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Subcortical– cortical interactions in the language network were investigated using dynamic causal modeling of magnetoencephalo-
graphic data recorded during auditory comprehension. Participants heard sentences that either were correct or contained violations.
Sentences containing violations had syntactic or prosodic violations or both. We show that a hidden source, modeling magnetically silent
deep nuclei, is required to explain the data best. This is in line with recent brain imaging studies and intracranial recordings suggesting
an involvement of subcortical structures in language processing. Here, the processing of syntactic and prosodic violations elicited a global
increase in the amplitude of evoked responses, both at the cortical and subcortical levels. As estimated by Bayesian model averaging, this
was accompanied by various changes in cortical-cortical and subcortical– cortical connectivity. The most consistent findings in relation
to violations were a decrease of reentrant inputs to Heschl’s gyrus (HG) and of transcallosal lateral connections. These results suggest that
in conditions where one hemisphere detects a violation, possibly via fast thalamocortical (HG) loops, the intercallosal connectivity is
reduced to allow independent processing of syntax (left hemisphere) and of prosody (right hemisphere). This study is the first demon-
stration in cognitive neuroscience that subcortical– cortical loops can be empirically investigated using noninvasive electrophysiological
recordings.

Introduction
The neural basis of language comprehension, taken to com-
prise Broca’s area in the left inferior frontal gyrus (IFG) and
Wernicke’s area in the left superior temporal gyrus (STG), has
been modeled mostly without considering deeper, subcortical
structures (Friederici, 2002; Hickok and Poeppel, 2007). An
exception is the study by Ullman (2004), which considers the
involvement of the basal ganglia (BG). From patient studies
(Raymer et al., 1997; Metz-Lutz et al., 2000) and functional
magnetic resonance imaging (fMRI) studies (Fiebach et al.,
2004; Mestres-Missé et al., 2008), it is clear that subcortical
structures such as the BG and the thalamus also play a crucial
role in language processing. The BG and the thalamus interact
with cortical regions through many loops, including prefron-
tal, premotor, parietal, and temporal cortices (Crosson et al.,
1997). While the role of the caudate as part of the BG is seen in
language control (Crinion et al., 2006), intracranial record-
ings have identified the thalamus as being engaged in the
detection of syntactic and semantic violations in spoken sen-
tences (Wahl et al., 2008). This suggests that an adequate
model of language comprehension should consider subcorti-
cal contributions.

In electroencephalography (EEG) or magnetoencephalogra-
phy (MEG), it is impossible to reconstruct the allocation, orien-
tation and—without taking into account interactions between
brain regions—activity of a source that has no direct impact on
the scalp sensors (i.e., most deep brain structures). Here, we
profit from the latest advances in the modeling of MEG evoked
responses using neural mass models to estimate the activity, to-
pology, and effective connectivity of corticosubcortical loops
during auditory speech comprehension.

Dynamic causal modeling (DCM) for MEG evoked responses
(Kiebel et al., 2006) uses interacting neuronal populations to re-
produce the activity of brain regions. Neuronal current densities
are projected into the MEG channel space using a source and a
head model. This combined model is then inverted to reconstruct
brain dynamics with biological constraints explaining the mea-
surement. Most importantly here, we investigate the feasibility of
the DCM method to estimate hidden source activity. First, using
simulations, we show that DCM distinguishes correctly between
situations where no hidden source was present and situations
where a hidden source relayed relevant information between cor-
tical regions. DCM can thus be used to detect the presence of
hidden sources. Second, we study actual MEG evoked responses
during language processing with DCMs that either include an
assumed hidden source or not. The hidden source is assumed to
correspond to the thalamus and the respective thalamocortical
loops based on data from intracranial recordings with similar
language material (Wahl et al., 2008). Using model comparison
with the MEG data, we demonstrate that a deep source is a crucial
part within the language network, probably as a moderator be-
tween the other cortical regions.

Received July 2, 2010; revised Nov. 29, 2010; accepted Jan. 2, 2011.
O.D. was funded by Agence Nationale pour la Recherche (ANR-09-EMER-006). We thank Yvonne Wolff for care-

fully acquiring the data.
Correspondence should be addressed to Prof. Dr. Angela D. Friederici, Department of Neuropsychology, Max

Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany. E-mail:
angelafr@cbs.mpg.de.

