approach lies in generating a model that accurately
characterizes neural activity within a ROI, particularly when examining higher cognitive
functions that have not been subjected to intense psychophysical or single-unit physiology
studies. However, the general approach provides a technique for developing multiple models
– even in the absence of prior neurophysiological data as a guide – and then testing these
models in at least two ways. The most intuitive first-pass test is to determine how much
variance in the dependent measure (the BOLD response) is captured by the model. If the
basis functions have no meaningful relationship to the true generative mechanism that
created the data, then the fit of the model will be poor. Maximizing basic metrics that reflect
goodness-of-fit is therefore a reasonable first step in optimizing the general form of the basis
functions in the encoding model. Second, in order to evaluate inferential power, the
parameter estimates associated with an encoding model should be used to characterize or
label novel stimuli that were not part of the training set (as in Kay et al., 2008; Brouwer and
Heeger, 2009). In turn, adjusting the model to maximize generalizability is another form of
optimization that can be used to identify the best model that fully characterizes the
functional properties of a given ROI (see also: Naselaris, et al., 2011). Encoding models can
thus be applied to experimental domains that are constrained by existing physiological
observations, as well as to more adventurous domains where existing data is sparse and the
studies are completely exploratory in nature. Of course, during this process of iteratively
testing and generating new models, care must be taken to avoid circularity. In addition,
given the speculative mapping between neural activity and the BOLD response, any
deviations away from extant models that are grounded in neurophysiology must be carefully
evaluated using other methods. The use of encoding models does however form a principled
method for developing new hypotheses about the functional characteristics of a ROI and for
inspiring additional studies that will be mutually constraining.

Given the strong a priori assumptions that are involved in generating and evaluating an
encoding model, this approach is also generally not very powerful when performing whole-
brain exploratory analyses, because it is highly unlikely that one basis set would accurately
capture the functional role of more than a few cortical regions. Instead, a more efficient
approach might be to use MVPA as an initial tool for exploratory analysis, as it is ideally
suited for this purpose precisely because no assumptions are made about the specific
relationship between underlying neural activity and BOLD responses in a ROI (so long as
there is some relationship). This type of exploratory MVPA has gained prominence in recent
years (see Esterman, Chiu, Tamber-Rosenau, & Yantis, 2009; Kriegeskorte & Bandettini,
2007a; Kriegeskorte, et al., 2006; Serences & Boynton, 2007; Soon, Brass, Heinze, &
Haynes, 2008 for some recent examples). Furthermore, the proportion of information carried
by different ROIs can be estimated by computing the decrease in classification accuracy
when a given ROI is removed and not allowed to contribute to training/testing the classifier,
thus providing a metric that quantifies the relative importance of different nodes in a
functional network (see e.g.: Hampton, Bossaerts, & O’Doherty, 2006; Pessoa & Padmala,
2007). In turn, once a region has been identified as carrying some type of important
information about an experimental manipulation using MVPA, encoding models can be
developed and used to evaluate a plethora of feasible generative neural models that might
underlie the computational architecture of a given ROI. In this way, decoding and encoding
approaches can be used in a complementary manner to first identify and then to characterize
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the specific contribution of nodes in a distributed network so as to better support linking
propositions between BOLD responses and behavior.

Concluding remarks
Beginning with the advent of computational neuroimaging in the late 1990’s, a great deal of
progress has been made with respect to testing quantitative models of perception and
cognition using non-invasive methods such as fMRI. The recent explosion of MVPA and
forward encoding approaches holds great promise, as these new tools have the potential to
more precisely evaluate the information content of single ROIs as well as large-scale
networks, and to refine our understanding of how the computational units within these
networks interact to support cognition. These decoding and encoding techniques are
complementary rather than competing: decoding models provide a more flexible method for
establishing the presence of task-related information and for identifying important cortical
regions, and encoding models provide a hypothesis-driven approach that is capable, in
principle, of completely characterizing the functional significance of a ROI (Naselaris, et al.,
2011). This coupling of analysis techniques may thus provide a means of exploiting the
whole-brain scanning capability of fMRI while simultaneously enabling the application of
strong-inference based model testing.
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Figure 1.