DOI:10.1523/JNEUROSCI.3433-10.2011
Copyright © 2011 the authors 0270-6474/11/312712-06$15.00/0

2712 • The Journal of Neuroscience, February 16, 2011 • 31(7):2712–2717



Materials and Methods
Stimuli. The study involved four crucial experimental conditions cross-
ing the factors syntax and prosody: (1) CC, prosody correct and syntax
correct; (2) CS, prosody correct and syntax incorrect; (3) PC, prosody
incorrect and syntax correct; and (4) PS, prosody incorrect and syntax
incorrect. Each condition contained 48 sentences. Each sentence con-
sisted of a proper name (e.g., Maria) and the verb weiß [knows] compris-
ing the matrix clause. Then, a subordinate clause was attached that was
always introduced by the complementizer dass [that] and followed by the
subject (e.g., der Rentner [the pensioner]) of the subordinate clause. The
penultimate constituent of the subordinate clause was always a preposi-
tional phrase (PP) consisting of a preposition (e.g., im [in the]) and the
critical word (e.g., Alter [seniority]), followed by the verb of the subor-
dinate clause (e.g., kränkelt [ails]) at clause-final position. German words
that are ambiguous regarding word category until their ending (either
verbal suffix or nominal suffix) served as critical words. A nominal suffix
(suffix -r) was highly expected due to the preceding preposition (im [in
the]) (requiring a noun) and a frequency-based bias of the critical word
stems toward the usage as a noun. Nevertheless, given that there was an
equal probability of occurrence for both suffix types in the present ex-
periment, a final successful determination of word category could not be
achieved until the suffix of the critical word was encountered. Therefore,
at the suffix, the critical word was disambiguated toward being a noun
(e.g., marked by the suffix -r), making a syntactically correct continua-
tion of the PP (syntax correct), or toward being an inflected verb (e.g.,
suffix -rt), which would lead to a word category violation (syntax incor-
rect) because a preposition must be followed by a noun.

To avoid possible strategic effects resulting from the fact that the oc-
currence of the critical stem with verb suffix always coincided with a
syntactical error in the two experimental conditions, we included two
syntactically congruent filler conditions in which the critical word stem
occurred together with a verb suffix in the correct context (e.g., filler 1:
Maria weiß, dass der Rentner im Rollstuhl altert. [Maria knows that the
pensioner in the wheelchair grows old.], filler 2: Maria weiß, dass der
Rentner altert. [Maria knows that the pensioner grows old.]). All critical
words were disyllabic, carrying the default (trochaic) stress pattern. Both
filler conditions were naturally recorded. To create the sentences for the
four experimental conditions, we recorded the required words in differ-
ent source sentences (for details, see Eckstein and Friederici, 2006). The
same splicing procedure was used to create the correct and incorrect
sentences to avoid a general effect of the splicing itself. The first part of the
sentence (e.g., Maria weiß, dass der Rentner im [Maria knows that the
pensioner in the]) preceding the critical region as well as the sentence-
final verb (e.g., kränkelt. [ails.]) was identical for all four experimental
conditions. The number of splicing points and their positions were also
identical between the four experimental conditions.

For the acoustic characterization of the stimuli, we decided to examine
fundamental frequency and word durations for each sentence and con-
dition; see Eckstein and Friederici (2006) for details. Descriptively, the
f0-contour for critical words in the prosodically correct conditions
marked for sentence continuation (CC and CS) showed a rise–fall pat-
tern (see supplemental Fig. S1, available at www.jneurosci.org as supple-
mental material). Prosodic violations (PC and PS) showed the reverse
fall–rise pattern.

Participants. We tested 11 participants (mean age 26 years; range from
20 to 31 years of age; four women) after they had given informed consent.
All were right handed and reported no neurological, hearing, or language
impairments. Participants were paid 7 €/h. Participants listened to the
sentences and had to judge the grammaticality of each of them via button
press. A picture with a smiley and a sad face was presented 1500 ms after
the end of the sentence. Participants had to press the button on the side
corresponding to the smiley if sentences were correct and the other but-
ton for incorrect sentences. Assignment of the location of the smiley was
random, with the happy face occurring equally often on the left- and
right-hand sides.

MEG data recording. Measurements were conducted using a Vectorview
MEG device (Elekta-Neuromag). Data were first cleaned of interfer-
ence and transformed into a fixed head position via MaxMove-

Software Elekta-Neuromag. Trial-based epochs exceeding 80 �V
(electrooculogram), 4 pT (MEG), or 200 fT/cm amplitude variation
within the epoch from �200 to 800 ms were excluded from further
analysis. Subsequently, data were bandpass filtered from 0.8 to 5 Hz.
Averages time locked to the onset of the suffix of the critical word were
computed for each subject and the four conditions.

DCM specification. Elaborating on the work of Wahl et al. (2008),
we studied language processing DCMs that either include or do not
include a deep source possibly representing the thalamus and the
respective corticosubcortical loops (Fig. 1). The cortical areas consid-
ered are Heschl’s gyrus (HG, primary auditory cortex), the mid-to-
anterior STG, and the opercular structure in the IFG, because they
were identified using a cortically distributed source reconstruction
(Maess et al., 2010) (see supplemental Fig. S2, available at www.
jneurosci.org as supplemental material). As a control of DCM model
complexity that may facilitate data fitting when a hidden source is
used, we also investigated the consequence on model evidence of
using an additional cortical source that was not primarily identified
using source reconstruction instead of the deep source. We used the
anterior cingulate cortex (CG) for that purpose.

The cortical interconnections were based on the following findings:
(1) a large number of sentence comprehension studies specified the in-
ferior portion of the pars opercularis/frontal operculum (FOP) and STG
bilaterally to be involved in the processing of syntactic violations (Fried-
erici, 2002); (2) structural and effective connectivity data have demon-
strated that HG connects to the lateral planum polare and the STG as well
as to the planum temporale and the posterior STG (Upadhyay et al.,
2008) and the STG connects to the FOP (Friederici et al., 2006). The
respective areas (HG, STG, FOP) of the left hemisphere (LH) and right
hemisphere (RH) are connected via the corpus callosum (Huang et al.,
2005), which was shown to be responsible for the functional interplay of
the two hemispheres during auditory sentence comprehension (Fried-
erici et al., 2007).

DCM analyses focused on slow evoked components, occurring be-
tween 0 and 500 ms peristimulus time, which compose the ELAN wave-
form as suggested by data from Wahl et al. (2008). Six regions were
modeled using an equivalent current dipole (ECD) a priori positioned
using the following MNI coordinates: Heschl’s gyrus [�48, �9, 7]; an-
terior superior temporal gyrus [�35, 0, 3]; and frontal operculum [�54,
16, �4]. The hidden source was simply modeled using an ECD, posi-
tioned at [0, 0, 0] so that it did not project to the scalp assuming a
spherical head model. Alternatively, as a control of DCM overfitting, the
hidden source was replaced by the CG [0, 36, 28]. Regions were intercon-
nected with forward, backward, and lateral connections as described by
David et al. (2005, 2006).

Other DCM parameters were as follows: eight modes for data selec-
tion, one discrete cosine transform (DCT) component to remove slow
drift, Hanning windowing to remove the effect of very late responses, a
downsampling of 2 to speed up computations, no constraint of symme-
try on the orientation of ECDs, and no modulation of intrinsic connec-
tions. DCM parameters were fitted on the four conditions at once (CC,
CS, PC, PS). Differences between conditions were obtained by allowing
all extrinsic connections to be modulated. Extrinsic connections were
modified between the different models but respected some basic features
(Fig. 2): (1) All models were LH–RH symmetric, and the auditory stim-
ulus input was entered on HG, which was at the bottom of the hierarchy.
Earlier stages on the auditory pathway [e.g., the inferior colliculus and
medial geniculate nuclei (MGN) (Hackett, 2011)] were covered by the
model parameters of the extrinsic input on HG; (2) STG and FOP were
second and third in the cortical hierarchy, respectively, as embodied
using forward and backward connections; (3) HG, STG, and FOP were
laterally connected assuming transcallosal communication between cor-
responding regions in the two hemispheres; and (4) the deep source,
which embodies reentrant cortical–subcortical loops that take place after
the first flow of information passing through the MGN and HG, was
arbitrarily assumed between HG and the STG in the hierarchy.