Three different models of attentional modulation across a population of motion selective
neurons tuned to different directions in middle temporal cortex (MT). The population
response profile with attention is depicted in black, and the response profile without
attention in blue. (a) model in which attention increases the response of all neurons in the
population by a constant additive factor, (b) model in which attention modulates the firing
rate of all neurons by a constant multiplicative gain factor, (c) model in which attention
narrows the bandwidth of the population response profile by increasing the gain of neurons
tuned to the attended feature, and suppressing the response of neurons tuned away from the
attended feature.
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Figure 2.
(a) Synthetic orientation tuning map in primary visual cortex generated by band-pass
filtering random orientation values. The black squares represent superimposed 3 × 3 mm
fMRI voxels. (b) Histograms showing the distribution of orientation selectivity inside each
voxel to each of the eight orientations. Aggregating the signal across many such biased
voxels could potentially support orientation decoding (Panels a,b adapted with permission
from G. Boynton, 2005, his Figure 1). (c) White lines depict the ventral and dorsal
boundaries of human V1 (projected onto a computationally flattened cortical sheet), and
each color represents areas that respond most strongly to a particular orientation (inset). The
systematic orientation map across V1 – along with additional analyses – indicates that
decoding might be supported by large scale feature-maps (panel c adapted with permission
from J. Freeman et al., 2011, their Figure 1).
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Figure 3.
(a) Each point in the 3-dimensional space represents a response vector across three
hypothetical voxels in response to either stimulus A (Va, in red), or stimulus B (Vb, in blue).
The grey shaded region represents a classifier plane (L) that was computed based on data
from an independent training set. (b) Same as (a), but the mean distance between the cluster
centers has been increased, which in turn should improve the probability of successful
classification. (c) Same as in (a,b) except the variance of each cluster is smaller, which will
also increase the probability of successful classification.
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Figure 4.
(a) Subjects were instructed to remember either the orientation or the color of a sample
stimulus, and then to retain only this relevant information across a 10s delay period. Bar-
graph depicts classification accuracy (using the mean response across the delay period as
input to the classifier) as a function of the stimulus feature (color or orientation) being
classified and whether the subject was instructed to remember orientation or color during the
scan used as the basis for classification. The horizontal lines highlight the level of chance
performance. Classification accuracy was only significantly higher than chance for the
relevant feature that the subject was instructed to remember. (b) Timecourse (see schematic)
of classification accuracy in a study where subjects either had to remember the orientation of
a stimulus across a delay period, or they had to perform an immediate report control task
(i.e. a task with no WM requirements). These data show significant memory related
classification in both V1 and across other early visual areas V1-V4 when the data were
combined. Panel (a) used with permission from Serences et al. (2009), their Figure 3a, and
panel (b) used with permission from F. Tong, adapted from Harrison and Tong (2009), their
Figure S5.
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Figure 5.
(a) Each cube depicts an input fMRI activity pattern in a voxel measured while a subject
viewed gratings of a given orientation. The circles represent ‘linear ensemble orientation
detectors’, each of which combines the weights (W) for each voxel such that the output of
each detector becomes largest for its ‘preferred orientation’ (Ti). The classifier then guesses
that the subject was viewing the preferred orientation of the detector with the highest value.
(b) The output from two orientation detectors (tuned to 45° and 135°, respectively) showing
highly selective response profiles that are the result of the optimal pooling of information
across many weakly selective voxels. Figure used with permission from F. Tong, and
reprinted from Figure 1 of Kamitani and Tong (2005).
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Figure 6.
(a) Graphic depiction of forward encoding model used by Brouwer and Heeger (2009). The
response of each voxel is modeled as the sum of weighted responses across six hypothetical
color channels, where each color channel is modeled as a half-wave rectified and squared
sinusoidal function. See text for more details. Panel (a) reprinted with permission from
Brouwer and Heeger (2009). (b) The decoding accuracy using forward model channel
responses was virtually equivalent to that obtained using a standard MVPA classifier. (c)
Most importantly, however, the encoding model presented in (a) could even reconstruct
color stimuli that were not part of the training set. Each point of color on the circle
represents a reconstructed color for one run where the novel color was the color dot outside
the circle.
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