Model evidence at the group and family level was estimated using a
random effects analysis of the negative free energy obtained for every
subject and model (Stephan et al., 2009; Penny et al., 2010). Family
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level inference removes uncertainty about
aspects of model structure other than the
characteristic of interest. We used five fami-
lies (Fig. 1): models without the deep source
(No deep), models with the deep source dif-
ferentiated according to the lateral connec-
tions (HG, STG, and FOP), and models with
the anterior cingulate cortex (CG). Extrinsic
connectivity parameters of the winning fam-
ilies were estimated at the group level using
Bayesian model averaging (BMA) (Penny et
al., 2010).

DCM simulations. Monte Carlo simulations
were performed with scalp data to demonstrate
the possibility of detecting the presence of a
hidden source involved in the brain network
having generated those data. The head position
(306 channels, Elekta-Neuromag system) of a
subject taken at random was used for simula-
tions. The first step consisted of generating
scalp data. Two sources were positioned ran-
domly in the brain and the associated forward
model was computed using a spherical head
model. One example of the sources together
with their corresponding time courses is dis-
played in Figure 2 A. Cortical sources are la-
beled as A (blue) and B (red) and an additional
hidden relay source as H (green).

The dynamics of the sources were created
using the neural model of DCM assuming for-
ward and backward connections between sub-
sequent sources following two configurations:
(1) a simple model only composed of the two
measurable sources; (2) an augmented model
containing a hidden (deep) source between the
two measurable sources located at random. For
each model, scalp data were obtained by inte-
grating the differential equations of the corre-
sponding neuronal models, with parameter
values chosen randomly (using the prior mean
value plus a random component of maximum
value equal to 50% of the prior variance). Fifty
realizations were considered for the Monte
Carlo simulations.

In the second step, synthetic scalp data (gen-
erated with and without a hidden source) were
adjusted under two assumptions: using a DCM
composed of the two measurable sources (A
and B), or using a DCM that contained the
additional hidden source (H). Each model was
the true model for only one set of scalp data.
For each condition, fixed effect model posterior
probability (Stephan et al., 2009) was computed
to assess the possibility of DCM inference to ac-
curately detect the presence or absence of the hid-
den source.

Results
Behavioral data
Overall, performance on the task was highly accurate, with all
participants having an average response rate of �90% correct on
the trials. Data from trials in which participants gave incorrect
responses were not excluded from analysis.

DCM simulations
We found that models including the deep source recover the tem-
poral time series almost perfectly. It should be noted that even the
time course of the hidden source was correctly estimated when ap-

propriately assumed. In contrast, the cortical time courses were
rather poorly recovered when the hidden source is wrongly as-
sumed to be absent. Additionally, the value of the negative free
energy, an approximation of the log evidence of each model, was
higher for the true model, the one with the hidden source.

Model posterior evidence computed on randomly generated
data (Monte Carlo simulations) shows clearly that, in principle, it
is possible to correctly detect the presence or the absence of the
hidden source (Fig. 2B).

Figure 1. Schematic overview of the 22 models tested, distributed into five families (rows). The first family includes the six
cortical regions but no deep source. Other model families are characterized by the interhemispheric connection, which is between
the left and right counterparts of one of three cortical regions: HG, STG, or FOP. The family CG is used as a control. It is an STG family
assuming an anterior cingulate region instead of the deep source.
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DCM modeling of language data
The competing DCMs differed in the topology of subcortical–
cortical loops and in their direct interhemispheric connections
(Fig. 1). Comparing model exceedance probability of all 22 mod-
els and of all five families tested, we found clear evidence of the
presence of a hidden source whatever the cortical connectivity
(Fig. 3A,B). Indeed, exceedance probability summed over the
three families with the deep source (HG, STG, FOP) was �0.95.
Models 1– 6 and their “No deep” family only reached very low
values of exceedance probability. As an empirical demonstration
of the actual presence of a deep source, the evidence of family CG
including an anterior cingulate source was well below the evi-
dence of the other families having the deep source (HG, STG,
FOP)—see Figure 3B. The profile of exceedance probability be-
tween HG, STG, and FOP families may indicate that transcallosal
connectivity at a higher level in the cortical hierarchy is more
appropriate to explain the data. However, the three best models,
which represented 86% of exceedance probability, belonged to
each of those three families (model 10: HG, model 11: STG,
model 15: FOP)—see Figure 3C. This suggests that it was not
possible to distinguish between HG, STG, and FOP. Therefore,
these families were considered winning families and were in-
cluded in BMA of connectivity parameters.

Mean brain evoked responses were computed by averaging
over subjects and winning families (Fig. 4A). These mean evoked
responses showed increased amplitude in response to violations,
from 100 ms peristimulus time onwards in almost all conditions
and locations. Specifically, syntactic violations appeared to have
more impact than prosodic violations on subcortical activity. The
link between amplitude (Fig. 4A) and connectivity (Fig. 4B)

modulations, however, was difficult to assess because of hetero-
geneous connectivity over conditions. The most consistent find-
ing in relation to violations was a decrease in cortical (no
violation: 1.41; violation: 1.13) and subcortical (no violation:
2.35; violation: 1.14) reentrant connectivity to HG. Transcallosal
lateral connections were also modulated and showed a global
decrease in connectivity whenever a violation was detected (no
violation: 0.71; violation: 0.36). The difference in conditional
modulation of connectivity between the correct and the other
three experimental conditions is displayed in Figure 4C.

Discussion
This study is important for two reasons. First, from a method-
ological point of view, we have shown that hidden neural activity
(i.e., activity that is not recordable using noninvasive methods)
can be recovered using parameter estimation of biophysical mod-
els of brain networks (dynamic causal modeling) (David et al.,
2005, 2006). Second, the present data allow us to make specific
inferences on subcortical– cortical connectivity during auditory
language processing.

The ability to record deep brain structures in EEG or MEG has
been a matter of debate, and several studies have suggested that
thalamic activity is actually be recordable in MEG or EEG (Tes-
che, 1996; Gross et al., 2002; Attal et al., 2007). When comparing
intracerebral and scalp data, it is nonetheless clear that scalp re-
cordings do not capture the activity of deep structures well (Ray
et al., 2007; Dalal et al., 2009). Here, we made the radical assump-
tion that deep structures (e.g., thalamus) were not recorded (i.e.,
their activity did not project to the scalp), and we proposed to

Figure 2. A, Generative model for simulations to investigate the influence of the hidden
source (H) and two measurable sources (A and B). Locations of A and B were varied randomly. B,
Results of Monte Carlo simulations testing two model families: with and without a deep (hid-
den) source (H). Monte Carlo simulations demonstrated that independent of the location and
the distance between the visible sources, the model posterior probability provides stable infor-
mation whether or not inclusion of a hidden source constitutes a better model.

Figure 3. Bayesian model selection based on exceedance probabilities for different scenar-
ios. A, Comparison of the models 19 –22 (STG including CG) versus models 11–14 (STG including
deep). Note that there is just a minor exceedance probability for the models including CG. B,
Comparison of all model families investigated: no deep source, deep source � transcallosal
connection between left and right counterparts of HG, STG, or FOP, and finally CG� transcallosal
connection between the two counterparts of STG. Note that the three winning families together (all
including the deep source) have 95% exceedance probability. C, Exceedance probabilities for each
model separately. Note that the three best models together pass an exceedance probability of 85%.
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indirectly estimate depth activity by the
means of biophysical modeling of neuro-
nal connections.

Dynamic causal modeling allows the
estimation of neuronal parameters (con-
nectivity and time constants) from EEG
or MEG evoked responses (David et al.,
2006). Using a Bayesian framework, it is
possible to make inferences on estimated
parameters, and most importantly, to
compare different models on the basis of
their evidence, which combines the good-
ness of fit to the data of model dynamics
and model complexity. The simple idea
we tested to investigate the presumed in-
fluence of deep nuclei was to compare
models with or without a hidden (i.e.,
deep) source. Because a model with a deep
source is more complex than a model
without, given the same number of cor-
tical sources, it is selected as a better
model only if it allows the better
reproduction of recorded scalp data
through the modulation of brain dy-
namics by the means of subcortical/cor-
tical connections. Using a simulation (Fig.
2A,B), we demonstrated the face validity
and potential value of this new method of
modeling the sources of MEG or EEG
data. This approach is in fact radically new
and opens avenues for the noninvasive
study of thalamocortical loops under
physiological and pathological condi-
tions. We applied it to investigate the
possible role of the thalamus and basal
ganglia during the processing of syntac-
tic and prosodic violations in auditory
sentence comprehension.

Overall, our MEG DCM results sug-
gest the involvement of a deep source in
language processing. Although DCM does
not provide a definitive answer here, this
deep source very likely represents the thal-
amus, as intracranial recordings in a study
using partly similar material indicated in-
creased thalamic responses to syntactic
violations in an earlier time window
(Wahl et al., 2008). Here, the particular
modulations in connection strength
suggest different networks react as a
function of syntactic and prosodic in-
formation. Syntactic information, which is known to be pro-
cessed in the left hemisphere (Friederici, 2002; Hagoort, 2005;
Hickok and Poeppel, 2007), indeed leads to increased re-
sponses in the left STG and FOP, but also in the right FOP and
in the deep source. Prosodic information is known to be pro-
cessed in the right hemisphere (Meyer et al., 2004). Not sur-
prisingly, we observed that prosodic violations involved right-
sided modulation of cortical activity but also elicited an
increase in subcortical activity, but this was weaker than the
one evoked by syntactic violations.

In terms of connectivity patterns, contextual modulations are
complex. A consistent feature is a decrease in cortical and sub-

cortical reentrant inputs to HG whenever a violation is detected.
Given that the syntactic violations investigated in the present
study are reflected in the EEG and MEG experiments as an early
effect whose dipolar activity is located in the superior temporal
gyrus anterior to HG (Knösche et al., 1999; Friederici et al., 2000)
or in close vicinity to it (Herrmann et al., 2009), the reentrant
loop between HG and the deep source suggests that the informa-
tion from the secondary auditory cortex is referred to the deep
nuclei for further processing, which affects high- and low-level
cortical processing. This is backed up by cortical and intracranial
recording data indicating that the cortical effect precedes the re-
spective effect in the thalamus (Wahl et al., 2008).

Figure 4. Time courses and connectivities of winning model families. A, Mean time courses of the winning families (all models
that included a deep source). B, Bayesian model averages including models of the winning families (HG, STG, FOP): mean connec-
tivity between all regions. Note the stronger connection (dark red) from the deep source to the cortical region (LHG)—right upper
corner of the CC square. Blue means lowest connectivity. The redundant and nonexisting connections are displayed in gray. The
panels display the values for the different conditions CC, CS, PC, and PS, respectively. Direction of connectivity is indicated in the
CC-CC panel of part C: “from” is displayed at the top/bottom and “to” on the left/right. C, Bayesian model averages based on models
of the winning families (HG, STG, FOP): difference in the mean connectivity between all regions to the condition CC. Note that green
means difference equals zero. The redundant and nonexisting connections are displayed in gray. The upper left panel displays the
values for condition CC-CC, the upper right panel— condition CS-CC, the lower left panel— condition PC-CC, and the lower right
panel— condition PS-CC.
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In addition, we observed a global decrease in transcallosal
connections in relation to violations, particularly at the level of
HG and FOP. The decrease for the interhemispheric connection
between the FOP, HG, and STG sources is in line with the as-
sumption that during normal auditory language processing, both
hemispheres work in parallel, with the left hemisphere being pri-
marily responsible for syntactic and lexical–semantic processes
and the right hemisphere for prosodic processes. In conditions
where one hemisphere detects a violation, possibly via fast thalamo-
cortical (HG) loops, the intercallosal connectivity is reduced to allow
independent processing of syntax and of prosody.

To sum up, these results can be interpreted within the theory
of predictive coding (Friston, 2005, Friston and Kiebel, 2009).
During language learning, both hemispheres acquire prior repre-
sentations of syntactic and prosodic information. In the presence
of syntactic or prosodic violations in a given sentence, after early
auditory stimulus processing in HG, thalamus, and STG/FOP,
error signals are send back by means of decreased reentrant con-
nectivity to HG and decreased transcallosal connectivity. These
error signals may serve the purpose to process this sentence using
prior representations of language to repair syntactic or prosodic
structures if possible, most likely by dissociating both processes
to a certain extent. Overall, our MEG DCM results are highly
suggestive of where increased thalamic responses to language vi-
olations were measured using intracranial recordings (Wahl et
al., 2008). DCM was thus successful in demonstrating that the
thalamus is a crucial part within the language network, probably
as a moderator between the other cortical regions. As a result, our
study opens new avenues for studying the role of subcortical
structures in human cognition.
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